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A Minimax Fitting Algorithm for Ultra-Precision Aspheric Surfaces
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Abstract

Aspheric lenses show significant superiority over traditional spherical ones. The peak-to-valley form deviation is an
important criterion for surface qualities of optical lenses. The peak-to-valley errors obtained using traditional methods
are usually greater than the actual values, as a consequence causing unnecessary rejections.

In this paper the form errors of aspheric surfaces are evaluated in the sense of minimum zone, i.e. to directly minimize
the peak-to-valley deviation from the data points to the nominal surface. A powerful heuristic optimization algorithm,
called differential evolution (DE) is adopted. The control parameters are obtained by meta-optimization. Normally the
number of data points is very large, which makes the optimization program unacceptably slow. To improve the efficiency,
alpha shapes are employed to decrease the number of data points involved in the DE optimization.

Finally numerical examples are presented to validate this minimum zone evaluation method and compare its results
with other algorithms.
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1. Introduction

Aspheric lenses show notable superiority over conven-
tional spherical lenses in that a multiple-element spherical
lens can be replaced by a single aspheric lens. Aspheric
surfaces can be represented with [1],

z =
r2/R

1 + [1− (1 + k)r2/R2]
1/2

+A4r
4 +A6r

6 + · · · (1)

with r = (x2 + y2)1/2.
Here R is the radius of curvature of the underlying

sphere, k is the conic constant and {Ai} are the magni-
tudes of higher order deviations from sphericity.

The form error of a manufactured lens plays an essen-
tial role in its performances. Currently the PV, peak-to-
valley deviation, is still a very commonly adopted specifi-
cation for surface quality [2], despite its recognized draw-
backs for characterizing surfaces and lack of link to optical
performances. Most current commercial software applies
the least squares method to fit the nominal surface from
data and calculates the PV error from the difference be-
tween the maximum and minimum residuals. However this
approach is likely to overestimate the form tolerance and
lead to unnecessary rejections.

Here we attempt to directly minimum the peak-to-
valley deviation,

min(max
i

di −min
i

di) (2)
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where di = ±∥qi − (Rpi + t)∥ is the signed distance from
an arbitrary measured point pi to its projection qi onto
the nominal surface. R is the optimal rotation matrix and
t is the translation vector.

This minimax problem is not continuously differen-
tiable, thus very difficult to be solved. This paper presents
a heuristic optimization algorithm, called differential evo-
lution (DE), to conduct minimum zone evaluation of as-
pheric surfaces. This method shows great superiorities on
stability and accuracy, and makes a good balance between
exploration and exploitation.

2. A differential evolution algorithm

At each generation, a Donor vector vi is generated for
each individual of the population (called genome or chro-
mosome) {yi|i = 1, · · · , NP}. It is the method of creat-
ing this Donor vector that demarcates between the various
DE schemes. Two mutation schemes ‘DE/rand/1/bin’ and
‘DE/current to best/2/bin’ are applied [3, 4],

vi =

{
yr + F (ys − yt), rand[0, 1] < p

yi + F (pg − yi + yr − ys), otherwise
(3)

where r, s and t are integers randomly selected from the
range [1, NP ] (excluding i). F ∈ [0, 2] is used to scale the
differential vector, p ∈ [0, 1) is a user-set parameter and
rand[0, 1] is a random number uniformly generated in the
interval [0, 1].
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These two strategies are used very commonly in lit-
erature and perform well on problems with distinct char-
acteristics. ‘DE/rand/1/bin’ demonstrates good diversity
while ‘DE/current to best/2/bin’ shows good convergence
property.

After the mutation phase, a ‘binominal’ crossover op-
eration is applied,

uij =

{
vij if randj [0, 1] ≤ CR or j = jrand
yij otherwise

(4)

where CR ∈ [0, 1) is a user specified crossover constant
and jrand is a randomly chosen integer in [1, NP ] to ensure
that the trial vector ui will differ from yi by at least one
component. The subscript j refers to the j-th dimension.

Then a selection operation follows,

yk+1
i =

{
uk
i if f(uk

i ) < f(yk
i )

yk
i otherwise

(5)

with k and k + 1 denoting the individuals in the k-th and
(k+ 1)-th generations respectively and f representing the
objective function to be minimized.

The pseudocode for optimization program is shown in
Algorithm 1.

Input: NP , CR, F , X, y0

// X:data points, y0:rough guess of

solution

Initialize population Y;
k = 0; // generation number

while k < kmax do
k ++;
for i = 1 to NP do

Evaluate fitness f(yi);
Update global optimum pg;
Mutation of yi using Eq (3);
Crossover and selection of yi using Eqs
(4),(5);

end
if termination condition satisfied then

Break;
end

end
Output: pg

Algorithm 1: A differential evolution algorithm

The optimal configuration, i.e. the values of the pop-
ulation size NP , the scaling factor F and the crossover
rate CR, is very problem-dependent. According to the
’No-free-lunch theorems’, it is not possible to make the
optimization program widely applicable whilst maintain-
ing the best performance at every situation[5]. To obtain
relatively good performance in different cases, the optimal
parameter configuration is particularly obtained for each
situation. Here meta-optimization is performed off-line us-
ing the Local Unimodal Sampling [6]. The running speed
of this algorithm is determined by the number of fitness

evaluations. Here this number is set no greater than 20
000. The unknown variables are the five motion parame-
ters (Rotation about x and y axes and translation along
x, y and z directions), the radius R, the conic constant
k and polynomial coefficients {Ai} (if applicable). When
the shape parameters are all given, and only the optimiza-
tion position of the measured data is to be calculated, this
becomes the localization problem, and the dimension will
be 5. The recommended parameter settings for different
dimensions are listed in Table 1,

Table 1: Parameter settings of DE to aspherics

D NP CR F
5 23 0.866 0.7549
7 29 0.8745 0.7470
8 33 0.8884 0.7347
9 41 0.9046 0.7223
10 45 0.9148 0.7153
11 49 0.925 0.7087
12 52 0.9331 0.6972
13 55 0.9412 0.6808
14 57 0.9542 0.672
15 59 0.9636 0.6631
16 61 0.9729 0.6556

To prevent a too fast decrease of population diversity,
the parameters need to satisfy the condition 2F 2−2/NP+
CR/NP ≥ 0 [7]. Evidently it holds true for all the param-
eters given here.

3. Improving the computational efficiency

This optimization problem is highly nonlinear and lots
of local minima exist. To get better results form the DE
optimization, the space of the unknown variables is nar-
rowed by supplying a good initial guess for the solution.
The orthogonal least squares[8] method is used for this
purpose.

3.1. Calculating the orthogonal distances

It is straightforward to write the function of an aspheric
surface as g(x) = 0 with x being a point on the surface.
Normally the projection point q associated with the point
p is obtained from{

g(q) = 0
∇g(q)× (p− q) = 0

(6)

using the Gauss-Newton or Levenberg-Marquardt algo-
rithm.

But this method is time consuming, especially when
there are many data points. Consequently at the first tens
of iterations of the optimization program, the distance is
approximated with [9]

d = ±∥p− ∥q∥∥ ≈ g(p)

∥∇g(p)∥
(7)
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As the motion and shape parameters have been approx-
imately identified using linear least squares, the distance
d will not be very large, i.e. p is reasonably near to the
associated surface. Thus this approximation is acceptable.
At the final iterations, the orthogonal distance is in turn
calculated from Equation (6).

3.2. Reducing the number of data points

In practice, the number of measured data points may
be up to millions, but actually only dozens of points de-
termine the width of the error band (the point number is
related with the number of unknown variables). If remov-
ing some ’unnecessary’ points from the data set,the opti-
mization process can be greatly accelerated. Fortunately,
the alpha-shape technique meets this requirement.

An α−shape is a well-defined polytope, derived from
the Delaunay triangulation of the point set, with a param-
eter α ∈ R controlling the desired level of detail [10]. In
order to improve the discrepancy, we replace the z coor-
dinates of the data points by the signed residuals resulted
from the least squares fitting and then scale the points into
a unit cubic. If implementing the 3D Delaunay triangula-
tion, i.e. organizing the discrete points into a set of tetra-
hedra, the real ’key points’ are likely located at some tetra-
hedra with large circumscribed spheres, thus some tetra-
hedra with small circumscribed spheres can be omitted.
But many ’boundary points’ will be retained unnecessarily,
hence the boundary and interior points are handled sepa-
rately. Viewing from the z direction, the boundary points
are recognized using the modified Graham scan method
[11]. In the programme, the tetrahedra are sorted by their
radii of circumscribed spheres (in descending order). The
set for the points to be kept is initialized as null, and then
the vertices of each tetrahedron are checked successively.
The checking procedure is presented in Algorithm 2

Figure 1 shows a 2D example. Given 300 points, 30
points on the envelop are sampled using the α− shape
technique. The number of points to be retained is directly

(a) Given point set

(b) Envelop points

Figure 1: Point reduction using α−shapes

related with the number of unknown variables. For exam-
ple, in the evaluation of flatness (resp. sphericity), there

Input: point set {xi}Ni=1, points to be retained
Y = Ø, Delaunay tetrahedra T ∈ NM×4;

Find the boundary points B;
for j = 1 to M do

for i = 1 to 4 do
if Tji ∈ B then

if Tji has the greatest positive z
coordinate or the smallest negative z
coordinate among the four vertices of Tj

then
Put Tji into Y;

end

else
Put Tji into Y;

end

end
if The number of points in Y satisfies the
pre-set limit then

Break;
end

end
Output: Y;

Algorithm 2: The checking process for the vertices to
be retained

are three (resp. four) variables and four (resp. five) ex-
treme points are needed to calculate the minimum zone
error. For the same reason, if n polynomial terms are in-
volved in the aspheric function, at least n + 8 points are
needed. To avoid removing extreme points by mistake,
2n+ 14 points will be kept in the DE optimization.

4. Experimental validation and discussion

The validity of the proposed algorithm is verified with
a data set of 8100 points, as shown in Figure 2. The unit of
length here is mm if not specified otherwise. The nominal
shape parameters are given as R = 520, k = −0.7, A4 =
5.2e− 5, A6 = −6.5e− 6, A8 = 3.11e− 8, A10 = 3.222e− 9.
Noise with its amplitude of σ = 0.98µm is introduced with
the fractal Brownian function[12]. The dimensionality of
the optimization problem is 11 and the control parameters
in the DE program is adopted asNP = 49, CR = 0.929 and
F = 0.74, in accordance with Table 1.

The Differential Evolution optimization program is are
coded in MATLAB R2009a and run on a PC with Intel(R)
Core (TM) 2 Duo CPU8500 3.16GHz, 3.24GB RAM. The
program was run 100 times and the obtained best and
worst PV errors and running time (including ODF least
squares initial fitting and α−shape point reduction) are
listed in Table 2. For comparison, the direct DE opti-
mization without point reduction was also run 100 times
and the corresponding results are also presented. From
the table it can be seen that the proposed DE optimiza-
tion can obtain a much smaller PV form error compared
with the least squares ODF fitting, meanwhile, at a cost
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Figure 2: An aspheric surface

Table 2: Fitted results of the aspheric surface

method ODF
DE with α DE without α

max min max min
PV/µm 3.79 3.29 3.21 3.31 3.21
time/s 0.15 5.10 4.34 115.02 126.85

of much longer running time. But the average time for
the whole fitting process is less than five seconds, which is
acceptable in practical applications. The point reduction
technique using α− shapes reduced the running by 96%.
It is worth noting that obtained PV form error has not
been influenced by the α−shape point reduction, which is
an essential requirement to that manipulation.

5. Conclusions

This paper proposes an optimization method using dif-
ferential evolution to evaluate the peak-to-valley form er-
rors of aspheric surfaces. To make the optimization pro-
gram specifically works well for different dimensions of un-
known variables, the parameter configuration is obtained
using meta-optimization. Additionally, the alpha shapes is
adopted to get the ’envelop points’ which potentially deter-
mine the PV form error, so that the points involved in the
optimization program are reduced. Experimental results
prove the running time can be reduced by 96% without
influencing the optimization results. This program can be
utilized in aspheric surface fitting to calculate the shape
parameters from the given measured data points or sur-
face matching to determine the optimal relative position
between the measured data and the nominal surface.

References

[1] ISO 10110-12 Optics and Photonics-Preparation of Drawings
for Optical Elements and Systems-Part 12: Aspheric Surfaces,
2007.

[2] ISO 10110-5 Optics and Photonics-Preparation of Drawings for
Optical Elements and Systems-Part 5:Surface Form Tolerances,
2007.

[3] K. Price, R. Storn, Differential evolution− a simple and ef-
ficient adaptive scheme for global optimization over continu-
ous spaces, Technical Report, Intern. Computer Science Inst.,
Berkley, 1995.

[4] A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution
algorithm for numerical optimization, in: 2005 IEEE Congress
on Evolutionary Computation, volume 2, IEEE, IEEE Press,
2005, pp. 1785–91.

[5] D. H. Wolpert, W. G. Macready, No free lunch theorems for
optimization, IEEE Trans. Evol. Comput 1 (1997) 67–82.

[6] M. E. H. Pedersen, Tuning and Simplifying Heuristical Opti-
mization, Ph.D. thesis, University of Southampton, UK, 2010.

[7] D. Zaharie, Critical values for the control parameters of differ-
ential evolution algorithms, in: R. Matoušk, P. Ošmera (Eds.),
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