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RESEARCH HIGHLIGHT 

 A fine-scale PM2.5 spatial dataset was acquired by long-term mobile monitoring. 

 Building morphological parametric analysis was performed for the monitoring area. 

 Multivariate statistics were employed to correlate PM2.5 data and morphological data. 

 The critical morphological design factors of pollution dispersion were identified. 

 The findings will quantitatively enrich the current urban planning/design guidelines. 
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ABSTRACT  

In high-density cities, optimization of their compact urban forms is important for the 

enhancement of pollution dispersion, improvement of the air quality, and healthy urban 

living. This study aims to identify critical building morphological design factors and  provide 

a  scientific basis for urban planning optimization. Through a long-term mobile monitoring 

campaign, a four-month (spanning across summer and winter seasons) spatiotemporal street-

level PM2.5 dataset was acquired. On top of that, the small-scale spatial variability of PM2.5 in 

the high-density downtown area of Hong Kong was mapped. Seventeen building 

morphological factors were also calculated for the monitoring area using geographical 

information system (GIS). Multivariate statistical analysis was then conducted to correlate the 

PM2.5 data and morphological data. The results indicate that the building morphology of the 

high-density environment of Hong Kong explains up to 37% of the spatial variability in the 

mobile monitored PM2.5. The building morphological factors with the highest correlation to 

PM2.5 concentration are building volume density, building coverage ratio, podium layer 

frontal area index and building height variability. The quantitative correlation between PM2.5 

and morphological factors can be adopted to develop scientifically robust and straightforward 

optimization strategies for planners. This will allow considerations of pollution dispersion to 

be incorporated in planning practices at an early stage. 

KEYWORDS 

Air pollution dispersion; mobile monitoring; building morphology; planning optimization 
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1. INTRODUCTION 

Air pollution has been identified as a major problem in high-density cities in Asia [1]. 

Urbanization physically changes the natural landscape into a highly artificial built 

environment [2]. In a high-density city environment, closely packed building groups weaken 

air flows and consequently limit the dispersion of pollutants [3, 4]. Therefore, street-level air 

pollution has become a severe environmental issue in high-density cities, such as Hong Kong 

[5]. The PM2.5 concentration level monitored by roadside stations shows that the air quality of 

Hong Kong does not fulfill the requirements of either the local air quality objectives or other 

international air quality standards [6]. In Hong Kong, many public health investigations have 

shown that air pollution are strongly connected to adverse health outcomes. For every 

10μg/m
3
 increase in the daily average concentration level of PM2.5, there will be 

approximately 2% more hospitalization and 2% increase in the mortality due to respiratory 

diseases alone [7, 8]. Under such circumstances, the Environment Bureau of Hong Kong 

released “A Clean Air Plan” for Hong Kong in 2013, with the reduction of roadside air 

pollution as a major focus [9].  

Enhancing the rate of pollution dispersion is an effective way to reduce its concentration [10]. 

A properly planned/designed urban morphology will significantly improve pollution 

dispersion [11], and thereby reduce the health risk of exposure. Under such context, academic 

research and the planning practice are increasingly focusing on enhancing pollution 

dispersion in cities [12]. A wide range of techniques has been used to monitor or model  

street-level pollutant concentrations and human exposure in the built environment [13, 14]. 

Most current methods on pollution dispersion in an urban environment are based on complex 

numerical simulations [15-17]. They are advanced and accurate, but too complicated and 

time-consuming to help planners and practitioners optimize the planning scheme at an early 
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stage efficiently. For example, in the practical planning process of Hong Kong, planners need 

straightforward information of reasonable accuracy and quick methods at the initial strategic 

planning stage of urban renewal and new development areas (NDAs) projects.  

It has been indicated that the densely built urban form of Hong Kong is not optimized for 

pollution dispersion [18, 19]. It blocks ventilation and consequently retards the dispersion [3, 

19]. The tall building clusters and narrow roads result in deep street canyons with intensive 

traffic flows and high pollutant emission intensity. Besides traffic-related air pollution, many 

non-vehicular PM2.5 pollution sources at the roadside [20] (such as shops, bus stops, parking 

entrance, cargo areas of shopping malls, and ventilation discharge outlets of 

restaurants/commercial cooking [21, 22]) also contribute to the problem. They all emit an 

enormously high intensity of PM2.5 and are a significant contribution to the street-level air 

pollution. However, pollution dispersion as a dimension of air pollution mitigation is not 

commonly considered in the daily urban planning/design practice of Hong Kong due to the 

lack of easy-to-use design method and practical guidance. Therefore, it is important to obtain 

a scientifically robust but more straightforward understanding of how to optimize urban 

planning for better pollution dispersion in the high-density urban context. This study focuses 

on quantitatively investigating the dispersion capability of different morphological 

configurations along the street canyons and identifying critical building morphological design 

factors for the development of practical planning optimization strategies. This will allow 

considerations of pollution dispersion to be incorporated at an early stage in the planning 

practice. Considering the above, PM2.5 (particulate matters with an aerodynamic diameter 

<2.5 micrometers, a commonly-used proxy to investigate pollution dispersion [23]), was used 

as a comprehensive marker to quantitatively represent the dispersion capability (of both 

traffic-related and non-traffic air pollution) along the street canyons. 
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To resolve the effects of building morphological factors on pollution dispersion, information 

of small-scale spatial variability of street-level air pollution needs to be observed at a very 

fine spatial scale. In Hong Kong, the heterogeneous building morphology and complicated 

traffic network make the street-level air quality vary vastly between different locations. 

Therefore, small-scale spatial variability of air pollution is impossible to be effectively 

observed using data from the only a couple of fixed roadside air quality monitoring stations 

(RAQMS) in Hong Kong. Mobile monitoring as a cost-effective way to cover larger study 

areas has been gaining popularity in air pollution research [24-26] due to its advantage of fine 

spatial coverage. The method uses a vehicle as a platform and its feasibility has been tested in 

a pilot study of mapping the spatial distribution of street-level PM2.5 in the downtown area of 

Hong Kong [19]. However, the two-week dataset measured by that study possibly contains 

uncertainties, as the monitoring time at each position is limited. As a consistent mode of 

public transport of Hong Kong, trams continuously run along some fixed routes in the high-

density downtown area over a long period of time. Thus, a much larger dataset can be 

obtained than the vehicle-based monitoring platform. It has been indicated that increasing the 

size of mobile monitoring dataset can greatly decrease the uncertainties in the mapping of the 

spatial distribution of air pollution [27]. Hence, by monitoring the air quality continuously for 

a long period of time on a tram, the abovementioned limitations can be overcome and the 

robustness of the monitoring results can be improved. 

2. MATERIALS AND METHODS 

In this present study, a spatiotemporal street-level PM2.5 dataset was acquired by long-term 

mobile monitoring using the tram. It was to resolve the small-scale spatial variability of PM2.5 

in the high-density downtown area of Hong Kong (the northern part of Hong Kong Island). A 

set of building morphological design factors was calculated for the areas along the tram 
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routes using GIS. Multivariate statistical analysis was performed to investigate the correlation 

between the PM2.5 spatial data and morphological data and identify critical building 

morphological factors of pollution dispersion in the urban context of Hong Kong. 

2.1.  Mobile Monitoring of Street-level PM2.5 Using Tram 

2.1.1. Measurement Routes and Campaign 

Street-level PM2.5 measurement was made when a tram was in service according to its normal 

day schedule. The fixed routes on the northern side of the Hong Kong Island contain a 

RAQMS of the Hong Kong Environmental Protection Department (Figure 1), and the PM2.5 

data from these stations were used to compare and calibrate the street-level PM2.5 

measurements when the tram passed by. The measurement campaign started in August 2013 

and continues to the day of writing. Measurement was made when the tram was in its normal 

business service in town.  
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Figure 1. Tramway on the Hong Kong Island and the building morphology of along the tram 

route.  

2.1.2. Instrumental Setup 

Collaborating with staff of Hong Kong Tramways Company, a PM2.5 measurement unit was 

assembled and installed on a tram vehicle (Figure 2). The measurement unit is composed of 

an optical aerosol monitor (DustTrak DRX, TSI) with an auto-zero module for PM2.5 

measurement and a GPS to locate the tram as it moved. Auto-zeroing of DustTrak was 

performed every 3 hours to minimize the impact of instrument drifting to the measurement. A 

preprogrammed data logger was used to control the operation of the system and archive the 

high time-resolution PM2.5 and GPS data which were obtained at a frequency of 1 Hz. The 

whole system was contained in a metal-casing installed underneath a seat at the rear end of 

the upper deck (Figure 2-a). Powered by the tram’s DC supply and connected to DustTrak 
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through a conductive tubing, the system sampled ambient air from a water-drain hole on the 

upper deck (3 m from ground, referring to Figure 2-b).  

 

Figure 2.  (a) Instruments in the casing on tram – the data logger on the left and DustTrak 

DRX on the right. The GPS is attached on the outer wall of the casing. (b) The PM inlet on 

the tram. 

2.1.3. Data Quality Control 

The DustTrak was checked and compared with the regular PM2.5 measurements made at the 

HKUST Air Quality Research Supersite with filter-based method and/or on-line FEM 

(Federal Equivalent Method) instrument before it was deployed. Regular system 

maintenance/checking and data download (PM2.5/GPS data together with the 

control/performance parameters of the instruments) were performed when the tram was back 

to depot for servicing, normally at a 8-working-day interval. In the beginning trial phase, 

measurement was conducted every day from 10:00 to 19:00 with auto-zeroing every 3 hours 

to test out the system. In the normal operational phase, measurement was performed every 

day after depot servicing from 7:00 to 19:00 with auto-zeroing every 3 h to cover all the 

normal day hours when the tram was in service. Therefore, the mean pollution concentration 

value measured at each location robustly reflects the long-term average level. The mobile 
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monitored dataset can depict the small-scale spatial variability of PM2.5 without any 

uncertainties introduced by temporal variations.  

To be more specific, when the tram moves from the west end of Hong Kong Island to the east 

end, the whole journey takes approximately one hour. Within that hour, the background 

concentration of PM2.5 normally varies very little (typically less than 5µg/m
3
, based on the 

data from background monitoring stations of Hong Kong). However, the measured PM2.5 

concentration along the tram route during one particular journey can vary by as much as 

40µg/m
3
 or even more in a relatively short distance of less than 100m (based on the mobile 

measurement data, Figure 5). The extent of spatial variations of concentration reflects that 

they are not caused by the background variation. The GPS data were checked/validated 

against the monthly time-location (stop location) of the tram provided by Hong Kong 

Tramways Limited.  

The linear regression assumption is common and has been used in several previous studies 

using DustTrak in Hong Kong [28-30]. In one of them [28], the collocating data from 

DustTrak (5min) and Reference method (1 hour) at Causeway Bay RAQMS were used. The 

results show a good correlation of R = 0.91. In this study, we used the observations from the 

Causeway Bay RAQMS to calibrate the tram measurements. The tram measurements 

represent the polluted situation at the lower level of the street canyon. The PM2.5 inlet of the 

Causeway Bay RAQMS is installed three meters above ground, around the same height as the 

instrument on the tram. To calibrate the tram measurements with the observations from 

Causeway Bay RAQMS, the tram data collected between the stations of 51E Percival Street 

and 53E Paterson Street were extracted. The raw tram data were measured second by second, 

while the provided observations from Causeway Bay RAQMS were hourly data. The 

monthly averages within the study period of both the tram data and RAQMS observations 

were then calculated for calibration purpose. Monthly averages were used instead of hourly 
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averages because the quantity of data collected by the tram in an hour was too small to be 

representative for calibration purpose. 

Firstly we divided the monthly average of the tram-based PM2.5 data by the monthly RAQMS 

observations to obtain a factor for each month of the study period. The result varies from 1.43 

to 2.83. Then we applied the optimal method to search for the best factor with the least 

difference between the observations and tram data after calibration (i.e., the tram data over 

the fixed factor) based on the monthly tram measurement and observations. A value of 1.91 

was determined to be the optimal calibration factor, basically consistent with a prior study in 

Hong Kong using Mong Kok RAQMS as the calibration reference [19]. The above method is 

illustrated by the following equations: 

 
    

           

            
 

(1) 

where the     is the calibration factor of the ith month.             and              are the 

monthly averaged PM2.5 concentration of the ith month by tram and RAQMS respectively. 

Find   , so that                                     

    
 

   
 (2) 

      
           

  
              

  

   

 (3) 

where n is the total number of the monthly averaged value used for the calibration.    is the 

jth calibration factor.    is the square of difference for the jth calibration factor. 
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2.2. Tram-based PM2.5 Data Processing 

2.2.1. Collating Data in GIS 

The raw dataset collected by the PM2.5 measurement unit mainly contains two parts – PM2.5 

concentration level measured every second and the synchronously recorded geographical 

locations (GPS data). These two parts of data were collated according to the time stamps and 

imported into GIS with the HK1980 coordinate system for further processing and analysis. In 

this present paper, a four-month dataset— 2014-12, 2015-01, 2015-06 and 2015-07— was 

extracted and analyzed. Considering the differences in the dominant air pollution modes 

between seasons [31] and to analyze the resulting variation, we also divided the data into two 

seasonal datasets (summertime and wintertime). 

2.2.2. Determining a suitable Spatial Scale for Data Aggregation 

A properly determined spatial scale for data aggregation is important for the reduction of 

uncertainties in geographical analysis, especially when it involves a large dataset like the one 

in this study (which is a spatiotemporal dataset with 1-second temporal resolution for four 

months). In air pollution mapping studies, over-aggregated data introduce bias in regression 

analysis [32] and can possibly lead to overestimation of the correlation coefficient in the 

regression analysis. Following the method used by Lightowlers, Nelson, Setton and Keller 

[33], the semivariogram method was adopted to determine the spatial scale for the data 

aggregation of tram-based PM2.5 data in this present study. The semivariogram modelling has 

been adopted to inform the appropriate spatial scale for many spatial analysis methods (e.g. 

hotspot analysis, kriging/cokriging interpolation) in air pollution and health studies. A search 

radius or the neighbourhood kernel is usually defined as a parameter [34]. An optimized 

semivariogram function is essential for the determination of this parameter to avoid 

misleading conclusions associated with inappropriate spatial aggregation [35]. The 
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semivariogram model used in geographical data analysis is defined as a function of distance 

as shown in the following equation: 

    
 

     
        

 

       

 (4) 

where    is the semivariogram. The spatial points    and    are paired in a semivariogram 

modelling.    and    are the measured data of    and   .   is the distance between    and   . 

     is the amount of the pairs of all spatial points [34]. In a dataset of a group of spatially-

distributed data points, the semivariogram value keeps increasing with the distance until a 

limit defined as the sill (    ). By calculating the semivariogram and developing the best 

fitting semivariogram function, the range ( ), as a parameter of the empirical semivariogram 

model, can be determined based on the following equation (there are different semivariogram 

model types, such as the spherical, exponential and Gaussian model. In this present study, as 

shown in Figure 3, all optimized models have the stable semivariogram model type. 

Therefore, the function of the stable semivariogram is shown here as an example of how an 

appropriate spatial scale was determined basing on the semivariogram model). 

                     
   

  
                      (5) 

where   is the lag distance of the corresponding         .   and   are model parameters. A 

more detailed procedure of semivariogram modelling has been described in a prior 

geostatistical study [36]. The corresponding   at which 95% of      reached is determined as 

the major range (also named semivariogram range). The geographical meaning of a 

semivariogram model is that the data points within the major range are spatially correlated, 

while the data points beyond the major range are independent of each other. Semivariogram 

modelling is commonly adopted to deal with the spatial dependence/autocorrelation issues of 
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spatially distributed observation points [37]. It has been used as a method in the 

determination of the spatial resolution of air quality mapping [19, 38]. 

The ArcGIS software was used as a tool for all geo-spatial analysis in this study and the 

instruction of the semivariogram algorithm in the following literature was referred to for a 

reliable modelling [39, 40]. As a result, six stable type semivariogram models were modelled 

for the datasets of four months (2014-12, 2015-01, 2015-06 and 2015-07). As mentioned, the 

data were also divided into two seasonal datasets (summer and winter) for semivariogram 

modelling. The resultant empirical semivariogram models and their major ranges are shown 

in Figure 3. The results show that the data measured during wintertime have larger major 

ranges (from 26.1m to 69.6m with an average level of 46.5m) than summertime data. This 

result indicates that summertime datasets provide spatial information at a finer spatial scale 

(ranges from 8.0m to 10.3m with an average level of 9.1m) and can profile very short-range 

variations. This is possibly due to the lower impact of regional pollution during summertime. 

The variability in locally emitted air pollutants becomes clearer to be observed as a result. 



 15 

 

Figure 3. The finalized empirical semivariogram models and the corresponding major ranges 

of the PM2.5 datasets. 

2.2.3. Spatial Aggregation of the PM2.5 Data 

Considering the differences in the spatial independence between the summertime and 

wintertime datasets, different spatial scales were used for data aggregation. Based on the 

results of the semivariogram modelling, a group of points was firstly created on the tram 

route using a fixed spatial interval (10 m for summertime data and 50 m for wintertime data, 
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Figure 4). All observations within a search radius (radii) of each point (radii = 5 m for 

summertime data and radii = 25 m for wintertime data) were then aggregated to the 

corresponding point using the mean concentration value. Figure 5 shows the seasonal average 

spatial distribution of the street-level PM2.5 concentration based on the aggregated dataset. 

 

Figure 4. The aggregation points along the tramway route generated in GIS. 

 

Figure 5. The spatial plot of the seasonal averaged street-level PM2.5 concentration along the 

measurement routes. The spatial variation of the measured PM2.5 concentration and building 

morphological factors in the range of the inset boundary (dashed box) is plotted in Figure 9. 



 17 

2.3. Analyzing the Building Morphology along the Tramway 

2.3.1. Calculating the Building Morphological Factors 

To depict the current building morphological design features in the monitored area, a total of 

17 building morphological factors was calculated. They include the mean and standard 

deviation of building height ( )/ground coverage ratio (  ), building volume density (   ), 

sky view factor (of the entire hemispherical sky view and its eight sectors respectively,     ) 

and three layers of frontal area index (  , the values of the 16 wind directions and the 

weighted value based on the probability of each direction for the two seasons) (Figure 6 and 

Table 1). A previous study found that the total frontal area index of all layers was related to 

the concentration level of many air pollutants [41]. In this study, we further divided this 

factor into three layers at different heights (the podium layer between 0-15 m, the building 

tower layer between 15-60 m and the total layer between 0-500 m) to cater for the typical 

building structure of Hong Kong [42]. 

 

Figure 6. A schematic diagram of calculating the building morphological factors (using an 

example of a street block in the North Point, a street-level PM2.5 concentration hotspot). 



 18 

 

Table 1. The equations used in the calculation of building morphological factors (improved 

from [19]).  

Building Morphological 

Factor 

Unit Equation of Calculation  Theoretical Meaning 

Mean of building height m    
 

 
   

 

   
 (6) Vertical building development intensity. 

  of building height m     
 

 
         

 

   
 (7) 

Diversity of building height within a 

specific area. 

Building coverage ratio %a         
 

   
     (8) Building ground coverage intensity. 

  of the ground coverage 
ratio of all building 

clusters in a specific area 
 

%      
 

 
            

 
 

   
 (9) 

Diversity of building coverage within a 

specific area. 

Building volume density % 

Total building volume of each lot is: 

        
 

   
 

Vmax is the highest V among all j lots whole city. 

The building volume density of lot j is:        
             

 

(10) 
 

 

 
 

(11) 

BVD is a percentage value for reflecting 

the spatial distribution of the building 

density in a study area. 

Sky view factor (SVF)b [0-1] 

                                  

 
A detailed formula by Dozier and Frew [43] 

     
 

  
                       

  

 

         
              

(12) 

A measure of the openness to the sky of a 

given location, Please see the reference 

[44] for a more detailed description. In this 

study, the hemispherical sky view was also 

divided into eight sectors for sector-SVF 

calculation. 

Frontal area indexc – 

Total (0-500 m) 
C          (13) 

A wind direction – dependent measure of 

the horizontal permeability. 

Frontal area index –
Podium Layer (0-15 m) 

C                        (14) 
The horizontal permeability at the podium 
layer of Hong Kong. 

Frontal area index – 

Building Tower Layer 
(15-60 m) 

C                          (15) 
The horizontal permeability at the building 

layer of Hong Kong. 

a: The resulting percentage values from this calculation were converted to an interval of [0-1] during further multivariate analysis. 

b: Calculated for the entire hemispherical sky view and also its eight sectors (9 SVF values for each point). 

c:   is a dimensionless quantity. It was calculated at three different height layers along 16 wind directions [42]. The weighted    value based on 

probability of the 16 wind directions for two seasons are also calculated. Therefore, there are 17    values for each point. 

 

2.3.2. Neighboring Analysis of the Building Morphological factors for Data 

Aggregation Points 

The street-level PM2.5 concentration at each monitoring point is influenced by the building 

morphological condition in its surrounding area. The neighboring analysis is composed of 

two steps: (1) creating buffers, (2) sensitivity test of critical buffer identification. First, the 

buffering analysis method was used in this study. As mentioned in section 2.2.3, the PM2.5 

observations were aggregated into a group of points on the tram route based on the spatial 
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aggregation scales determined by the semivariogram modelling (Section 2.2.2). A series of 

buffers (with radii of 50 m, 100 m, 200 m, 300 m, 400 m and 500m) was created around each 

data aggregation point (Figure 7). 

When using building morphological factors as the predictor variables to explain the variation 

in street-level PM2.5 observations, the critical buffer widths of different building 

morphological factors may vary due to the physical basis of pollution dispersion. 

Geographically, a building morphological feature measured by a specific factor within its 

critical buffers explains the variation of pollution to the greatest extent. Therefore, sensitivity 

test was conducted for each building morphological factor to determine its critical buffer 

width in explaining the PM2.5 variation. A simple linear regression between the building 

morphological factors calculated using each buffer and the aggregated PM2.5 concentration 

data were performed. Pearson correlation coefficients (r) were calculated for the comparison 

of buffer widths. Only the buffer-based building morphological factors with the highest |r| 

were selected as the predictor variables for further correlation analysis.  

 

Figure 7. A series of buffers for the neighboring analysis of the building morphological 

factors of the surrounding area of data points. 
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2.4. Correlating the Building Morphology with PM2.5 Concentration 

2.4.1. Using Stepwise Multiple Linear Regression Modelling 

The stepwise multiple linear regression (MLR) method was adopted to examine all possible 

regressions between the aggregated tram-based PM2.5 (response variables) and predictor 

variables within the critical buffers. Regression models were developed by the rules of 

minimum Bayesian information criterion (BIC), and the forward order is used [45, 46]. The 

formula of an initial MLR model is stated below: 

 
                                         

(16) 

where        is the PM2.5 concentration value at the aggregation point i on the tram route. 

The model includes   building morphological factors as the predictor variables.    , …,    

are the slopes of values of the building morphological factors       ,…,       at the 

aggregation point i.   is the model intercept, and   is the residual.  

 

The model and all its variables fulfil the significance level of the p-value < .0001. The model 

initially developed with the stepwise method was further examined to avoid multicollinearity. 

Multicollinearity (the situation where predictor variables are highly correlated with each 

other) in a model leads to limited explanatory capacity and introduces suspicious regressions 

[47]. In this present study, both the variance inflation factor (VIF) and multivariate 

correlation analysis were used to detect the underlying correlations among predictor 

variables, and to ensure that there is no significant multicollinearity among the final predictor 

variables included in resultant models. Firstly, we examined the VIF of each variable in the 

initial models. Those with VIF > 2 were excluded. Then, we performed multivariate 

correlation analysis. If significant multicollinearity (correlation of above 0.8) among 

predictor variables was detected [48], only the variable with a higher simple linear correlation 
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to the response variable was preserved for regression models. The final model was adjusted 

to ensure there is no multicollinearity issue. The correlation coefficient (      ) was used to 

evaluate the model performance.  

2.4.2. Model Validation Method 

To evaluate the model performance, we conducted leave-one-out cross-validation (LOOCV) 

to compare the differences between the monitored and estimated concentration. The root-

mean-square error (    ) and the    from the LOOCV (      
 ) were used to validate the 

resultant LUR models: 

       
 

 
        

         
 

 

   

 (17) 

       
  

        
          

 
   

                 
  

   

 (18) 

where        is the monitored concentration at the aggregation point i.       
  is the 

estimated PM2.5 concentration at the aggregation point i acquired based on the above MLR 

modelling.         is the average value of the       
 . n is total amount of aggregation points 

in the dataset. 

3. RESULTS 

The critical buffer width was firstly identified by the sensitivity test for each building 

morphological factor for summertime and wintertime. The results of the sensitivity test are 

shown in Table 2. It can be observed that the critical buffers of most morphological factors 

remain unchanged between summer and winter. The consistency of critical buffers between 

seasons implies that the influence of urban morphological features on street-level air quality 

remains significant regardless of the seasonal changes in air pollution modes [31]. 



 22 

Table 2. Results of the sensitivity test of the critical buffer (unit: m) of each building 

morphological factor.  

Morphologi

cal Factors 

r  

Summer 

Buffer, 

Summer 

r 

Winter 

Buffer, 

Winter          ,SSW 0.448 300 0.382 200 

   0.523 200 0.416 200          ,SW 0.409 300 0.291 200 

    0.419 500 0.346 500          ,WSW 0.409 300 0.291 200 

   0.401 200 0.109 500          ,W 0.436 300 0.291 200 

   0.228 500 -0.034 500          ,WNW 0.433 300 0.425 200 

    0.547 200 0.270 300          ,NW 0.428 300 0.420 200 

   0.474 200 0.130 200          ,NNW 0.459 300 0.402 200 

  ,N 0.538 200 0.395 200            0.476 200 0.118 200 

  ,NNE 0.527 200 0.382 200           ,N 0.542 200 0.393 200 

  ,NE 0.504 200 0.302 200           ,NNE 0.532 200 0.387 200 

  ,ENE 0.455 200 0.143 200           ,NE 0.505 200 0.306 200 

  ,E 0.508 200 0.275 200           ,ENE 0.441 200 0.136 200 

  ,ESE 0.511 200 0.416 200           ,E 0.492 200 0.251 200 

  ,SE 0.507 200 0.418 200           ,ESE 0.506 200 0.392 200 

  ,SSE 0.536 200 0.395 200           ,SE 0.507 200 0.405 200 

  ,S 0.538 200 0.395 200           ,SSE 0.534 200 0.385 200 

  ,SSW 0.527 200 0.382 200           ,S 0.542 200 0.393 200 

  ,SW 0.504 200 0.302 200           ,SSW 0.532 200 0.387 200 

  ,WSW 0.455 200 0.143 200           ,SW 0.505 200 0.306 200 

  ,W 0.508 200 0.275 200           ,WSW 0.441 200 0.136 200 

  ,WNW 0.511 200 0.416 200           ,W 0.492 200 0.251 200 

  ,NW 0.507 200 0.418 200           ,WNW 0.506 200 0.392 200 

  ,NNW 0.536 200 0.395 200           ,NW 0.507 200 0.405 200 

          0.396 200 0.125 200           ,NNW 0.534 200 0.385 200 

         ,N 0.469 300 0.397 200      -0.318 0 -0.154 50 

         ,NNE 0.448 300 0.382 200        -0.250 0 -0.154 0 

         ,NE 0.409 300 0.291 200         -0.110 0 -0.025 0 

         ,ENE 0.409 300 0.291 200        -0.059 0 -0.064 0 

         ,E 0.436 300 0.291 200         -0.192 0 -0.172 0 

         ,ESE 0.433 300 0.425 200        -0.279 0 -0.161 0 

         ,SE 0.428 300 0.420 200         -0.265 0 -0.066 0 

         ,SSE 0.459 300 0.402 200        -0.281 0 -0.122 0 

         ,S 0.469 300 0.397 200         -0.306 0 -0.250 50 

 

Using spatially aggregated seasonal PM2.5 concentrations as the response variables and all 

selected morphological factors (Table 2) as the predictor variables, we developed separate 

correlation models for summertime and wintertime (Table 3 and Figure 8). The adjusted R
2
 

(      ) values of the resultant model of the 10m-spatially aggregated summertime PM2.5 

concentration is 0.368. The        of the model of the 50m-spatially aggregated wintertime 

PM2.5 concentration is 0.306. 
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Table 3. Resultant MLR models showing the correlation between building morphology and 

street-level PM2.5 concentration in summertime and wintertime respectively. 

Correlation in Summertime 

Response Variable Spatially aggregated summertime tram-based PM2.5 data using spatial resolution of 10m 

R2 0.369 

Adj R2 0.368 

RMSE 5.575 

Mean of Response 32.836 

P-value <.0001 

10-fold Cross Validation R2 0.361 

Predictor Variables Estimate Std Error t Ratio Prob>|t| VIF 

Intercept 25.886 0.528 49.06 <.0001 n/a 

   500m -0.111 0.019 -7.01 <.0001 1.624 

     200m 64.789 3.122 20.75 <.0001 2.239 

          200m 20.008 3.836 5.22 <.0001 1.537 

Correlation in Wintertime 

Response Variable Spatially aggregated wintertime tram-based PM2.5 data using spatial resolution of 50m 

R2 0.310 

Adj R2 0.306 

RMSE 5.106 

Mean of Response 91.853 

P-value <.0001 

10-fold Cross Validation R2 0.304 

Predictor Variables Estimate Std Error t Ratio Prob>|t| VIF 

Intercept 82.522 1.234 66.85 <.0001 n/a 

   200m 36.333 2.971 12.23 <.0001 1.113 

   500m -0.096 0.027 -3.60 0.0004 1.113 

 

 

Figure 8. MLR regression plot of the correlation models. The amount of the wintertime data 

points are less than summertime because of the different spatial aggregation. 
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4. DISCUSSION 

4.1. Interpreting the Resultant Correlation Models 

As indicated by the resultant models, in Hong Kong, building morphology explains 37% and 

31% of the spatial variability in tram-based street-level PM2.5 observations in summer and 

winter respectively. The building morphological indices with the highest correlations to the 

tram-based PM2.5 concentration (street-level air quality) are building volume density (    

200m, positive correlation), building coverage ratio (   200m, positive correlation), frontal 

area index of the podium layer (0-15m,           200m, positive correlation) and variability 

in  building heights (   500m, negative correlation). The resultant models identify the 

important predictor variables and their corresponding critical buffers. Figure 9 shows the 

spatial variation of the aggregated PM2.5 concentration data and building morphological 

factors in different sections along the tram route. 
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Figure 9. The spatial variation of the aggregated PM2.5 concentration data and building 

morphological factors in different sections along the tram route. 

4.1.1. Identifying the Predictor Variables as Important Urban Morphological 

Design Factors for Hong Kong 

    reflects the land use intensity per unit area. Densely packed building bulks block the 

airflow and reduce the pollutant dispersion rate.     is not only an influential factor of 

dynamic potential of air flow but also an indirect measure of the intensity of anthropogenic 

activities (for example, the traffic flow in a densely-populated area is usually higher than the 

low-density ones). In other words, the spatial variability in     also partially depicts the 
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spatial distribution of pollution sources.    is a morphological factor of the permeability of 

building shapes with respect to the prevailing wind flow. It has been widely adopted in the 

assessment of urban ventilation. In this present study, it was further separated into three 

layers of different heights considering the typical building structure of Hong Kong.           

depicts the building morphological permeability at the street-level and thus has an effect on 

the dispersion rate of air pollutants, especially in a high-density built environment. The 

inclusion of    in the resultant models (developed using tram-based PM2.5 observation in this 

study) is consistent with the findings in a previous study based on fixed monitoring data from 

AQMN of HKEPD [41]. Building ground coverage ratio is an alternative indicator of street-

level wind availability of           [42]. The turbulent intensity near the urban surface 

determines the mixing and dilution of air pollutants. A higher variability in building height 

(measured as the standard deviation of the building height,   ) increases the intensity of 

turbulence near the urban surface and as a result helps with the dispersion.   

4.1.2. Identifying the Critical Buffers for the Morphological Factors 

The identification of the critical buffer for each building morphological factors is one of the 

most important contributions of this study. Most prior studies calculated all spatial factors 

using a fixed grid system with a specific spatial resolution. However, the critical buffer 

widths of different morphological factors may vary due to the complex physical basis of 

pollution diffusion and dispersion. As shown in Table 2, the buffer size used in this study is 

more similar to a typical land use regression approach [49]. Such spatial scale enables the 

investigation of the neighbourhood-scale building morphological effect within the urban 

roughness layer. In Hong Kong, it has been proved that neighborhood scale building 

morphology within the urban roughness layer has a strong effect on street-level air quality 
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[18]. The buffer is significant for the development of neighbourhood-scale urban design 

strategies. 

As identified by the results of the sensitivity test, the critical buffer width of the    ,   ,  

          is 200m; the critical buffer of    is 500m. The findings on buffer width can be 

further interpreted as follows: the street-level air quality (evaluated as PM2.5 concentration in 

this present study) of a specific location in the high-density downtown area of Hong Kong is 

significantly influenced by the building morphology measured by    ,   ,           in its 

surrounding area with a radii of 200m and     within its surrounding area of 500m. 

Alternatively speaking, a building/urban design project strongly affects the street-level air 

quality of its 200m-wide surroundings; a distance of 500m should be defined as the critical 

range for evaluating and designing the height variability in building clusters. As observed in 

this study, the critical buffer sizes of the    ,   , and           are the same (200m) while 

the critical buffer of   is larger (500m). In a previous similar study in Hong Kong [19], it 

was found that    has a larger critical buffer than other building morphological factors as 

well. This phenomenon may be explained by the concept of source area (or ‘footprint’) [50]. 

A source area refers to the surrounding area (influential buffer) of a sensor location of the 

measurement with respect to the turbulence. The influential buffer of a screen-level 

measurement is likely to depend upon the building density. It is thought that this influential 

buffer has a radius up to approximately 0.5 km [50]. Therefore, it is still reasonable to have a 

larger buffer of   .  

4.2. Estimating the Small-scale Variability in Street-level Air Quality Using Building 

Morphology  

The estimation of the small-scale spatial variability at the street level in an urban environment 

serves as a basis for urban environmental planning and policy decision-making, especially for 
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a high-density built environment because the complex building morphology significantly 

alters street-level air quality. This study has discovered the correlation between the spatial 

variability of PM2.5 concentration and morphological factors, and identified critical design 

factors. These will enhance the current understanding of the impacts of building design on 

street-level air quality. For example, as indicated by the resultant correlation models, 

                           is positively correlated to the long-term average street-level PM2.5 

concentration both in summertime and wintertime. It means that the PM2.5 level of a position 

within a street canyon is greatly influenced by the morphological permeability of the podium 

layer within its surroundings with a buffer width of 200m (a circular area with a diameter of 

400m). It is commonly opined that a high-density urban morphological form with well-

developed environmental planning and management policies could be more sustainable 

because of intensive land use, promotion of public transport mode and efficient use of public 

resources [51, 52]. The findings in this present study can substantially contribute to a more 

quantitative and scientific basis for the current urban design guidelines in Hong Kong –

Chapter 11 of the Hong Kong Planning Standards and Guidelines (HKPSG) [53].  

It should be emphasized that this present study will not only be relevant to Hong Kong. As 

the mobile measurement experimental method is now increasingly used to obtain more 

accurate spatial estimations of intra-urban air pollution, the findings of this study can be 

further compared with similar efforts in different regions under different urban contexts. The 

outputs from this study can be further expanded and applied to other highly urbanized areas 

in the estimation of street-level air quality. 

5. CONCLUSIONS 

Many previous studies have been conducted to resolve the issues related to air pollution and 

morphological factors qualitatively or quantitatively, but they were mostly performed at a 
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small spatial scale. Together with some recent efforts (for example, [26, 27]), this present 

study is one of the first attempts at dealing with these issues quantitatively at a large spatial 

scale. The dispersion capability of different morphological configurations along the street 

canyons was investigated at the level of an urban road network which could not be achieved 

by conventional methods (such as CFD numerical simulation). The quantitative correlations 

between PM2.5 and morphological factors developed by this present study will allow 

considerations of pollution dispersion to be incorporated into the urban planning practice. It 

provides quantitative references and straightforward information of reasonable accuracy to 

planners at the initial strategic planning stage of urban renewal and new development areas 

projects in Hong Kong. The findings of this Hong Kong study will serve as a quantitative 

reference of evidence-based strategy-making of neighbourhood-scale urban designs (e.g. the 

optimization of the arrangement of buildings, or the spatial layout of urban open space). 

Moreover, the experimental methods and findings of this study are also readily applicable to 

investigating the effect of urban morphology on intra-urban air pollution dispersion in other 

cities.  
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