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Research Highlights:

Lahore, Gujranwala, and Okara are the most polluted city based on PM35
Jhang, Multan, and Vehari are the most polluted cities based on AOD

Aerosols, nighttime lights, population, cropland, and fire show same spatial patterns

Pakistan’s entire population is exposed to long-term PMy (x = 1, 2.5, & 10)

Pakistan’s air quality is mainly affected by local anthropogenic sources
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Abstract

Pakistan ranks third in the world in terms of mortality attributable to air pollution, with
aerosol mass concentrations (PMas) consistently well above WHO (World Health Organization)
air quality guidelines (AQG). However, regulation is dependent on a sparse network of air quality
monitoring stations and insufficient ground data. This study utilizes long-term observations of
aerosols and trace gases to characterize and rank the air pollution scenarios and pollution
characteristics of 80 selected cities in Pakistan. Datasets used include (1) the Aqua and Terra
(AquaTerra) MODIS (Moderate Resolution Imaging Spectroradiometer) Level 2 Collection 6.1
merged Dark Target and Deep Blue (DTB) aerosol optical depth (AOD) retrieval products; (2) the
CAMS (Copernicus Atmosphere Monitoring Service) reanalysis PM1, PM3 5, and PM1g data; (3) the
MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)
reanalysis PM3s data, (4) the OMI (Ozone Monitoring Instrument) tropospheric vertical column
density (TVCD) of nitrogen dioxide (NO;), and VCD of sulfur dioxide (SO;) in the Planetary
Boundary Layer (PBL), (5) the VIIRS (Visible Infrared Imaging Radiometer Suite) Nighttime Lights
data, (6) MODIS Collection 6 Version 2 global monthly fire location data (MCD14ML), (7)
population density, (8) MODIS Level 3 Collection 6 land cover types, (9) AERONET (AErosol
RObotic NETwork) Version 3 Level 2.0 data, and (10) ground-based PM> s concentrations from air
quality monitoring stations. Potential Source Contribution Function (PSCF) analyses were
performed by integrating with ground-based PM, s concentrations and the NOAA (National
Oceanic and Atmospheric Administration) HYSPLIT (Hybrid Single-Particle Lagrangian Integrated

Trajectory) air parcel back trajectories to identify potential pollution source areas which are
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responsible for extreme air pollution in Pakistan. Results show that the ranking of the top
polluted cities depends on the type of pollutant considered and the metric used. For example,
Jhang, Multan, and Vehari were characterized as the top three polluted cities in Pakistan when
considering AquaTerra DTB AOD products; for PM1, PM2s, and PM1o Lahore, Gujranwala, and
Okara were the top three; for tropospheric NO, VCD Lahore, Rawalpindi, and Islamabad and for
PBL SO; VCD Lahore, Mirpur, and Gujranwala. The results demonstrate that Pakistan’s entire
population has been exposed to high PM3s concentrations for many years, with a mean annual
value of 54.7 ug/m?3, over all Pakistan from 2003 to 2020. This value exceeds Pakistan’s National
Environmental Quality Standards (Pak-NEQS, i.e., <15 pug/m3 annual mean) for ambient air
defined by the Pakistan Environmental Protection Agency (Pak-EPA) as well as the WHO Interim
Target-1 (i.e., mean annual PM,s <35 pg/m3). The spatial analyses of the concentrations of
aerosols and trace gases in terms of population density, nighttime lights, land cover types, and
fire location data, and the PSCF analysis indicate that Pakistan’s air quality is strongly affected by
anthropogenic sources inside of Pakistan, with contributions from surrounding countries.
Statistically significant positive (increasing) trends in PM1, PM;5, PM1o, tropospheric NO; VCD,
and SO, VCD were observed in ~89%, ~67%, ~48%, 91%, and ~88% of the Pakistani cities (80
cities), respectively. This comprehensive analysis of aerosol and trace gas levels, their
characteristics in spatio-temporal domains, and their trends over Pakistan, is the first of its kind.
Results will be helpful to the Ministry of Climate Change (Government of Pakistan), Pak-EPA,
SUPARCO (Pakistan Space and Upper Atmosphere Research Commission), policymakers, and the

local research community to mitigate air pollution and its effects on human health.

Keywords: MODIS; AOD; CAMS; MERRA-2; PM1; PM35; PM1o; OMI; NO3; SO3; PSCF; Pakistan
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Highlights:

Lahore, Gujranwala, and Okara are the most polluted city based on PMy5

e Jhang, Multan, and Vehari are the most polluted cities based on AOD

e Aerosols, nighttime lights, population, cropland, and fire show same spatial patterns
e Pakistan’s entire population is exposed to long-term PMx (x = 1, 2.5, & 10)

e Pakistan’s air quality is mainly affected by local anthropogenic sources

1. Introduction

With the rapid increase in population and overexploitation of natural resources, air pollution
is a serious global environmental concern. According to the World Health Organization (WHO
2018a), air pollution levels are dangerously high worldwide as 9 out of 10 people breathe polluted
air, and each year 7 million deaths are caused by outdoor and indoor aerosol pollutants. Qutdoor
(ambient) air pollution is due to high concentrations of different species including airborne
particulate matter (PM), ozone (Os3), nitrogen dioxide (NO3), volatile organic compounds (VOC),
carbon monoxide (CO), and sulfur dioxide (SOz), which have adverse health effects (Mannucci
and Franchini 2017). Although air pollution is a global problem, the latest WHO air quality
database reveals that 97% of affected cities are in low- and middle-income countries with more
than 100,000 inhabitants (WHO 2018b). Air pollution is endemic to Pakistan, being listed among
low- and middle-income countries as well as being the most urbanized of its South Asian
counterparts (77.42 million or 36.37 % of the urban population, with 2.52 % annual growth rate)

(UNDP 2019). Purohit et al. (2013) predicted that under current emission control standards, air
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pollution would decrease life expectancy by more than 100 months by 2030. The Health Effects
Institute (2019) reported that since 1990, Pakistan’s entire population has been exposed to PM; s
(the integrated dry mass of aerosol particulates with an aerodynamic diameter less than 2.5 um)
annual mean concentrations of 58 pg/m?3in 2017, levels exceeding WHO Interim Target-1 (i.e.,
<35 pg/m3). Pakistan ranks third in the world in terms of mortality attributable to air pollution,
with an annual loss of 128,000 lives (Government of Pakistan 2019). Recently, on October 30,
2019, the Air Quality Index (AQl) was 484 in Lahore (the second-largest city with the highest
urbanization rate of 6.12 percent per annum), well above the threshold of 300 for “hazardous”
level (Amnesty International 2019). The winter of 2019-2020 witnessed a spate of smog, which
compelled authorities in Punjab to close schools for an extended period. The formation of this
smog was fueled by the buildup of anthropogenic aerosols having 65% of sources within Pakistan.
The principal cause for smog formation is NOx, which is emitted primarily from Pakistan's 23.6
million transport vehicles (58%), followed by industry and power, which accounts for 34% of
emissions (Amnesty International 2019; Government of Pakistan 2019; UNDP 2019). According
to the Pakistan Air Quality Initiative (PAQI), Lahore, Peshawar, Islamabad, and Karachi are the
most polluted cities where air quality does not meet WHO air quality guidelines during autumn
and winter (PAQI 2018). Air pollution monitoring throughout Pakistan is challenging due to
sparsely distributed air quality monitoring stations, though several remote sensing studies have

been conducted.

Satellite observations provide spatial distributions of column-integrated concentrations
which are related to the near-surface concentrations through meteorological and physico-

chemical processes, thus complementing local ground-based observations. Gupta et al. (2013)
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analyzed MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (Aerosol Optical Depth)
retrievals over Lahore and Karachi from 2001 to 2010 and reported higher aerosol loadings near
the city center than outside the city. Tariq et al. (2016) analyzed ground-based and satellite-based
aerosol optical properties over Lahore during intense haze events in October 2013 and reported
crop residue burning and urban-industrial emissions as the main sources of high AOD levels. Bilal
et al. (2016) evaluated the performance of the Aqua-MODIS (MYDO04) level 2 aerosol products
over Lahore and Karachi from 2007 to 2013, and recommended the use of Dark Target (DT) and
Deep Blue (DB) algorithms over Karachi and Lahore, respectively, for regional air quality
applications, as these cities have different land cover characteristics and aerosol types. Other
remote sensing studies have been conducted on atmospheric trace gases, such as ozone (03),
nitrogen dioxide (NO>), sulfur dioxide (SO2), and carbon dioxide CO,, as well as their trends over
time (Khokhar et al. 2016; Khokhar et al. 2015; Tarig and Ali 2015; ul-Haq et al. 2017; ul-Haq et
al. 2014; Ul_Haq et al. 2015). Zhang et al. (2020) conducted the first study of the vertical
distribution of aerosol optical properties over Pakistan using CALIPSO (Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observation) data.

Cities are areas of high activity, and every city is a huge source of local anthropogenic aerosols
and trace gases from industrial and human activities, which can impact air quality, visibility, and
alter the physico-chemical properties of the atmosphere at local, regional, and global scales.
Although several studies of AOD and atmospheric trace gases have been conducted over
Pakistan, no study has encompassed different particle fractions (PMy, x =1, 2.5, and 10) on the
national scale, i.e., the dry mass of ultrafine particles with an aerodynamic diameter less than 1

um (PM3), 2.5 um (PMz5) and 10 um (PM1g). PM1 is part of PM2s, PMy 5 is part of PMao. It is of
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great importance to identify the cities most affected by different PMy fractions, as they have
different effects on, for instance, health and chemical and physical processes in the atmosphere,
and this is the first study to do so. Moreover, very few studies have investigated the long-term
trends in pollutant concentrations at city level, which can provide additional insights into the link
between concentrations and the changes in emissions. Furthermore, previous studies are not
comprehensive enough to answer questions such as: which are the most and least polluted cities
of Pakistan, and what are the likely pollution sources? Therefore, this study aims (1) to
extensively characterize and rank the extremely polluted cities of Pakistan, considering multiple
sources and aerosol mass fractions, for 80 carefully selected cities, representing almost all major
urban centers of Pakistan, and (2) to identify the likely pollutant sources by performing PSCF
(Potential Source Contribution Function) analysis with the integration of HYSPLIT (Hybrid Single-
Particle Lagrangian Integrated Trajectory) back trajectory and ground-based PM;s
concentrations. This study is based on long-term combined Aqua and Terra (AquaTerra) MODIS
data from 2003 to 2017, OMI (Ozone Monitoring Instrument) data (NO2 and SO3) from 2004 to
2019, CAMS (Copernicus Atmosphere Monitoring Service) reanalysis PM1, PM3 5, and PMjo data
from 2003 to 2019, MERRA-2 (Modern-Era Retrospective analysis for Research and Applications,
Version 2) PMys data from 2003 to 2020, VIIRS (Visible Infrared Imaging Radiometer Suite)
Nighttime Lights from 2012 to 2019, LandScan global population density for 2019, MODIS land
cover type for 2019, MODIS global monthly fire location data from 2003 to 2020, ground-based
PM,5 concentrations from 2018 to 2020, and AERONET (AErosol RObotic NETwork) AOD
measurements from 2006 to 2017. Detailed information on the data used in this study is provided

in Section 3.
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2. Study Area

Pakistan, with a population of 212.82 million, is the sixth most populous country in the world.
It lies between 23°35’ to 37°05’ North and 60°50’ to 77°50’ East, having a diverse geographical
landscape bordered by China, the Himalayas, India, Afghanistan, Iran, and the Arabian Sea.
Geographically, Pakistan falls into three major regions: the northern highlands, constituting parts
of the Hindu Kush, the Karakoram Range, and the Himalayas; the Indus River basin plain in the
center and east (65% of the total area i.e. 796,096 km?); and the Balochistan Plateau in the south
and west (Government of Pakistan 2019). Administratively, Pakistan has six units: Punjab, Sindh,
Khyber Pakhtunkhwa, Balochistan, Azad Kashmir, and Gilgit Baltistan. Punjab is the most
populous (112.38 million; 53%) administrative unit of Pakistan, followed by Sindh (49.05 million;
23%), Khyber Pakhtunkhwa (36.5 million; 17%), and Balochistan (12.7 million; 6%). Balochistan
has the largest area (43.6 %), followed by Punjab (25.8%), Sindh (17.7 %), and Khyber
Pakhtunkhwa (12.78%). Sindh is the most urbanized and industrialized administrative unit of
Pakistan with 52% urban population. Islamabad (2.1 million; 1%) Capital Territory (ICT), a rather
small unit in terms of area (0.1 %), is, in fact, the second most urbanized (50.58%) region of
Pakistan, and has an annual urbanization rate of 4.91 %. Currently, 10 cities in Pakistan have a
population of over one million, and 7 have higher per-capita incomes than the national average
(UNDP 2019). The Pakistan economic survey 2018-19 reports a total cropped area of 22.6 million
hectares, and agricultural contributions of 18.5 % to the GDP, compared with 20.3% from the

industrial sector (Government of Pakistan 2019).
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This study covers almost all prominent cities in Pakistan including all administrative units and
their capital cities, and the Capital of the country (Figure 1). In summary, the study area analyzes
23 cities from the most populated administrative unit, Punjab; Khyber Pakhtunkhwa is also well-
represented by 19 urban centers; Balochistan is the least populated but the largest administrative
unit, and is represented by 19 cities; 14 other cities exemplify the diversity of Sindh in the South-

East, and 5 cities represent the attractive hilly land of Azad Kashmir.
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Figure 1: Geographical and administrative map of Pakistan including a list of cities used in the
present study. Cities are characterized using (a) yearly mean CAMS (Copernicus Atmosphere
Monitoring Service) reanalysis PMa.s concentrations (ug/m3) for the years 2003 and 2020, and
(b) yearly mean AquaTerra MODIS DTB AOD retrievals at 550 nm from 2003 to 2017. Extremely
polluted cities (red color) are defined for PM.s > 92.84 (AOD > 0.6) (3™ quartile), highly polluted
cities (brown color) for 45.69 < PM,.5 < 92.84 (0.3 < AOD < 0.6) (between 3™ and 1% quartiles),
and polluted cities (purple color) for PM2s < 45.69 (AOD < 0.3) (1%t quartile) using descriptive
statistics (Table S1). Cities are not defined as low polluted or clean cities as annual mean PM3s
concentrations for all cities exceed Pakistan’s National Environmental Quality Standards (Pak-

NEQS) for ambient air (<15 pg/m?3 annual mean).

3. Dataset

3.1 AERONET Data

The AERONET (AErosol RObotic NETwork) (Holben et al. 1998; Holben et al. 2001) is a global
network of calibrated Sunphotometers coordinated by NASA (National Aeronautics and Space
Administration) which provides regular measurements of spectral AOD at 340 nm, 380 nm, 440
nm, 500 nm, 675 nm, 870 nm, 1020 nm, and 1640 nm, and AE at 340-440 nm, 380-500 nm, 440—
675 nm, and 500-870 nm at three levels, i.e., Level 1.0 (unscreened), Level 1.5 (cloud-screened),
and Level 2.0 (cloud-screened and quality-assured), under cloud-free skies (Smirnov et al. 2000)
for every 15 minutes with an uncertainty of 0.01-0.02 (Holben et al. 2001). The present study
used Version 3 Level 2.0 AOD at 500 nm (AODsoo) and AE at 440-675nm (AEs40-675) (Giles et al.

2019) obtained from the AERONET website (https://aeronet.gsfc.nasa.gov/) for the Lahore
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(31.47987° N, 74.26406° E) and Karachi (24.94574° N, 67.13594° E) sites from 2006 to 2017. The
Lahore and Karachi AERONET sites are located in an urban area, and approximately 20 km away

from the Arabian Sea coast, respectively.

3.2 AquaTerra MODIS Data

In the present study, Aqua and Terra MODIS C6.1 L2 aerosol products at 10 km spatial
resolution are obtained from 2003 to 2017 for Pakistan from the LAADS DAAC

(https://ladsweb.modaps.eosdis.nasa.gov/). The MODIS aerosol product provides DT AOD

retrievals over land and water surfaces (Levy et al. 2013), and DB AOD retrievals only over land
(Hsu et al. 2013). The DT and DB AOD retrievals for different collections are extensively validated
against Sunphotometer (AERONET) measurements at regional (Bilal et al. 2019b; Bilal et al. 2014;
Che et al. 2019; de Leeuw et al. 2018; Fan et al. 2017; Filonchyk et al. 2019; Gupta et al. 2013; He
et al. 2018; Islam et al. 2019; Livingston et al. 2014; Mhawish et al. 2017; More et al. 2013; Nichol
and Bilal 2016; Shen et al. 2018; Shi et al. 2013; Sogacheva et al. 2018; Wang et al. 2017; Wang
et al. 2019; Xiao et al. 2016; Xie et al. 2011) and global scales (Bilal et al. 2018a; Bilal et al. 2017,
Levy et al. 2013; Levy et al. 2010; Mehta et al. 2016; Remer et al. 2013; Sayer et al. 2013; Sayer
et al. 2014; Sayer et al. 2015; Tong et al. 2020). These studies have reported overestimation and
underestimation in DT and DB AOD retrievals respectively, due to error in the estimated surface
reflectance and aerosol scheme used in the inversion methods, but overall their performance is
satisfactory. Previous studies (Bilal et al. 2018a; Bilal and Nichol 2017; Bilal et al. 2017; Bilal et al.
2018b; Mei et al. 2019; Sayer et al. 2014) have also reported different spatial coverage of DT and

DB AOD retrievals over land due to differences in their approaches, i.e., pixel selection criteria,

12


https://ladsweb.modaps.eosdis.nasa.gov/

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

estimation of surface reflectance, and the cloud mask. Therefore, a new merged Scientific Data
Set (SDS: AOD 550 Dark Target Deep Blue Combined) was introduced which contains only the
highest quality DT and DB (DTB) AOD retrievals or their average values (Levy et al. 2013). The
purpose of this new dataset is to improve spatial coverage over land (Levy et al., 2013; Sayer et
al., 2014), i.e., to retrieve AOD in the same image for those regions where either the DT or the
DB algorithm does not achieve a successful retrieval (Bilal et al. 2017; Levy et al. 2013). The
merged DTB AOD retrievals have been validated at regional and global scales (Ali and Assiri 2019;
Bilal et al. 2018a; Bilal and Nichol 2017; Bilal et al. 2017; Sayer et al. 2014; Sogacheva et al. 2018).
However, the new customized method-1 (CM1) (Bilal et al. 2017), which is named Simplified
Merge Scheme (SMS) in the later publications (Bilal et al. 2018a; Bilal et al. 2018b), provides
equally consistent data quality with the combined DTB AOD retrievals available in C6.1, but with

significantly improved spatio-temporal coverage.

3.3 CAMS Data

The Copernicus Atmosphere Monitoring Service (CAMS) reanalysis is an atmospheric
composition dataset generated by the European Centre for Medium-Range Weather Forecasts
(ECMWE). The global CAMS model combines satellite-based observations with chemistry-aerosol
modeling using the four-dimensional variational (4D-VAR) data assimilation technique to obtain
the mass concentration of aerosols and trace gases. CAMS uses the MACCity inventory at 0.5° x
0.5° spatial resolution for anthropogenic emissions which covers the period 1960-2010 (Granier
et al. 2011). Detailed information about the model and the emission inventory can be found in

(Flemming et al. 2017; Flemming et al. 2015). In this study, the ground-based mass concentration
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of particulate matter, including particles with an aerodynamic diameter of less than 1 um (PM3),
less than 2.5 um (PM2;s), and less than 10 um (PM10) was obtained from the CAMS reanalysis data
for the years 2003 and 2020. PM (x =1, 2.5, & 10) data were used at two different spatiotemporal
resolutions, i.e., (i) CAMS global reanalysis dataset at 0.75° x 0.75° spatial resolution and 3-hourly
temporal resolution from 2003 to 2020, and (ii) CAMS near-real time dataset at 0.125° x 0.125°
spatial resolution and 12-hourly temporal resolution from 2018 to 2020 (Inness et al. 2019). The
PMy data at 0.75° grid size and 3-hourly temporal resolution were used for long-term climatology
and for characterizing extremely polluted cities, whereas, the CAMS near-real time data at 0.125°
grid size and 12-hourly temporal resolution were used for validation against ground-based PM3s

concentrations obtained from air quality monitoring stations.

3.4 MERRA-2 Reanalysis Data

The MERRA-2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)
atmospheric reanalysis is the latest data released by the NASA GMAO (Global Modeling and
Assimilation Office) in 2017 (Buchard et al. 2017; Randles et al. 2017). The MERRA-2 aerosol
gridded data, i.e., dust, sea salt, sulfate, black carbon, and organic carbon, are simulated with 72
vertical layers from the surface to higher than 80 km using the GEQS-5 (GMAO Earth system
model version 5) model radiatively coupled to the GOCART (Goddard Chemistry Aerosol
Radiation and Transport) model (Chin et al. 2002; Colarco et al. 2010). For anthropogenic
emissions, MERRA-2 uses the EDGAR-4.2 emission inventory at 0.1° x 0.1° spatial resolution
which covers the period 1970-2008 (Janssens-Maenhout et al. 2013). In this study, the MERRA-

2 aerosol gridded data (dust, sea salt, sulfate, black carbon, and organic carbon) at 0. 5° x 0.625°
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spatial resolution from 2018 to 2020 were used. More details about MERRA-2 reanalysis data can

be found in Randles et al. (2017) and Buchard et al. (2017).

3.5 Ground-based PM3 s Measurements

Ground-based PM2.s measurements were obtained from two different air quality monitoring
networks. Firstly, PM,s data were obtained from 4 air quality stations operated by the US
Consulates in Islamabad, Karachi, Lahore, and Peshawar, and secondly, 54 air quality monitoring
stations operated by PAQI in Lahore (24 stations), Karachi (15), Islamabad (5) Sialkot (3),
Peshawar (2), Rawalpindi (2), Faisalabad (1), Gujranwala (1), and Muridke (1). Due to the lack of
a well-developed and standard air quality network of ground-based PM; s measurements, this
study is limited to only these cities for the validation of CAMS and MERRA-2 reanalysis PM3s
gridded data. PM3s concentrations from the US Consulates are measured by beta gauge
attenuation monitors (BAM-1020; Met One Instruments), hereafter referred to as BAM PM;s
concentrations. To increase social awareness in Pakistan, PAQI provides PM;s data using a
nationwide network of low-cost air quality monitors (IQAir AirVisual Pro), hereafter referred to
as LCM PMy3 5 concentrations. In this study, LCM and BAM PM3s measurements were used for
January 2018-December 2019 and January 2019-February 2021, respectively. More details
about PAQI (LCM) and US Consulates (BAM) PM2s data can be found in Shi et al. (2020) and

Mhawish et al. (2020), respectively.
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3.6 OMI Data

The Ozone Monitoring Instrument (OMI) onboard the Aura satellite was launched in July 2004
as a part of the A-Train satellite constellation. OMI is a hyperspectral sensor that measures the
radiation reflected from the earth-atmosphere system, in the wavelength range 250-500 nm and
provides daily global coverage at a spatial resolution of 13 x 24 km? at nadir. The OMI OMAERUV
algorithm utilizes the sensitivity of near-UV spectral regions to aerosol absorption, and it
retrieves absorbing aerosol optical depth (AAOD) at 388nm (Torres et al. 2013; Torres et al. 2007).
Along with the AAOD, the OMAERUV algorithm also provides an ultraviolet Aerosol Index (UVAI),
AOD, and Single Scattering Albedo (SSA). OMI also retrieves the atmospheric trace gases Oz, NO2
and SO; (Carn et al. 2017; Krotkov et al. 2017; Krotkov et al. 2016; Li et al. 2017; Li et al. 2013;
Veefkind et al. 2006). In this study, OMAERUV version 3 Level 3 daily cloud-screened (cloud
fraction < 30 %) NO; tropospheric vertical column density (TVCD) (OMNO2e), and SO, VCD in the
planetary boundary layer (PBL) (OMSO2e) gridded at 0.25° x 0.25° spatial resolution from 2004

to 2019 were used.

3.7 Other Supporting Datasets

Other supporting datasets include (i) annual mean VIIRS nighttime lights data
(https://eogdata.mines.edu/products/vnl/) from 2012 to 2019 derived from monthly mean data
(Elvidge et al. 2021), (ii) MODIS Collection 6 global monthly Fire Location product (MCD14ML)
from 2003 to 2020 (https://firms.modaps.eosdis.nasa.gov/download/), (iv) MODIS Collection 6

Level 3 land cover type product (MCD12Q1) for 2019
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(https://ladsweb.modaps.eosdis.nasa.gov/), and (v) the LandScan population density

(https://landscan.ornl.gov/ ) for 2019 (Rose et al. 2020).

4. Research Methodology

To investigate the air pollution scenario over Pakistan and characterize the extremely

polluted cities, in this study the following methodology was adopted:

1. MODIS AOD retrievals were obtained from the Scientific Data Set (SDS) “Optical Depth
Land and Ocean” and “Deep Blue Aerosol Optical Depth 550 Land Best Estimate”. Only
the highest quality-assured DT (QA = 3) and DB (QA = 2) retrievals were used, as
recommended by previous studies (Bilal et al. 2013; Levy et al. 2013; Mhawish et al. 2019;
Sayer et al. 2013). Pakistan has a variety of land cover types, e.g., snow and mountainous
land surface in Northern Pakistan, plain and agricultural land surfaces in Central Pakistan,
and arid and desert land surfaces in southern Pakistan, where the DT and DB algorithms
overestimate and underestimate, respectively. However, the DT algorithm is unable to
provide retrievals over the arid and desert land surfaces of Balochistan. Similar results
were observed and reported in our previous study over Pakistan (Bilal et al. 2016).
Therefore, in the present study, we preferred to generate the combined (merged) DTB
AODssg retrievals for both Aqua and Terra MODIS data from 2003 to 2017 using the
customized method-1 (CM1) (Bilal et al. 2017), which in later publications is named
Simplified Merge Scheme (SMS) (Bilal et al. 2018a; Bilal et al. 2018b), i.e., an average of
the DT and DB AQD retrievals or the available one with the highest quality flag (Equation

1), to enhance spatio-temporal coverage.
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if only DT AOD exists - DT
DTB AODss5 = if only DB AOD exists - DB (1)
if both DT and DB AOD exist —» (DT +DB)/2

2. Aqua and Terra MODIS may not provide complete spatial coverage due to cloud cover.

On days when Aqua provides AOD retrievals, Terra may not, and vice-versa. Therefore,
for more complete spatial coverage between Aqua and Terra as well as to represent an
average air pollution scenario between morning and afternoon times with a single
dataset, the combined AquaTerra DTB AOD retrievals were generated from the Aqua DTB
and Terra DTB AOD retrievals using SMS/CM1, i.e., an average of the Aqua and Terra DTB

AOQD retrievals or the available one (Equation 2).

if only Aqua AOD exists - Aqua

AquaTerra AOD = if only Terra AOD exists - Terra (2)

if both Aqua and Terra AOD exist —  (Aqua + Terra)/2

3. The AquaTerra DTB AOD retrievals are validated against Sunphotometer AOD

measurements obtained for Lahore (31.480° N and 74.264° E) and Karachi (24.946° N and
67.136° E) AERONET sites. The AERONET Sunphotometer does not provide AOD at 550
nm (AODsso), AODsso is interpolated using AOD at 500 nm (AODsoo) and Angstrém
Exponent at 440-675 nm (AEa40.675) based on the Angstrom Exponent empirical formula
(Equation 3) (Eck et al. 1999). Collocated AquaTerra and AERONET AOD retrievals were

defined as the average of at least two pixels of DTB within a spatial region of 3 x 3 pixels
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(at least 2 out of 9 pixels) centered on the AERONET site and the average of at least two

AERONET AOD measurements between 10:00 and 14:30 local solar time.

550 —AE440-667
) 3)

AODSSO = AODSOO (%

. Accuracy and errors are reported using the Pearson correlation coefficient (r), the

expected error (EE, Equation 4), and relative mean bias (RMB, Equation 5). The slope (3,
Equation 6) and intercept (o, Equation 7) between collocated AquaTerra DTB and
AERONET AOD data are calculated using the reduced major axis (RMA) regression which
incorporates errors in both independent (AERONET) and dependent (MODIS) variables
(Bilal et al. 2019a; Harper 2016). The performance of the Terra and Aqua DT, DB, and DTB
AOD retrievals is evaluated based on (i) highest correlation coefficient (r), (ii) highest
number of collocated retrievals (N), (iii) the highest percentage of retrievals within the EE,
and (iv) lowest RMB. To evaluate the performance of the collocated retrievals, the
following criteria are utilized (Bilal et al. 2017): the DT, DB, and DTB retrievals are
considered to be of equal quality if the relative difference is within (1) 5% for the
correlation coefficient (r), (2) 10% for the collocated retrievals, (3) 10% for the percentage

of retrievals is within the EE, and (4) RMB < 25%.

EE = + (0.05 + 0.20 X AERONET,0p) 4)

The upper and lower EE envelopes are calculated using Equations 4a and 4b.

Upper EE envelope = AERONET,op + |EE]| (4a)
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Lower EE envelope = AERONET,,p — |EE]| (4b)

The percentage of best retrieved MODIS AOD retrievals within the EE is reported using

Equation 4c.

%EE = AERONET,op — |EE| < MODIS,op < AERONET.op + |[EE|  (4¢)

Where |EE| is the absolute value of EE.

MODIS,,, — AERONET,
RMB =" sop — AERONETao0) 1 (5)
AERONET,0p

Where, MODIS,,pand AERONET,,, are the mean of MODIS and AERONET AOD
retrievals, respectively. RMB > 0 represents overestimation in MODIS AOD compared to
AERONET AOD, RMB < 0 represents underestimation, and RMB = 0 represents no over- and

under-estimations.

o
ﬁ _ MODIS g0p (6)
OAERONET 40p
- o -
a = MODIS,,p — <M> x AERONET,p (7)
OAERONET 40p

Where, B, @, 0mopis 40 @Nd OaproNET .o 7€ the slope, intercept, the standard deviation

of MODIS AOD, and standard deviation of AERONET AOD, respectively.

5. To show the long-term variation of the mean spatial distributions of AquaTerra AOD over

Pakistan, the AOD retrievals from 2003 to 2017 are used to generate monthly mean
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spatial AOD maps, and their corresponding pixel counts are calculated for reporting the
retrieval performance of both the DT and DB algorithms.

6. To assure the quality of the PMys data, validation of daily average CAMS and MERRA-2
PM.s data was conducted against in-situ PM,s measurements obtained from the air
guality monitoring stations. The performance was evaluated based on the correlation
coefficient (r), RMB (Eq. 5), and slope (Eq. 6). MERRA-2 PM3s concentrations were
calculated based on five aerosol components using Equation 8 (Song et al. 2018), and
CAMS PM3.s and PM1p concentrations were calculated using Equations 9 and 10 (Rémy et

al. 2019).

PM, < = [Dust, 5] + [SS,s] + 1.375 X [SO,] + [BC] + 1.6 X [OC] (8)

Where, Dust,s, SS25, BC, OC, and SO, are the GOCART concentrations of dust, sea salt,
black carbon, organic carbon, and sulfate in particles with a diameter smaller than 2.5 um,

respectively.

PM, s = p([SS,]/4.3 + [SS,]/4.3 + [DD,] + [DD,] + 0.7[0M] + [BC] + 0.7[SU]

+ 0.7[NL] + 0.25[NL,] + 0.7[AM]) 9)

PM,, = p([SS;:]/4.3 + [SS,]/4.3 + [DD,] + [DD,] + 0.4[DD5] + [OM] + [BC]

+ [SU] + [NL] + [NL,] + [AM]) (10)
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Where [SS1,2] = sea salt aerosol, [DD1,2,3] = desert dust, [Nl1,2] = nitrate, [OM] = organic
matter, [BC] = black carbon, [SU] = sulfate, and [AM] = ammonium (concentrations in

particles with a diameter smaller than 2.5 um from the CAMS model).

. To characterize extremely polluted cities in Pakistan, the DTB AOD retrieved from

AquaTerra, the PMj, PM25, and PMio from CAMS data, and the SO, VCD and NO; TVCD
from OMI are used. Polluted months as well as years, for the corresponding polluted

cities, are also characterized based on each pollutant.

. To assess recent changes in the concentrations of atmospheric constituents, the non-

parametric Mann Kendal test (Kendall and Gibbons 1990; Mann 1945) associated with
Theil-Sen’s slope (Sen 1968; Theil 1992) was used to estimate and detect trends over the
main cities of Pakistan from 2003 to 2020. The non-parametric Mann Kendal test is often
used to detect monotonic trends in a time series and is also suitable for non-normally
distributed data, or if the data have some missing observations such as environmental
data. Further, the bootstrapping technique was used to eliminate serial autocorrelation
in the monthly mean aggregated time series data and increase the robustness of the test
(Hamed and Ramachandra Rao 1998; Salmi et al. 2002). The significance of the calculated

trend was assessed using the two-tailed test method at a 95% confidence interval.

. The NOAA (National Oceanic and Atmospheric Administration) HYSPLIT (Hybrid Single-

Particle Lagrangian Integrated Trajectory Model) (Stein et al. 2015), a complete transport,
dispersion, and chemical transformation model, is used for back trajectory analysis to
determine the origin of air masses (Fleming et al. 2012) and highlight the possible sources

of aerosol pollutants affecting the air quality of Pakistan using the PSCF (Potential Source
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Contribution Function) analysis. In this study, 72 hours HYSPLIT backward trajectories at
the height of 500 m above the ground level (AGL) were computed for every 6 hours at
seasonal scales from March 2020 to February 2021 using the GDAS (Global Data
Assimilation System) meteorological data at 1° x 1° spatial resolution (available at

ftp://arlftp.arlhg.noaa.gov/pub/archives/gdas1). The PSCF analysis was performed for 4

cities selected because of the availability of ground-based PM,.s measurements from the
air quality stations operated by the US Consulates, namely, Peshawar, Islamabad, Lahore,
and Karachi. The height of 500 m AGL has been reported very useful as it is the
approximate height of the mixing layer (Begum et al. 2005). The backward trajectory
clustering and investigation of the origins of the particulate matter at the receptor
locations were studied using Meteolnfo TrajStat software (Version 2.0, available at

http://meteothink.org/products/trajstat.html) (Wang et al. 2009) in conjunction with

HYSPLIT and Geographic Information System (GIS).

The PSCF analysis was performed using 24-hour average ground-based PMys
concentrations over a grid with a resolution of 0.5°, for the days that exceeded the Pak-
NEQS 24-hour air quality standards (35 pg/m?3). The PSCF value for a specific grid cell was
calculated on the assumption that the trajectory endpoint is located within a cell (i, j) and
the trajectory is assumed to collect pollutants emitted from different pocket emission
sources within that cell (i, j). The PSCF value can be interpreted as a conditional probability
describing the potential contributions of a grid cell to the high PM;;s loadings at the

receptor site. The error associated with the trajectory is proportional to the distance from
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the receptor location (Begum et al. 2005). The PSCF value for the ijt" grid cell can be
computed using Equation 11:
PSCF(i,j) = m;j/nyj (11)
Where, n;; represents the number of endpoints that fall or pass through the ijt" cell
and m;; denotes for the number of endpoints in the ijth cell having a higher pollutant
concentration than the 24-hour Pak-NEQS. The uncertainty arising due to small n;; is
reduced by multiplying an arbitrary weight function W; ;, which is multiplied into the
PSCF. In this case, the weight function is given in Equation (12):
I( if n;; >3n - 1.00
if 1.5n < n;; <3n - 0.70
Wij = 4

L if njj<n —>0.15

(12)

Where 1 denotes the average number of endpoints per cell, which is calculated for each
cell that has at least one endpoint. Therefore, the Weighted PSCF is expressed as Equation
(13):

WPSCF = W, x PSCF (i,j) (13)

5. Results and Discussion

5.1 Aqua and Terra MODIS AOD data

5.1.1 Validation of AOD products against AERONET

The MODIS AOD data used in this paper were evaluated by comparison with the AERONET

AOD data over Lahore and Karachi. The scatterplots in Figure 2 show that Terra DT (Figure 2a),
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DB (Figure 2b), and DTB (Figure 2c) retrieved AOD are equally correlated (r = 0.83) with AERONET-
derived AOD, and have the same percentage of retrievals within the EE. However, the number of
collocated observations for DTB (N = 2796) is significantly higher than for DT (N = 1437) and DB
(N = 2486) i.e., 94.6% and 12.5% more data are available from DTB than from DT and DB,
respectively. The AOD retrieved from DT is significantly overestimated (RMB = 17.17%), with
34.38% of the data are above the EE (+EE). DB underestimates the AOD (RMB = -9.87%) with
28.24% of the data below the EE (-EE). These uncertainties appear to be averaged out in the DTB
AOD product, as the overestimations and underestimations are fewer than for DT and DB,
individually. Furthermore, the RMB (-0.03%) is significantly improved, being 99.9% and 99.8%
lower than for DT and DB, respectively. These results indicate the better performance of the Terra
DTB AOD product as compared to DT and DB over Pakistan. Similar to Terra, the performance of
the Aqua DTB AOD product (Figure 2f) is much better than for DT (Figure 2d) and DB (Figure 2e)
products, with a significantly higher number of collocated AOD values and lower RMB. However,
Aqgua performs equally as Terra in terms of correlation and the percentage of retrievals within
the EE. It is important to mention that a larger number of both DT and DB AOD retrieval products
was available for Lahore than for Karachi and also that DB provides a greater number of AOD
retrievals over Pakistan than DT. Based on the superior performance of the Aqua and Terra DTB
AOD retrievals, the merged AquaTerra DTB AOD product was generated for further analysis (see

Figure S1 in the supplementary data for the validation of AquaTerra DTB AOD retrievals).
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Figure 2: Validation of Terra and Aqua DT, DB, and DTB AOD products versus AERONET Version
3 Level 2.0 AOD measured in Lahore (for location, see no. 1 in Fig. 1a) and Karachi (for location,
see no. 56 in Fig. 1a) from 2006 to 2017. The red line represents the regression line, the solid
black line represents the identity line, and the dashed black lines represent the upper and lower

EE envelopes. The orange points represent AOD pairs at Karachi, the blue dots at Lahore.

5.1.2 Spatial distribution of AOD retrievals

Figure 3 shows the spatial distributions of the monthly mean AquaTerra DTB AOD over
Pakistan together with the corresponding pixel counts (PC) averaged over the years 2003 - 2017.
Significant monthly variations in both AOD and PC are observed. AOD retrievals are missing over
the Gilgit-Baltistan and Jammu & Kashmir (disputed territory) throughout the year, except for
January, as the DT and DB algorithms do not provide AOD retrievals over high mountain regions
and snow-covered surfaces. The presence of AOD retrievals during January is because the DB
algorithm does not use the MODIS snow mask product directly, and the internal snow/cloud
mask does not work well over these regions. Surprisingly, high AOD values > 1.0 are observed
during June and July over the Northwestern region of Khyber Pakhtunkhwa, which is a high
mountainous region with permanent snow cover. These high AOD values over snow-covered
regions could be due to an error in the internal snow/cloud mask of the DB algorithm which has
missed these pixels during preprocessing; DT does discard bright pixels during preprocessing.
AOD >1.0 is observed in July followed by June and August over Punjab and Sindh, mainly
attributed to hygroscopic growth of the aerosol particles during summer relative humidity is high,

similar to other reports using MODIS and MISR aerosol products (Mehta et al. 2016; Mhawish et
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al. 2021). Most of the major cities of Punjab and Sindh are surrounded by cropland, and the
results show that high AOD over Pakistan follows the same spatial pattern as that of the cropland.
The AOD over cropland is significantly higher than over non-agricultural (i.e., mainly desert)
regions throughout the year, even during late spring and summer when dust storms are
considered a major source of aerosols over Punjab and Sindh. Local production of anthropogenic
aerosols from urban and industrial emissions and agricultural pre- and post-harvest burning may
be responsible for the high pollution levels over the region. Over Balochistan, especially over the
desert areas, the AOD is low compared to that in Punjab and Sindh, but still higher than over
other administrative units. Over Punjab, the highest AOD values are observed during the post-
harvest seasons, i.e., throughout September to November, peaking in November, probably due
to biomass (crop residue) burning activities (Jethva et al. 2019; Mhawish et al. 2021). However,
if the high AOD levels would only be due to locally produced aerosols, the spatial patterns during
each month should be similar, but they are not. Therefore, the transboundary transport of
aerosols may contribute to Pakistan’s deteriorating air quality. This is confirmed by the well-
known smog episodes, occurring every year over Punjab due to both local production of aerosols
from crop residue burning and across the border, during which atmospheric visibility is reduced
to a few meters in both urban and rural areas. Overall, much higher AOD levels were observed in
Pakistan during June, July, and August (summer), followed by September, October, and
November (autumn), March, April, and May (spring), and December, January, and February
(winter). The higher AOD in the summer is attributed to several reasons, including (i) hygroscopic
growth of aerosol particles, due to high relative humidity, which increases the extinction

efficiency of the atmospheric aerosols (Dickerson et al. 1997; Li and Wang 2014), (ii) the
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enhancement of secondary aerosol formation rate due to faster photochemical reactions during
higher temperatures (Jacob and Winner 2009; Kulmala et al. 2020), and (iii) the larger
contribution of natural aerosols (mainly dust) during the summer monsoon (Mhawish et al.

2021).

Figure 3 shows a distinct pattern of PC which suggests that the DT and DB algorithms do not
perform equally temporally or spatially. For example, between 2003 to 2017, from late spring to
early autumn, a large number of AOD retrievals (> 400) per pixel are available over Balochistan
and some parts of Punjab, and from late autumn to early spring, a large number of AOD retrievals
(> 400) per pixel are available over Sindh and some parts of Punjab. This could be attributed to
the seasonality in the surface albedo due to changes in vegetation cover and/or the presence of
cloud cover. Only October provides favorable conditions to both the DT and DB algorithms, when
more than 400 AOD retrievals are available over Pakistan from both algorithms, except for Gilgit-

Baltistan and disputed areas, due to high surface albedo for snow/ice surfaces.
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Figure 3: Monthly mean spatial distributions of AquaTerra DTB AODsso and the total number of
corresponding Pixel Counts (PC) over Pakistan, both averaged over the years from 2003 to
2017. The six units in Pakistan are indicated in the upper-left figure: GB = Gilgit-Baltistan, AK=

Azad Kashmir, KP = Khyber Pakhtunkhwa, PJ = Punjab, BL = Balochistan, and SN = Sindh.

5.1.3 Characterization of extremely polluted cities using MODIS data

Figure 4a shows the mean AODssq retrievals for 80 cities (Figure 1) obtained from the annual
mean AquaTerra DTB AODsso images and categorizes the extremely polluted to polluted cities.
The thresholds for polluted and extremely polluted cities are defined based on the values of first
(Q1) and third (Q3) quartiles respectively, and these quartiles are calculated by analyzing
descriptive statistics (Table S1) for the AOD values extracted for 80 cities. Highly polluted cities
are defined based on the AOD range between the first and third quartiles. For example, AOD <
0.3 (1%t quartile) represents polluted cities, 0.3 < AOD < 0.6 (between 1t and 3™ quartiles)
represents highly polluted cities and AOD > 0.6 represents extremely polluted cities (3" quartile).
A total of 21 cities fall within the category of extremely polluted cities (Punjab: 12, Sindh: 7, and
Balochistan: 2), 35 cities in the category of moderately polluted cities (Punjab: 11, Sindh 7,
Balochistan: 7, Khyber Pakhtunkhwa: 8, Azad Kashmir: 2), and 24 cities in the category of low
polluted cities (Punjab: 0, Sindh 0, Balochistan: 10, Khyber Pakhtunkhwa: 11, Azad Kashmir: 3).
The top 3 polluted cities are Jhang, Multan, and Vehari in Punjab, as Punjab is the most urbanized
and populated administrative unit (Figures 1b and 4a), with more vehicles and industries, and
also faces severe smog episodes and dust storms, resulting in extremely high AOD levels over the

region. Along with anthropogenic aerosols produced locally from cropland, urban and industrial
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emissions, regional transport of aerosols may be responsible for Punjab’s severe air pollution
problems which will be investigated using the PSCF analysis based on the HYSPLIT air parcel back

trajectory analysis and BAM PM; s concentrations (see section 5.7).

Figure 4b shows the pixel counts (PC) of the daily AOD retrievals for each city from 2003 to
2017. Results show a large number of PC for most cities, indicating that the characterization of
extremely polluted to polluted cities is based on a large number of PC, which supports the results
in Figure 4a and provides confidence in the use of merged AquaTerra DTB AOD products for
guantitative research applications over Pakistan. However, it is noted that the lowest number of
PC is observed for the coastal (Ormara and Gwadar) and mountainous (Dir) cities, where the

inversion scheme of both the DT and DB algorithms needs to be improved.

The monthly mean AOD retrievals are plotted to identify the high and low polluted months
in Pakistan (Figure 4c). The months of June, July, and August are by far the most polluted, with
AOD > 1.20 for extremely polluted cities. A similar pattern of monthly variation in AOD is
observed for all other cities, though at lower pollution levels. As mentioned in section 5.1.2, these
months may be affected by aerosol pollutants from local sources such as agricultural land, urban
and industrial regions, and deserts. Figure 4d, showing inter-annual variations, indicates very high
AOD levels for extremely polluted cities throughout the last two decades, with annual mean AOD

> 0.60, and with the most polluted years being 2004, 2006, 2008, 2016, and 2017.
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Figure 4: Characterization of extremely polluted to polluted cities in Pakistan using AquaTerra
DTB AODsso products from 2003 to 2017. (a) polluted cities based on mean AOD, (b) pixel

counts, (c) polluted months based on mean AOD, and (d) polluted years based on mean AOD.

5.2 CAMS and MERRA-2 reanalysis data

5.2.1 Validation of PM. s reanalysis data

Previous studies have evaluated the uncertainties in both CAMS and MERRA-2 PMys
reanalysis data compared to ground-based PM..s measurements (Cuevas et al. 2015; He et al.
2019; Song et al. 2018; Ukhov et al. 2020). Recently, Ukhov et al. (2020) reported overestimation
in CAMS PM2 s over the middle east and west Asia which have been attributed to the deficient
size distribution of the emitted dust. Additionally, significant underestimation in MERRA-2 PM; 5
was reported over China and India (He et al. 2019; Navinya et al. 2020; Song et al. 2018) which
could be due to the lack of nitrate concentrations in the reanalysis data and underestimation of

OC emission for urban/suburban areas (Buchard et al. 2016; Provencal et al. 2017).

The MERRA-2 and CAMS PM; s reanalysis data over Pakistan were evaluated by comparison
with BAM (beta gauge attenuation monitor) PM2.s concentrations for 2019-2020 provided by the
US Consulates and with LCM (low-cost monitor) PM2.s concentrations for 2018-2019 provided by
PAQI. The scatterplots in Figure 5 show a significant underestimation of both daily (Figures 5a
and 5b) and monthly (Figures 5e and 5f) MERRA-2 PM; s concentrations compared to both BAM
and LCM PM; s measurements: for the daily data the slopes are 0.45 and 0.54 and the RMB are -

34.2% and -26.8%, respectively, and for the monthly data the slopes are 0.30 and 0.52 with -
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35.9% to 25.3%, respectively. The results also show the weak correlation of MERRA-2 PM; 5 data
with both BAM and LCM daily (r = 0.22 and 0.25, respectively) and monthly (r = 0.10 and 0.27,
respectively) PM2s data. The weak correlation suggests that MERRA-2 PM; s data based on the
GOCART aerosol module is unable to accurately reproduce the temporal variations in PM;5. A
significant underestimation of MERRA-2 PM, s data was also reported over China (He et al. 2019;
Song et al. 2018) and India (Navinya et al. 2020), but over Pakistan, the correlation is even
weaker. Moreover, the grid size of MERRA2 (0. 5° x 0.625° grid size) could introduce errors due

to heterogeneity within the large area that affects the correlation with the in-situ measurements.

In comparison with the MERRA-2 data, the correlation coefficients of the CAMS daily (Figures
5c and 5d) and monthly (Figures 5g and 5h) PM,s data versus ground-based in situ PMys
measurements are substantially higher for both BAM and LCM. However, the data in Figure 5
show significant deviations of the CAMS-estimated PM, s from the ground-based PM,s values,
with over- or under-estimation depending on grid size. For example, CAMS overestimates PM2s
at the 0.75° grid size by 30.4% in comparison with the daily BAM data and by 55.4% in comparison
with the daily LCM data. For monthly data, these percentages are 30.4% and 57.4%. In contrast,
CAMS underestimates PM,s at the 0.125° grid size in comparison with BAM data and
overestimates in comparison with LCM data. These results suggest that grid size and ground-
based PM2s measurement methods (BAM and LCM) play an important role in the
overestimation/underestimation of CAMS PMs data. For illustration, in comparison with the
BAM PM;5 measurements, CAMS data are overestimated for one grid (0.75°) and
underestimated for another grid (0.125°), and CAMS PM3.s data at the same grid size (0.125°) are

underestimated when compared with data measured using the BAM method and overestimated
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when compared with data measured using the LCM method. It is worth mentioning that both
MERRA-2 and CAMS simulate 5 types of fine particulate matter components (dust, sea salt,
sulfate, organic carbon, and black carbon), but nitrate concentrations are not included. If the lack
of nitrate concentrations is the main reason for underestimation in MERRA PM.s data, as
reported by previous studies (Buchard et al. 2016; He et al. 2019; Provencal et al. 2017; Song et
al. 2018), then underestimation should be observed in CAMS PM, s data at 0.75° grid size, but
this is not the case. Therefore, the exact reasons for underestimation in both MERRA-2 and CAMS
as well as overestimation in CAMS data should be thoroughly investigated in future studies. The
results show a higher correlation for CAMS monthly data (Figures 5g and 5h) compared to the
daily data (Figures 5c and 5d). Although CAMS monthly data at 0.75° grid size show
overestimation, they have a good correlation coefficient (r = 0.72—0.76) with ground-based PM; s
measurements and could be useful for characterizing pollution levels in the cities of Pakistan
compared to the MERRA-2. The comparisons in Figure 5 do not provide a strong reason for
choosing one data set over the other. We have selected the CAMS data at the 0.75° grid taking
into account the deviation in the CAMS data observed in this evaluation, in addition to the large

scatter in individual data points which adds uncertainty.
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Figure 5: Validation of MERRA-2 and CAMS PM2.5 reanalysis data against BAM (beta gauge

attenuation monitor) PM2.5 concentrations for 2019-2020 provided by the US Consulates and

LCM (low-cost monitor) PM2.5 concentrations for 2018-2019 provided by PAQl. Where, (a)

MERRA-2 daily PM; s vs. BAM daily PMy s, (b) MERRA-2 daily PM2.s vs. LCM daily PM; s, (c) CAMS

daily PM2 ;5 vs. BAM daily PM s, (d) CAMS daily PM3 5 vs. LCM daily PM; 5, () MERRA-2 monthly

PM2.5 vs. BAM monthly PM; s, (f) MERRA-2 monthly PM; 5 vs. LCM monthly PM3 s, (g) CMAS

monthly PM; s vs. BAM monthly PM; 5, and (h) CAMS monthly PM3 .5 vs. LCM monthly PM;s. The

dashed line in each figure is the identity line and the blue and orange solid lines are the fit lines

with parameters presented in the legends.

5.2.2 Characterization of extremely polluted cities using PM; and PM3.s concentrations

PM1 and PM;s are fine particulate matter associated with human health issues. PM1 is more

harmful than PM; s as it can reach deeper into the lungs and affect the respiratory system (Liu et
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al. 2013; Meng et al. 2013). A previous study over China reported that most health issues
associated with PM; s were mainly due to greater contributions of PM1 in PM; 5 (Chen et al. 2017).
The ranking of extremely polluted to polluted cities in Pakistan according to annual mean CAMS
PM1 concentrations from 2003 to 2020 in Figure 6a indicates that the top 10 extremely polluted
cities are Lahore (135.44 ug/m?3), Gujranwala (131.99 pg/m3), Okara (107.72 pg/m?3), Faisalabad
(98.96 ug/m?3), Pakpattan (94.06 ug/m?3), Jhelum (85.51 pg/m3), Sargodha (84.30 pg/m3), Bhimber
(83.99 pg/m?3), Gujrat (83.99 ug/m?3), and Sialkot (83.99 pg/m?3). Similarly, the top 10 extremely
polluted cities (Figure 7a) ranked according to PM..s concentrations are Lahore (170.53 pg/m3),
Gujranwala (163.63 pg/m3), Okara (139.43 pg/m3), Faisalabad (129.85 ug/m?3), Pakpattan (126.97
ng/m3), Multan (113.09 pg/m3), Bahawalnagar (110.81 pg/m3), Vehari (110.81 pg/m3), Sargodha
(109.81 pg/m3), and Jhelum (107.68 pg/m?3). The WHO air quality guidelines (AQG) are not yet
defined for PM1 as PM1 is not as widely monitored as PM; s, therefore the WHO recommended
AQG for PM2s (<10 pg/m? annual mean) and Pak-NEQS for PM2s (<15 pg/m3 annual mean) are
used for comparison purposes. Not a single city in Pakistan falls within the PMys standards
defined by Pak-NEQS and WHO, and the values of PM1 and PM; s respectively for the top 10 cities
are 5.6 (8.4) to 9.0 (13.5) times and 7.2 (10.8) to 11.4 (17.1) times greater than the Pak-NEQS
(WHO AQG). For PM1 and PM; s, 9 out of 10, and 10 out of 10 cities respectively, are in Punjab.
The extremely high pollution level may be due to emissions from local anthropogenic activities,
confirming the results of a previous modeling study that suggested local anthropogenic activities
as the major cause of high particulate concentrations in Pakistan (Shi et al. 2020). All major cities
selected in this study (80 cities) are exposed to PM. s concentrations during a long period of time

(Figures 1a and 7a), which exceed the Pak-NEQS (<15 pg/m3) and 68, 73, and 80, out of 80 cities
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exceeded the WHO Interim Target-1 (<35 pg/m3), Target-2 (<25 pg/m3), and Target-3 (<15

673

ug/m3), respectively. These exceedances are set in strong perspective against the much lower

674

recommended WHO AQG for PM3.s of 10 ug/m3. These results suggest that the top polluted cities

675

are extremely hazardous for human health, as an increase of PMas by 10 ug/m?3 can increase

676

mortality, lung cancer, and cardiopulmonary diseases by 8%, 6%, and 4%, respectively, due to

677

long-term exposure to fine particulates (Pope et al. 2002).
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Figure 6: Ranking of extremely polluted to polluted cities in Pakistan according to annual mean
CAMS PM; concentrations from 2003 to 2020. Where (a) polluted cities based on yearly mean
PM1 averaged over the years 2003-2020, (b) polluted months based on PM; averaged over the

years 2003-2020, and (c) polluted years based on yearly mean PM.

Figures 6b and 7b show months with the highest levels of PM1 and PM; 5, averaged over the
years 2003-2020, for the extremely polluted cities. The higher PM1 and PM3.s concentrations were
observed in cold months (October to February) with the maximum concentrations in December
and January, while warmer months (March to September) showed lower PMy concentrations.
The high levels of fine particulates in October and November may be attributed to both cross-
border transport of aerosol produced from biomass burning activities (from India) as well as
locally produced aerosols by anthropogenic activities. As the highest values of fine particulates
were observed in December and January which are not the main months of biomass burning
activities, these are not likely the main source of the high levels of fine particulates pervasive
across these highly polluted cities. At this time of year, less surface heating and less turbulence
due to lower intensity of solar irradiation lead to stable and shallow boundary layers.
Furthermore, with higher concentrations of light-absorbing aerosols, mainly BC, the atmospheric
stability increases due to local heating near the top of the boundary layer, induced by BC, which
further lowers the boundary layer height (BLH) (Ding et al. 2016). Stable atmospheric conditions
that imply low BLH together with low wind speed, both limiting aerosol transport, lead to the
accumulation of aerosols and enhancement of particle concentrations near the surface. As a
result, anthropogenic aerosols such as those produced from fossil fuel combustion and other

urban and industrial activities may linger for long periods (Mhawish et al. 2020). In October and
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November, both local and remote (cross-border) biomass (crop residue) burning activities
coupled with stable atmospheric conditions have been recognized to cause severe haze and smog
episodes, especially over Punjab (Mhawish et al. 2020; Tariq et al. 2015; Tariq et al. 2016). The
formation of secondary inorganic aerosol during haze episodes is also responsible for higher
PM3.s concentrations as reported from recent studies over China (Nichol et al. 2020; Zhang et al.
2018). An increase in PMays concentrations was observed in June and July, and PM;
concentrations slightly increased in July. This means that PM3s exhibited two peaks: the first in
winter and the second in summer, whereas a single peak in winter was observed for PMi. The
second PMy s peak in summer may be attributed to the fine particulates from dust, as dust storm
activities are very common in Pakistan during summer, as well as local anthropogenic activities.
The lower peak of PMys in the summer, compared to winter, may be due to the unstable
atmospheric conditions due to the higher surface heating by solar irradiation, leading to the
generation of strong turbulence with rising air and thus strong mixing conditions which promote

the vertical dispersion of pollutants.

The annual mean concentrations of PM1 (Figure 6¢) and PM3s (Figure 7c) show strong inter-
annual variations with distinct PMy levels and very poor air quality conditions throughout the last
two decades. The annual mean mass concentrations in extremely polluted cities range from 63
pg/m3 to 150.19 pg/m3 for PM; and from 85 pg/m3 to 187.35 pg/m3 for PM2s, which are 4.2
(6.3)-10 (15) and 5.7 (8.5)-12.5 (18.7) times greater than the Pak-NEQS (WHO AQG),

respectively.
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As Figure 6, but for PM3s.
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Figure 8a shows the ranking of polluted cities according to PM1p concentrations. The PM1o
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fraction with an aerodynamic diameter larger than PMys5 (PMip-PM35s), i.e. the mass
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concentration of coarse particles, mainly originates from natural sources such as desert dust and
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resuspended soil particles. The top 10 most polluted cities according to the PM1p concentrations
are Lahore (238.9 pug/m3), Gujranwala (229.1 pg/m?3), Okara (194.5 pg/m?3), Faisalabad (180.6
ug/m3), Pakpattan (177.9 pg/m3), Bahawalnagar (160.6 pg/m3), Vehari (160.6 pg/m3), Multan
(157.5 pg/m3), Sargodha (152.3 pg/m3), and Jhelum (149.7 pg/m3). PM1o concentrations are 1.2
to 11.9 times higher than the WHO AQG for PM10 (20 pg/m3 annual mean) for all the cities shown
in Figure 8a, suggesting that very poor air quality conditions, hazardous for human life, prevail in
all Pakistani cities. Overall, the PM1p temporal trend pattern is very similar to that for PMy, i.e.,
December is the month with the highest PM1g concentrations, followed by January. In summer,
July is the most polluted month followed by June (Figure 8b). Similar to the PM; s variations, PM1g
also exhibited peaks in both winter and summer. The higher concentrations during the winter
months (i.e. December and January) may be due to increased anthropogenic emission activities
along with stable atmospheric conditions (stagnant conditions, and shallower boundary layer).
Despite the abundance of coarse particulate matter in spring and summer seasons which are
transported from the arid and semiarid regions, the strong convection combined with a deeper
boundary layer enhances the dispersion of the near-surface pollutant that decreases the PM1o
concentrations along with the wet deposition during the rainy summer season. The pre-harvest,
harvesting, and post-harvest burning activities along with meteorological conditions such as low
wind speed and low boundary layer height may contribute to higher surface PMig levels
especially during October and November as these activities produce both fine (PM1 and PM3;s)
and coarse (PM1o) particles as reported by (Jain et al. 2020; Singh et al. 2017) over South Asia and

by Le Blond et al. (2017) over South American countries.
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Similar to the annual mean PM; s variations (Figure 7c), the annual mean PM1p concentrations

749

also show distinct interannual variations for all cities (Figure 8c), and severe air pollution levels

750

were observed throughout the last two decades. According to these findings, Pakistani people

751

are not only exposed to long-term PMy s but also to PM1o concentrations exceeding the WHO

752

recommended AQG for PM1o (<20 pg/m3). Overall, these results suggested that Pakistani cities

753

are a severe threat to human life due to extremely poor air quality conditions.
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Figure 8: As Figure 6, but for PM1o.

5.2.4 PM1/PM_s and PM2.s/PMjo ratios

The PM ratios are very useful for understanding the contributions among particulate size, as
revealed by a study in China where PM1 contributed nearly 80% of PM.s (Wang et al. 2015),
which would have consequences for human health. Over Pakistan, the PM1/PM s (Figure 9a) and
PM25/PM1o (Figure 9b) ratios are lower than those observed over China (Wang et al. 2015),
indicating lower contributions of PM1to PM2.s and PM;5to PM1o. However, the pattern of ratios
is similar to that observed for China, i.e., the PM1/PM3sratios are higher than PM;.s/PMyg ratios.
Relatively higher PM1/PM3s ratios (>75%) are observed from October to March (Figure 9a),
indicating a larger fraction of PM1 in PM2s due to more anthropogenic activities. The directly
emitted PM; from the automobile and combustion of fossil fuel, and indirectly by formation from
precursor gases, are most likely higher from October to March, leading to the enhanced
PM1/PM;s ratio. This also suggests that the PMys concentrations from October to March are
driven by emissions from combustion and secondary aerosols formation (Jain et al. 2020).
However, low PM1/PMy s ratios are observed from April to September in most of the cities, and
low ratios during all months are observed in the cities located in Balochistan, indicating a lower
contribution of PM1 to PMy; s, which is mainly dominated by the larger particles especially during

summer (June, July, and August) which not contributed to PM.

Figure 9b shows large contributions of PM,s to PM1o throughout the year with maximum
contributions during summer as indicated by the large PM25/PMip ratios. This suggests that the

air quality in these cities is mainly (and significantly) influenced by fine particulates, largely from
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anthropogenic sources. The large PM25/PMjo ratios in Gwadar and Ormara (Figure 9b), coastal

7T

cities in Balochistan, throughout the year suggest that also in these coastal cities the PM is

778

dominated by PM. s particles, which indicates that the PMyg is driven by PM2.s which is highly

779

influenced by anthropogenic sources. Gwadar has the deepest seaport in the world and the ship-

780

based emissions may be one of the sources of fine anthropogenic particles throughout the year.

781

However, lower PM,.s/PM1g ratios are observed for other cities located in Balochistan, indicating

782

the greater influence of coarse particulates (mainly desert dust).

783
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Scatter plots of PM1 vs. PM3s (Figure 10a) and PM35 vs. PM1g (Figure 10b) show that the PM
fractions over Pakistan are well-correlated, with Pearson’s correlation coefficients (r) of 0.95 and
0.99, and slopes of 0.90 and 0.70, respectively. The strong linear relationship between PM1o and
PM2s (higher r values) suggests common sources of fine and coarse particulates compared to
PM1 vs PM; s relationship. While the higher slope values suggest larger contributions of PM; to
PMs.sthan PM3.s to PM1g. Overall, both the contribution of PM; to PM3.s and that of PM3.5 to PM1o
are smaller over Pakistan than over China (Wang et al. 2015) as indicated by the PMj ratios (Figure
9) and slope values (Figure 10). This might be due to a higher contribution of anthropogenic
emissions to the PM concentrations in China than in Pakistan; however, other processes may also
contribute, and unraveling the different contributions requires more detailed research. Figures
10a and 10b show some scattered points, within a red circle or ellipse, which represent the data
from May to September and these scattered points suggest lower contributions of PM1 in PM2s

and PM3 5 in PMyg, as also indicated by low PMy ratios (Figure 9).
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Figure 10: Scatter plots between (a) PM1 vs. PM2sand (b) PM2s vs. PM1o. The red solid line
represents the regression line and the black dashed line represents the identity line. The data

points in the red circle and ellipse are explained in the text.

5.2.5 Monthly mean temporal trend of PM;, PM. 5, and PMjo

The month-to-month variations of the multi-year (2003—2020) monthly mean PM3, PM; 5, and
PM1o concentrations for the top 10 polluted cities are shown in Figure 11. These cities vary
according to population growth, the number of automobiles, urbanization, industrialization, city
size, land cover types, and climatic conditions, and PM concentrations are expected to behave
differently due to these factors. This study follows the hypothesis of our previous study
conducted over Hong Kong (Bilal et al. 2019c¢) i.e., if the PM concentrations have different
magnitudes but follow the same temporal pattern at different locations, they are influenced by
local as well as regional contributions. Thus for PM1 concentrations, Figure 11a shows the same
pattern for each of the 10 cities, suggesting that both local and regional sources contribute to
PM1 concentrations. For both PMy s (Figure 11b) and PM1g (Figure 11c), similar patterns are only
evident from September to April, and dissimilar patterns due to variation in magnitudes are
evident from May to August, suggesting more local contributions for the summer months of May
to August. This local contribution during summer may be attributed to the frequent dust/sand
storms. Similarly, from October to January, the PM1, PMa5, and PM1g concentrations in Lahore
and Gujranwala show similar patterns as in other cities, but with higher concentrations, probably
because Lahore and Gujranwala are the largest cities, with consequently more transport, fossil

fuel, and industrial emissions, and some local and cross-border biomass burning activities in
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822 autumn (Ali et al. 2013; Tariq et al. 2015; Tariq et al. 2016), which reinforce the effects of
823  meteorological impacts, such as shallower boundary layer height and lower wind speed, which
824  result in the accumulation of particulate matter near the surface (Miao et al. 2019; Miao and Liu

825  2019; Miao et al. 2018; Qu et al. 2017; Sun et al. 2019; Wang et al. 2018).
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Figure 11: Multiyear (2003 - 2020) monthly average variations of PM1, PM25, and PM1p
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5.3 OMlI vertical column densities of NO2 and SO

5.3.1 Characterization of extremely polluted cities using NO; data

NO2 is mainly produced from fossil fuel combustion, industrial emission, automobile
emission, biomass burning, natural lightning, and soil microbe emissions (Cheng et al. 2012; Lee
et al. 1997; Olivier et al. 1998; Richter and Burrows 2002). NO; has an adverse effect on health
and contributes to low atmospheric visibility, and poor air quality conditions (Khokhar et al. 2015;
ul-Haq et al. 2014). Pakistan’s top ten polluted cities according to NO;, where we use
Tropospheric vertical column densities (TVCDs) as a proxy, are those with the highest levels of
urbanization, vehicle emissions, and industrialization, suggesting anthropogenic activities to be
the major cause. They are Lahore (5.69x10'> molecules/cm?), Rawalpindi (3.65x10'°
molecules/cm?), Islamabad (3.65x10* molecules/cm?), Karachi (3.60x10%°> molecules/cm?),
Gujranwala (3.32x10% molecules/cm?), Sialkot (2.81x10'> molecules/cm?), Haripur (2.73x10%°
molecules/cm?), Okara (2.72x10% molecules/cm?), Faisalabad (2.72x10%> molecules/cm?), and
Gujrat (2.47x10*> molecules/cm?) (Figure 12a). Similar results are reported by Tabinda et al.
(2019), Ashraf et al. (2013), and Khanum et al. (2017). In terms of data availability from OMI,
Figure 12b indicates the largest number of PC available for Lasbela (4168), Awaran (4154), and
Panjgur (4140), all located in Balochistan. On a monthly mean basis, NO; (Figure 12c) follows the
same patterns as observed for PM1 and PMas concentrations; i.e., higher values in winter,
especially for the extremely polluted cities (Lahore, Rawalpindi, Islamabad, and Karachi), which
are attributed to emissions of automobiles, industries, and fossil fuel combustion, under stable

atmospheric conditions. The NO; atmospheric lifetime is higher in winter than in summer due to
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851  higher mixing ratio and less sunlight that initiates the breakdown reaction of NO,; therefore stays
852 longer in the atmosphere in winter than in summer. A different trend observed for cities located
853  in Balochistan, with higher NO2 in summer, could be due to natural lightning as reported by
854  Khokhar et al. (2015). Figure 12d shows that Lahore, Rawalpindi, Islamabad, and Karachi are
855  polluted in all years from 2004 to 2019, subjecting citizens to long-term exposure associated with

856  respiratory diseases, otitis media, and mortality (Latza et al. 2009).
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Figure 12: Ranking of extremely polluted to polluted cities in Pakistan according to OMI NO;
TVCDs (molecules/cm?) from 2004 to 2019. (a) polluted cities based on mean NO;, (b) pixel

counts, (c) polluted months based on mean NO, and (d) polluted years based on mean NO..

5.3.2 Characterization of extremely polluted cities using SO, data

Power plants, oil and gas refineries, and metal smelters are the major sources of
anthropogenic SO, (Dahiya and Myllyvirta 2019). In Figure 13a, extremely polluted to polluted
cities are ranked based on OMI-derived SO; vertical column density and the top 10 polluted cities
are Lahore (10.6x10% molecules/cm?), Mirpur (10.5x10*> molecules/cm?), Gujranwala (10.3x10%°
molecules/cm?), Rawalpindi (10.3x10*> molecules/cm?), Islamabad (10.3x10*> molecules/cm?),
Sialkot (10.3x10'> molecules/cm?), Gujrat (10.3x10%* molecules/cm?), Faisalabad (10.3x10'°
molecules/cm?), Bhimber (10.2x10'> molecules/cm?), and Jhelum (10.2x10%* molecules/cm?).
According to the global SO, emission hotspot database (Dahiya and Myllyvirta 2019), five oil
power plants near Lahore are the main sources of high SO, emissions over Lahore. The lower
number (1080-2520) of successful SO, retrievals (Figure 13b) as compared to NO; retrievals
(Figure 12b) is attributed to the high noise level in the OMlI-retrieved SO data. Only the relatively
strong SO; signal over point sources (e.g., power plants, metal smelters) can be detected.
(Fioletov et al. 2011; Li et al. 2017; Li et al. 2020). The temporal variation of the monthly mean
SO, VCDs (Figure 13C) have a pattern similar to that of PM..s and NO, TVCD, with high values in
the winter and low in the summer. For the top polluted cities, the high SO, observed during
November, December, and January may be attributed to the power plants and brick kilns (Dahiya

and Myllyvirta 2019; Rahman et al. 2000). Brick kilns are considered as major sources of SO;
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879  resulting in extremely poor air quality. This is clearly observed over Punjab (Adrees et al. 2016;
880  Colbeck et al. 2010; Pervaiz et al. 2021; Ur Rehman et al. 2019). Therefore, every year during late
881  autumn and winter, the government of Pakistan bans these kilns to control pollution levels. The
882 SOz accumulates in the BL during the stable atmospheric conditions and shallow BLH at this time
883  of year, in response to the low solar irradiation resulting in little surface heating and turbulence
884  mixing. Unlike NOy, the contribution of SO, to poor air quality in Pakistani cities varies from year
885  to year, as shown in Figure 13d. The SO, VCD is higher in 2004, 2008, and 2011 than in other

886  years. The investigation of the year-to-year variability requires a separate study.
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Figure 13: Ranking of high to low polluted cities in Pakistan according to OMI SO, VCDs
(molecules/cm?) from 2004 to 2019. (a) polluted cities based on mean SO, (b) pixel counts, (c)

polluted months based on mean SO, and (d) polluted years based on mean SO..

5.4 Spatial distributions of aerosols and trace gases

The purpose of this section is to link the spatial distributions of aerosols and trace gases with
each other as well as with population density, nighttime lights, land cover types (cropland and
urban areas), and presumed vegetation fire activities. Here, the PMy data are interpolated using
cubic convolution (Keys 1981) from 0.75° grid size to 0.125° grid size to better show the smooth
spatial distributions over different administrative units. The spatial distributions of the multi-year
averaged concentrations of aerosols (AOD, PMy) and trace gases (VCDs) (Figure 14) show that
Punjab is the most polluted region of Pakistan, followed by Sindh. It is significant that other
environmental data including population density (Figure 14g), VIIRS nighttime lights (Figure 14h),
cropland (Figure 14i), and vegetation fires (Figure 14j) show similar spatial patterns. It is obvious
that vegetation fires would have the same spatial pattern as cropland, but not obvious that
population density and nighttime lights would have the same pattern. As nighttime lights and
vegetation fires represent human activities, having the same spatial patterns suggests that the
majority of human settlements including urban, suburban and, industrial regions, are inter-mixed
with cropland. Interestingly, these coincident spatial distributions (population, nighttime lights,
land cover, and fires) correspond to the higher ranges of pollutants i.e., AOD > 0.4, PM1 > 20
ug/m3, PMzs > 40 pug/m3, PMio > 60 pg/m3, NO2 > 1.0x10% molecules/cm?, and SO; > 6.5x10%°

molecules/cm?. These results suggested that the primary (directly emitted) and the secondary
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(gas-to-particles formation) aerosol emissions and trace gases are mainly from local
anthropogenic sources such as power plants, oil and gas refineries, vehicular emissions, crop
residue burning, and industrial activities including construction, manufacturing of cement,
ceramic, and bricks, and metals smelting. These anthropogenic sources are mainly responsible
for NO3, SO2, and PMy (Adrees et al. 2016; Shah et al. 2012; Ur Rehman et al. 2019). Among these
anthropogenic sources, brick kilns industries are considered a major source. Small-scale
traditional brick kilns, located in rural and suburban areas, produce large amounts of gaseous
pollutants (NO;, SO, O3, and CO) and PMx due to the usage of low-quality fuels including coal,
oil, wood, rice straw, rice husk, rubber tires, bagasse, and corncobs (Adrees et al. 2016; Ishaq et
al. 2010). Besides this, the combustion of agricultural biomass and crop residue burning are also
contributing to deteriorating rural and urban air quality (Irfan et al. 2015; Irfan et al. 2014). Irfan
et al. (2015) reported that Punjab produced more aerosol pollutants than Sindh from crop
residue burning and among the crop residues, wheat straw is the main contributor of NOy, SO>,
CO,, and CO. Pakistan’s 23.6 million vehicles emitted 58% of the country’s total NO, emission and
34% is emitted by power plants and industries (Amnesty International 2019; Government of
Pakistan 2019; UNDP 2019). Another important source of aerosol pollutants, missed by previous
studies, is the burning of solid waste and street garbage which is a common practice in Pakistan,
even in major urban cities such as Islamabad, Lahore, Rawalpindi, Faisalabad, Gujranwala, Okara,
etc. To support this statement, some illustrations with references are provided in the
supplementary data (Figure S2). Figures 14a to 14d show that deserts (see Figure 1 for locations)
are another source of increasing AOD and PMx levels in Pakistan. Although local anthropogenic

activities are the mains source of aerosol pollutants and severe air quality problems in Pakistan,
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931 transboundary transport of aerosols may also influence Pakistan’s air quality. Contributions of
932 transboundary transport are investigated in section 5.7, using PSCF analyses, integrated with

933  HYSPLIT backward trajectory analysis and ground-based PM; s measurements.
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Figure 14: Spatial distributions of yearly mean (a) AOD averaged over the years 2003-2017 (b)
PM1 [2003-2020] (c) PM2.5 [2003-2020], (d) PM10 [2003-2020], (e) NO, [2005-2019], (f) SO>
[2005—-2019], (g) Population density [2019], (h) VIIRS Nighttime Lights [2012—2019], (i) Land

cover types [2019], and (j) Presumed vegetation fire data [2003—2020].

5.5 Relationship of PMy with AOD, NO, and SO;

AOD provides valuable information about the aerosol loading in the atmospheric column,
while the PM represents the aerosol concentrations near the ground. This section assesses how
well satellite-based AOD describes PM1, PMz.s, and PM1o by examining the monthly correlation
between AOD and PMy. We have also examined the monthly correlation between PMy and SO,
and NO; to understand the common sources that originated mainly from a combustion process.
The relationships between AOD and PMx vary spatially and temporally and are influenced by
several factors such as meteorological variables including boundary layer height and relative
humidity, and the vertical distribution of aerosol layer (Li et al. 2016; Mhawish et al. 2021). The
linear correlation between AOD and PMx shows a higher correlation coefficient from October to
January (see Figure 15a) when the atmosphere is stably stratified and the boundary layer is
shallow. This suggests that the AOD and PMx variability are well agreed during the stable
atmospheric conditions (from Oct to Jan) and AOD can explain > 65% in the PMx variability. On
the other hand, during April and May when the atmosphere is unstable and the boundary layer
deeper, the correlation between AOD and PMy was smaller (r < 0.4). In the rainy season (July to
August), the correlation coefficient between AOD and PM1o was found higher than PM; s and PM1

which may be due to the larger contribution of coarse dust particles to the total aerosol loading
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than PM3.s and PM1. The high relative humidity in the summer season enhanced the AOD retrieval
due to the hygroscopic growth of aerosol particles. On the other hand, the wash-out of PMy due
to precipitation, deeper boundary layer, and strong convection during rainy months leads to a
reduction in the ground-level PMyx concentrations, while the AOD retrieval remains high under
cloud-free conditions during the inactive rain phase (Mhawish et al. 2021). The results suggested
that using satellite-based AOD to infer the ground-level PMx variability is limited to specific
meteorological conditions such as stable atmospheric conditions and dry seasons. On the other
hand, the weak linear relationship between AOD and ground-level PMx concentrations found
during unstable conditions in spring and summer and more influenced by meteorological

variables and atmospheric mixing height.

Tropospheric NO; and SO, are precursors for the formation of secondary aerosols which are
produced by anthropogenic activities such as fossil fuel burning and power plants. The strong
correlation coefficient between PMyx vs. SO; and NO; in the spring months suggests that
photochemical reactions can contribute to the formation of PMx. The strong correlation in winter
suggests that both trace gases NO; and SO; originated from the same emission sources of PMy,
mainly domestic heating, industrial activities, and vehicular emissions. While the lower
correlation in the summer monsoon may be attributed to the higher contribution of natural

sources of PMy and the deeper boundary layer that enhance the dispersion of air pollutants.
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Figure 15: Relationship from PMx with (a) AOD, (b) NO2, and (c) SO, from 2004-2017.

5.6 Trends of aerosol and trace gas concentrations

This section presents the annual trends in the six parameters used to assess the air quality in
each city of Pakistan. The annual trends were calculated after removing the seasonality from the

monthly mean time series data which also accounted for temporal autocorrelation. Figure 16
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shows the magnitude of the trends as Theil-Sen’s slope over each individual city, for the periods
indicated at the top of each Figure. A significant positive trend in PMx was found over most cities,
particularly in Punjab, Khyber Pakhtunkhwa, and the Islamabad Capital Territory. The PMy trends
found over cities in Punjab range from +0.35 to +1.10 ug/m?3 yr?, +0.42 to +1.52 pg/m?3 yr! and
+0.57 to +2.20 pg/m3 yr' for PM1, PMas and PMyg, respectively. Correspondingly, the AOD trend
in Punjab cities was positive, with the strongest increase over Lahore (0.008 yr!). Over cities in
Khyber Pakhtunkhwa and Azad Kashmir, the AOD trend was also positive, but smaller than in
Punjab. The positive trends in PMx and AOD, particularly over cities in Punjab, may be due to
increasing aerosol emissions and/or secondary aerosol formation. Anthropogenic activities and
biomass burning are considered major sources of ultrafine and fine particles (PM1 and PM2s) over
the region (Alam et al. 2015; Stone et al. 2010). Anthropogenic activities also result in the
production of NO2 and SO, and ~91%, and ~88% of the cities the trends in the NO; and SO,
respectively, are positive. This increase in trace gas concentrations would be a further source of
increased particulate pollution, as trace gases facilitate secondary aerosol formation via gas-to-

particle conversion reactions (Seinfeld and Pandis 1998).

In terms of monthly trends, the common feature is that the statistically significant positive
trends of PMy were largest during the cold months (November to February), particularly over
major Punjab cities (Lahore, Faisalabad, and Gujranwala) and Islamabad (Figure S3). In contrast,
during the summer months, the trends over many cities are negative. The overall positive annual
trends indicate that the increase of the PMx concentrations in the winter is stronger than the
decrease in the summer. The reasons for these opposing trends are beyond the scope of the

current study and require further, more detailed investigation.
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species.

5.7 Potential Source Contribution Function (PSCF) Analysis

PSCF analysis was used to identify the potential source areas for PM; 5 at four receptor cities:
Peshawar, Islamabad, Lahore, and Karachi, for the period from March 2020 to February 2021. 72
hours HYSPLIT backward trajectories were computed for each receptor site, arriving every 6
hours at the height of 500 m above ground level (AGL). The results were grouped by season as
shown in Figure 17. The results show strong differences between cities and seasons. Starting with
Peshawar, in spring there are some local sources regions around the city, within a few hundreds
of km, but also strong contributions from the WNW (West-NorthWest) in Afghanistan and from
the SE in India. In the summer, the source regions are mostly located in Pakistan, but with a
contribution from sources to the SE (SouthEast), in India. In contrast, in the autumn the
contributions from India are very small but those from Afghanistan, both to the NW (NorthWest)
and W (West) are relatively large. Whereas, in the winter source regions in NW and SE directions
(Afghanistan and India, respectively) are stronger than in other seasons. In Islamabad, not far
from Peshawar, the situation is quite different. In the spring, the source regions have a rather
low PSCF, and are distributed over specific directions to the W (West) into Afghanistan and
toward the SE in India, with few local sources. In the summer, the source regions are similar to
those in Peshawar, but with low PSCF except for the source regions in Afghanistan which seem
to contribute most to the air pollution in Islamabad in the summer, but still with moderate PSCF.
In the autumn sources to the W and N dominate with stronger contributions from Afghanistan
than from the local sources. In the winter, the source regions redistributed over a much larger
area than in other seasons, with strong contributions from both local sources and Afghanistan,
as well as some contributions from India. The situation in Lahore is remarkably different, with

the strongest contributions from sources inside Pakistan (PJ and KP), some contributions from
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sources to the SE in India, during all seasons, and in the spring a strong contribution from sources
in Afghanistan. The situation in Karachi is again different, both as regards source regions and
seasonal behaviour. The strongest contributions come from local sources within a few hundreds
of km in Pakistan, except in the summer when all source regions are weak contributors (PSCF
<0.2) and almost all located over the ocean. In the spring, source regions to the NW, reaching far
into Afghanistan, contribute to the PM2.5 in Karachi. Oceanic sources also contribute some to
the PM2.5 in other seasons

In summary, the values of PSCF indicate the regional transport of aerosol from source regions
in Afghanistan and India (see Figure 1 for locations). Karachi is influenced by fine dust particles
from the Cholistan and Thar deserts (see Figure 1 for locations). Figure 17 shows that the PM3s
in Lahore, the top polluted city of Pakistan, is mainly influenced by source areas in Pakistan,
during all seasons. This suggests that increases in local anthropogenic activities play an important
role in the worsening of Lahore’s air quality. Overall, the higher values of PSCF > 0.6 identify
potential source areas which are located both inside and outside of Pakistan, which indicates that
the air quality in Pakistan is not only influenced by local sources but also influenced by transport

from regional sources areas.
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Figure 17: Potential source contribution function plots for PM; s at seasonal scales from March
2020 to February 2021 for four receptor cities namely, Peshawar, Islamabad, Lahore, and

Karachi (see legend for identification).
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6. Conclusions

In this study, long-term (2003-2020) remote sensing, ground-based, and model simulation
datasets were combined to provide the most comprehensive and extensive evaluation ever, of
air quality conditions over Pakistan. Long-term spatio-temporal distributions of aerosol
pollutants and trace gases, recent long-term trends at the city level, ranking of cities in terms of
air pollution levels into three categories (extremely polluted, highly polluted, polluted cities), and

the potential sources of air pollution across Pakistan were reported.

The highest AOD was observed in the summer months (June to August), mainly attributed to
the hygroscopic growth of aerosol particles during the humid summer season. High AOD levels
were also observed during cold months (October to January), mainly over biomass burning
affected regions such as Punjab. For PMx and trace gases, the highest values were observed
during cold months from October to February, when the atmosphere is stably stratified and the
boundary layer is shallow, and emissions from anthropogenic activities and biomass burning are

higher than in other seasons.

The CAMS PM3s data are in better agreement with ground-based PMa.s concentrations than
MERRA-2 reanalysis PM2s data and were therefore used to rank the cities in terms of
concentrations of particulate matter (PMx). The 18 years average of the PM2 s concentrations for
the 80 cities of Pakistan show that a total of 21 cities fall within the category of extremely polluted
cities (PMz5 > 92.84) (namely Punjab: 17, Khyber Pakhtunkhwa: 3, Azad Kashmir: 1), 40 cities fall
within the category of highly polluted cities (45.69 < PM_5 < 92.84) (namely 6 in Punjab, 14 in

Sindh, 3 in Balochistan, 13 in Khyber Pakhtunkhwa and 4 in Azad Kashmir); 19 cities fall within
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the category of polluted cities (PMy5< 45.69) (16 in Balochistan and 3 in Khyber Pakhtunkhwa).
No single city in Pakistan falls within the PM, 5 standards defined by Pak-NEQS and WHO, and the
values of PM1 and PM; s for the top 10 cities are 5.6 (8.4) to 9.0 (13.5) times and 7.2 (10.8) to
11.4 (17.1) times larger than the Pak-NEQS (WHO AQG). The map of annual average PM; 5 shows
that people in the whole country are exposed to high PM. s concentrations for many years, with
the annual mean concentrations for all cities exceeding the Pak-NEQS (<15 pg/m3), and 68, 73,
and 80 cities exceeding the WHO Interim Target-1 (<35 pg/m3), Target-2 (<25 pg/m3), and
Target-3 (<15 pg/m3), respectively. In terms of pollution sources, the study indicates that
biomass (crop residue) burning activities may not be the main source of severe air quality
conditions in Pakistan: the highest PMx concentrations were observed in December and January
when also the NO, TVCD and SO, VCD, used as proxies for NO, and SO; concentrations, were
highest. The emissions of these trace gases are known to be associated with anthropogenic
activities including transport, industrial activities, and power generation. Interestingly, higher
levels of AOD, PM1, PM35, PM1o, NO3, SO;, population density, nighttime lights, and vegetation
fire activities showed the same spatial pattern as cropland: most of the major cities, as well as
rural areas in Pakistan, are surrounded by cropland and transport of pollutants generated from
anthropogenic activities mix with aerosol and trace gases generated from agricultural activities,
biomass burning and natural aerosols such as dust, to produce a rather smooth mixture of the
metrics reported in this study. These findings suggest that Pakistan’s extreme air pollution
problems are strongly influenced by anthropogenic activities within Pakistan. This is also

confirmed by the PSCF (> 0.6) analysis based on HYSPLIT air parcel back trajectories and ground-
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based PM2s concentrations. In addition, meteorological factors have a strong influence on the

occurrence of pollution episodes.

Significant positive trends in the concentrations of AOD, PM1, PM2.s, PM1o, NO2, and SO, were
observed from November to February, particularly over Lahore, Islamabad, Gujranwala, and

Faisalabad.

The final remark of this study is that all cities in Pakistan have been exposed to long-term
PMx, NO3, and SO, concentrations throughout the last two decades. The pollution levels in these
cities imply extremely poor air quality conditions, mainly due to local anthropogenic activities,
which severely threaten human life. This comprehensive study, based on long-term multi-source
information on aerosols and trace gases may be considered a baseline study by the Ministry of

Climate Change, Pakistan, and other policymakers, to mitigate air pollution problems in Pakistan.
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