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Retrieval of Sub-Kilometric Relative Surface Soil
Moisture With Sentinel-1 Utilizing Different

Backscatter Normalization Factors
William Maslanka , Keith Morrison , Member, IEEE, Kevin White, Anne Verhoef , and Joanna Clark

Abstract— Spatiotemporal distribution of soil moisture is
important for hydrometeorological and agricultural applications.
There is growing interest in monitoring soil moisture in relation to
soil- and land-based natural flood management (NFM), to under-
stand the soil’s ability, via land-use and management changes,
and to delay the arrival of flood peaks in nearby watercourses.
This article monitors relative surface soil moisture (rSSM)
across the Thames Valley, U.K., using Sentinel-1 data, and the
Vienna University of Technology (TU-Wien) Change Detection
Algorithm, with a novel exploration of monthly and annual nor-
malization factors and spatial averaging. Two pairs of normaliza-
tion factors are introduced to remove impacts from varying local
incidence angles through direct and multiple regression slopes.
The spatiotemporal distribution of rSSM values at various spatial
resolutions (1000, 500, 250, and 100 m) is assessed. Comparisons
with in situ soil moisture data from the COSMOS-UK network
show that, while general temporal trends agree, the difference
in effective depth of measurements, coupled with vegetation
impacts during the growing season, makes comparison with soil
moisture observations difficult. Temporal rSSM trends can be
retrieved at spatial resolutions down to 100 m, and the rSSM
RMSE was found to decrease as the spatial resolution increases.
The vegetation effects upon the rSSM are further explored
by comparing the two dominant land cover types: Arable and
Horticulture, and Improved Grassland. It was found that, while
the rSSM retrieval for these land covers was possible, and the
general soil moisture trend is clear, overlying vegetation during
the summer artificially increased the rSSM values.

Index Terms— Change detection algorithm, River Thames,
Sentinel-1, soil moisture, synthetic aperture radar (SAR).

I. INTRODUCTION

SOIL moisture makes up only 0.0012% of the total amount
of water in the global water cycle [1], yet it is vitally

important for hydrometeorology [2]. Soil moisture plays a
pivotal role in a meteorological context: it has a significant
impact on the surface energy balance and its interactions
and feedbacks with the atmosphere and, hence, on boundary
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layer development and processes [3]. The ability of weather
models to predict soil moisture, and the processes it interacts
with, will influence the accuracy and reliability of subseasonal
and seasonal forecasting [4]. In the hydrological context, soil
moisture impacts infiltration, runoff [5], evapotranspiration,
and groundwater recharge [2]; the balance of these fluxes
plays an important role in the occurrence of flooding [6] and
drought [7]. Finally, from an agricultural point of view, soil
moisture is a determining factor in crop water use, growth,
development, and productivity [8], [9], which will, in turn,
affect the water and energy budgets mentioned above.

Soil and land management will affect the spatiotemporal
variation of soil moisture; farmers manage their soil to max-
imize plant available water and minimize plant water stress.
Another more recent example is the soil- and land-use-based
natural flood management (NFM). This type of NFM aims
to reduce surface run-off by maximizing infiltration into the
soil and maximizing storage within the soil [10]. Infiltration
crucially depends on near-surface water content; hence, having
accurate observations and estimates of global soil moisture is
vitally important [11]. Unfortunately, current remote sensing
observations of soil moisture are on the kilometric spatial
scale or greater [12], [13], whereas some NFM practices (such
as land- and soil-based management) occur on sub-kilometric
spatial scales (i.e., individual field scale) [14]. In order to better
understand the variability of soil moisture across different
agricultural practices (such as the comparison of different
fields and farms) within the context of NFM practices, finer
resolution observations of soil moisture are required.

While in situ point measurements of soil moisture are
generally accurate, the highly heterogeneous nature of soils,
and their land use, means that in situ networks are too sparsely
distributed to reliably capture the spatial variability of soil
moisture [15]. Space-based remote sensing remains the only
way to get spatially distributed (at catchment-to-global scales)
observations of soil moisture. Microwave-based systems are
the primary orbital remote sensing platform for soil moisture
observations [16] due to their cloud penetrating properties and
their ability to make use of the difference in dielectric constant
between liquid water and dry soil [17].

There are two categories of remote sensing, which cor-
responds to the instrumentation type and the way in which
the observation takes place: passive and active methods.
Passive methods measure the energy that is naturally emitted
from the Earth’s surface using radiometers. Both active and
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passive remote sensing systems are used in soil moisture
remote sensing [18]–[20]. Examples of passive microwave
remote sensing systems include the Scanning Multichannel
Microwave Radiometer (SMMR [21]), the Special Sensor
Microwave/Imager (SMM/I [22]), the Advanced Microwave
Scanning Radiometer (AMSR [23]), the Soil Moisture Active
Passive (SMAP [24]) satellite, and the Soil Moisture and
Ocean Salinity (SMOS [25]) satellite. Active methods emit
a source of radiation and record the strength of the returned
signal, often referred to as the radar backscatter (σ 0). Exam-
ples of active microwave platforms include the European
Remote Sensing (ERS [26]) satellites, the METOP Advanced
Scatterometer (ASCAT [27]), and the Sentinel-1 Constellation
[28]. The latter will be used for this study.

The Sentinel-1 constellation is currently made up of one
satellite (Sentinel-1A), launched in April 2014. A second
satellite (Sentinel-1B) was launched in April 2016 and ceased
operations in December 2021. A third satellite (Sentinel-1C)
is planned to be launched in 2023. Each satellite observes the
Earth with a fixed 12-day repeating orbit. The Sentinel-1 satel-
lites each house a C-band synthetic aperture radar (CSAR),
operating at a central frequency of 5.405 GHz, with both
single- and dual-polarization modes and four separate acquisi-
tion modes. The interferometric wide (IW) swath mode is the
main mode over nonpolar land and has a 250-km swath.

This article uses the Vienna University of Technology
(TU-Wien) change detection algorithm [29], adapted for use
with the Sentinel-1 constellation [30], to estimate relative
Surface Soil Moisture (rSSM) in the top few centimeters of
the surface, across the Thames Valley, in Southern England,
to assess the capability of broad-scale rSSM monitoring and
subsequent time series analysis of sub-kilometer rSSM mea-
surements. The analysis is complicated by significant within-
year variations in vegetation cover and surface roughness,
as crops are tilled, grown, and harvested. It is well known
([31]–[33]) that vegetation affects radar backscatter, yet the
standard normalization factor of Sentinel-1 assumes a static
annual value. Potential within-year variations in this normal-
ization factor may be needed to account for the seasonal
changes, yet few have considered a temporal variation to the
normalization factor for use with Sentinel-1.

Section II reviews the TU-Wien Change Detection Algo-
rithm used, along with the Sentinel-1 processing steps. As part
of the processing steps, the Sentinel-1 normalization factor
will be discussed. Section III details the area of interest (AOI)
and parameters of the rSSM retrieval algorithm in context
with the AOI. Section IV compares the retrieved rSSM at
various spatial scales with different normalization factors with
a preexisting in situ soil moisture dataset, while Section V
closes with a comparison of the retrieved rSSM time series
for two dominant land use types with the AOI.

II. TU-WIEN CHANGE DETECTION ALGORITHM

The Sentinel-1 rSSM retrieval algorithm presented here is
based on the TU-Wien Change Detection Algorithm [29], [33]
(referred to as TWCDA), which derives rSSM directly from
a time series of observed radar backscatter σ 0. The TWCDA
was originally designed for use with the ERS platform and

has been used in conjunction with both ASCAT [27] and
Sentinel-1 [30], [34] previously.

In this model, changes in backscatter are accredited as
changes in soil moisture, while other properties that can
influence the observed backscatter (such as surface roughness
and geometry) are assumed to be temporally constant. For the
rSSM estimation, the model uses actual backscatter σ 0(θ ,t),
taken at time t and local incidence angle (LIA) θ , and
normalized to a reference angle �, before linearly scaling
the normalized backscatter between the wet and dry reference
values, as shown in the following:

rSSM(t) = σ 0(�, t) − σ 0
d (�)

σ 0
w(�) − σ 0

d (�)
[%] (1)

where rSSM(t) is the rSSM at a time t (%), � is a refer-
ence angle (◦), σ 0

d (�) is a dry threshold radar backscatter
value (dB), and σ 0

w(�) is a wet threshold radar backscat-
ter value (dB). Derivation of these thresholds is described in
Section II-E.

A. Preprocessing the Raw Sentinel-1 Data

Sentinel-1 data must first be geocoded and radiometrically
corrected before the TWCDA can be used to estimate rSSM.
The geocoding and radiometric calibration is completed using
ESA’s Sentinel Application Platform (SNAP1), which allows
for the production and completion of workflows. The workflow
used for the geocoding and radiometric calibration is very
similar to that laid out by [35]. As an initial step, the workflow
processer, as an input, takes the VV-polarized IW Ground
Range Detected High Resolution (GDRH) Sentinel-1 data and
applies orbital corrections, thermal and border noise removals,
and radiometric calibrations. A “Refined Lee” speckle filter
and terrain correction are applied, using the Shuttle Radar
Topography Mission (SRTM) 3Sec data. The resulting radar
backscatter is then subset to the required AOI and then
exported for individual frames. If there are multiple subsequent
frames that fall over the AOI (i.e., the AOI is split in two), then
the frames are stitched together to create a single radar file per
scan day. The subset-stitching is also conducted on exported
LIA (θ) data to be used in the normalization process.

B. Backscatter Normalization

As σ 0 will be observed across a range of LIAs over
a number of different orbits, σ 0 must be normalized to a
common angle for comparisons across the time series to be
made. This is to ensure that LIA dependencies have been
removed from the σ 0 time series, and thus, variations in σ 0

are only a result of changing ground conditions (i.e., variations
in soil moisture). To access and conduct the normalization
of LIA, a normalization parameter, β, is calculated at the
pixel scale (units of dB/◦). Using this normalization factor, the
observed radar backscatter can be normalized to the reference
angle, as shown in the following equation:

σ 0(�, t) = σ 0(θ, t) − β(θ − �) [dB]. (2)

1SNAP–ESA Sentinel Application Platform v6.0.0. https://step.esa.imt/
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TABLE I

MONTHLY AND ANNUAL CONSTANTS FOR (3)

For this study, a reference incidence angle, �, of 40◦
was used. For the TWCDA, two current methods of LIA
normalization can be calculated. The first, simpler, method
is to model the normalization factor as an indirect linear
relationship between θ and σ ◦ [36] and is known as the direct
regression slope, βd . This direct regression slope estimation,
however, is only reliable for areas of sufficient repeating
observations and a large enough range of LIA values. If the
area does not have sufficient repeating observations, or if the
LIA values are too similar, the normalization factor can be
calculated using a multiple linear regression model. As the
correlation between normalization factor β, the nonnormal-
ization sensitivity between wet and dry thresholds, S, and
mean backscatter (σ̄ ◦) are found to be generally high [33], the
multiple regression slope, βr , can be modeled via the following
equation:

βr = aS + bσ̄ ◦ + c
[
dB/◦]. (3)

where a, b, and c are constants calculated in Table I.
Traditionally, the normalization factors, using either the

direct or the multiple regression slope, have been calculated
to not have a temporal component (i.e., a single value for
normalization parameterization is used) [30], [36]–[40]. This
study, however, adopts a novel approach, considering the
normalization parameterization (both the direct and multiple
regression slopes) as a monthly varying normalization factor
by applying the direct and multiple regression slope method-
ology to Sentinel-1 orbits occurring on individual months.
Table I also shows the multiple regression model constants
a, b, and c from (3) for the individual months.

When calculating the monthly normalization parameter
(either via the direct or multiple regression slope method),
an interesting seasonal cycle can be produced. Fig. 1 shows
the (traditionally used) annual and monthly βd and βr values.
The observed seasonal pattern exhibits a maximum value
during the summer months (JJA) and a minimum value over
the winter months (DJF). This seasonal oscillation is most
likely present due to combined contributions from changes in
vegetation structure and surface soil moisture; soil moisture
levels tend to be higher during the winter than during summer;
and inversely, vegetation growth tends to be greater during
the summer than the winter. Compared to mean monthly

Fig. 1. Curves for the annual (thick) and monthly (thin) normalization factor
βr (blue) and βd (red). Mean monthly NDVI (black) is plotted alongside.

NDVI (obtained from the Copernicus Global Land Service2

based on data acquired by PROBA-V) across the AOI (see
Section III), the oscillation in NDVI generally correlates to
that of the monthly βd with a minimum monthly βd and
minimum NDVI value during February, and a noticeable dip
in both NDVI and monthly βd in August; both are potentially
due to the senescing and crop harvest period in the AOI.
The lag of a couple of months between the peak of NDVI
and that of monthly βd and βr may be explained by the
growth and development of crops across the entire AOI. As the
crops develop and grow during the spring and early summer,
they would develop green leafy shoots and stalks; this would
affect the NDVI values. However, later in the season, flowers
and crop products appear, generally with a nongreen or less
green. An example is the yellow flowering of Brassica napus
or Rapeseed. However, once the flowers develop into green
seedpods, as well as after these have been harvested, the
yellow of the flower would be replaced with the green of the
developed stalks, thus resulting in the decrease-then-increase
in August.

Normalization factor oscillations have been found previ-
ously with the TWCDA [41]; however, these normalization
factors cannot be used for Sentinel-1 application due to
satellite platform differences (both ERS and METOP satellites
had multiple antennae, while Sentinel-1 has a single antenna).

C. Dynamic Backscatter Masking

Very high and very low backscatter measurements are
unlikely to hold any soil moisture signal and, thus, can be
discarded from the analysis. To dynamically remove the effects
of these very high and very low backscatter values, a pair
of thresholds were applied to each individual Sentinel-1 SAR
image. The threshold limits for this project were set to −5
and −22 dB with the upper limit derived from qualitative
comparisons with urban and suburban areas from the Centre of
Ecology and Hydrology 2015 Land Cover Model (CEH LCM
2015 [42]; see Fig. 2) and the lower limit taken from the
sensor’s noise equal sigma zero. In addition to the very high
and very low backscatter measurement mask, areas allocated

2https://land.copericus.eu/global/products/ndvi/, accessed May 10, 2021.
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Fig. 2. Aggregated Land Cover, taken from the CEH Land Cover Model
2015 [42], of the AOI. Abbreviations are explained in Table II.

as “Artificial” (Urban and Suburban) and “Freshwater” in
Fig. 2 were additionally masked out.

D. Spatial Averaging

In the IW mode, Sentinel-1 has a single look spatial
resolution of 5 × 20 m, with a resulting multilook spatial
resolution of 20 × 22 m. Soil moisture estimation at this
spatial resolution is not advisable, as the backscatter signal
is influenced by many different, highly variable features.
These features include vegetation water content, crop row
orientation, crop bending (e.g., lodging for grain crops, due
to inadequate standing power of the crop and adverse weather
conditions), underlying surface roughness, and soil moisture
content. To mitigate the unwanted influences from many of
the heterogeneous variables, while conserving the influence of
soil moisture variations, the backscatter data can be upscaled
to coarser resolutions. The pixel aggregation was completed
via the calculation of the arithmetic mean. Spatial resolutions
used as part of this study include 1 km, 500 m, 250 m, and
100 m. Spatial averaging affects how the data product can be
used to evaluate different types of land use for NFM. These
coarse resolutions have been shown to have a high correlation
(≥0.7) with in situ measurements [39], [43], [44].

E. Wet and Dry Threshold

To use the TWCDA, the wet and dry thresholds (σ ◦
w(�)

and σ ◦
d(�), respectively) must be calculated to indicate the

upper and lower limits of the backscatter time series. Ideally,
the radar backscatter would extend over long time periods (i.e.,
several years) to capture occasions where the soil is completely
dry and completely saturated so that the wettest and driest

events can correspond to the largest and smallest magnitudes
of normalized σ 0, respectively [29].

In order to remove outliers (potential peaks in σ 0, which
do not correspond to extreme wet or dry conditions due to
signal interference, frozen soil conditions, and so on [36])
and address the relatively short time series length, estimated
threshold values can be statistically calculated at the pixel
scale, as detailed by [34]. By using the 10% and 90% values
of normalized radar backscatter time series and, assuming that
these correlate with rSSM values of 10% and 90%, respec-
tively, radar backscatter values associated with 0% and 100%
(completely dry and saturated) can be statistically calculated.

As the wet and dry threshold parameters are statistically
determined, it is possible for extreme events to cause rSSM
values to be out of the 0%–100% range. rSSM values that
are ±20% off-limit are set to 0% or 100%, respectively, with
values outside the 20% buffer being set to No Data.

III. AREA OF INTEREST AND DATASET

A. Area of Interest

The River Thames Valley (containing 18 different trib-
utary catchments) covers approximately 16 200 km2 in
Southeast England. The upstream area to the west is pre-
dominately rural, comprising a mix of agricultural land and
woodland over rolling hills on chalk and limestone geology,
with flatter areas on clays (see Fig. 2). Toward the center and
the east of the basin, the land becomes increasingly urban-
ized, as the River Thames flows through Reading, Slough,
and into London. The source of the River Thames is in
the west (elevation 350-m asl, in Kemble, Gloucestershire),
with the fluvial endpoint being Teddington Lock in London,
over 230-km downstream [45]. To remove large parts of
urban London from the study, the AOI is bounded between
51.1501 N–52.0622 N and 2.22475 W–0.5708 W. The land
use within the AOI comprises agricultural land (42.0%),
grassland (36.2%, comprised of 33.2% “Improved Grassland”
and 3.0% “Unimproved Grassland”), woodland (10.6%), fresh-
water (0.7%), and urban (9.9%) areas, as characterized by the
CEH LCM 2015 model [42]. Table II shows the aggregation of
CEH LCM 2015 land uses to the land uses presented in Fig. 2

The climate of the Thames Valley is categorized by the
Köppen climate classification as Cfb (Temperate Oceanic) and
received an average of 747-mm precipitation annually, in the
1981–2010 time period [46]. Higher monthly precipitation
values generally occur over the autumn and winter months,
from cyclonic frontal systems, although flashier, intense thun-
derstorms have produced some large rainfall totals, especially
over the summer months. Both frontal and convective rainfall
events have led to a number of fluvial flooding events in recent
years, across all reaches of the Thames Valley [47], [48].

B. Dataset
Sentinel-1 IWGRDH data spanning six years (October

2015–September 2021) were extracted over the AOI and
processed using the preprocessing steps, normalization, mask-
ing, spatial averaging, and TWCDA detailed in Section II.
In total, 608 individual ascending orbits, from relative orbits
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Fig. 3. TWCDA parameters for the AOI between October 2015 and September 2021 using the monthly multiple regression model normalization factor and
a spatial resolution of 100 m. (a) Wet threshold σ 0

w(40). (b) Dry threshold σ 0
d (40). (c) Backscatter sensitivity S(40) = σ 0

w(40) - σ 0
d (40).

TABLE II

LAND COVER AGGREGATION

030 and 132, were calibrated, normalized, and used to create
an rSSM time series, with an additional 31 individual orbits
being discarded from the processing, due to instrumentation
artifacts. It should be noted that, as only ascending orbits are
used in this study, the direct and multiple regression slopes
calculated in Section II-B do not fully evaluate the impact of
LIA, as the largest difference in LIA can be expected between
both ascending and descending orbits.

Using the 608 ascending orbits, the wet [see Fig. 3(a)] and
dry [see Fig. 3(b)] thresholds, as calculated in Section II-E,
were derived at spatial resolutions of 1000, 500, 250, and
100 m, using the four normalization parameters. For each
individual observation, data collected over the Artificial and
Freshwater land uses (as defined in Table II and Fig. 2) were
discarded. The wet and dry threshold values for the AOI are
displayed in Fig. 3(a) and (b), respectively, with the difference
between the wet and dry thresholds, known as the sensitivity,
S(θ), as shown in Fig. 3(c).

Compared to the land cover map in Fig. 2, it can be
seen that the land use defined as “Arable and Horticulture”
has the greatest values of sensitivity, followed by “Improved
Grassland.” This suggests that the algorithm is better at

detecting rSSM changes across these two land uses due to
the larger difference between the wet and dry thresholds. The
sensitivity range calculated in Fig. 3(c) ranges between 0 and
14 dB, which is a similar range to previous findings in the
literature [36], [39]. The land cover types with the lowest
sensitivity (as aggregated by Table II) were the “Broadleaf
Woodland” and “Coniferous Woodland.” This is presumably
due to the lack of change throughout the year compared to
the change seen by the Arable and Horticulture land covers,
and the impact upon backscatter. In the case of Broadleaf
Woodland, the dominant difference throughout the time series
would be the growth and decay (senescence and subsequent
leaf fall) of the leaves in the canopy, and the resultant change
in leaf area index within the canopy would introduce additional
volume scattering components to the observed backscatter
signal [49]. While backscatter is sensitive to the dynamics of
the surface beneath the forest canopy, extracting the surface
contribution (and, thus, the rSSM contribution) from the
numerous volume scattering present within the forest (i.e.,
from the trunk, branches, and leaves) is extremely difficult.
It is for this reason that soil moisture retrieval in forested
areas is not feasible [34], [50].

C. Rainfall Event
Using the algorithm detailed in Section II, along with the

model parameters, as shown in Fig. 3, it is possible to exam-
ine the effect of different meteorological events within the
timeframe, upon rSSM. Fig. 4 shows two different localized
precipitation events within the AOI using data recorded by the
U.K. Met Office NIMROD System [51]. The 3-h precipitation
accumulations for September 11, 2018, and September 6,
2019 (Fig. 4(a) and (c), respectively) are plotted alongside
the corresponding rSSM estimations (Fig. 4(b) and (d), respec-
tively). Only precipitation accumulations greater than 0.25 mm
are shown in order to ignore very light precipitation events
(i.e., drizzle). The spatial patterns of both precipitation events
correspond well to the spatial distribution of increases in
rSSM (>50%).



4410613 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 4. Spatial analysis of precipitation and rSSM patterns. (a) 3-h precipitation between 15:00 and 18:00 UTC on September 09, 2018, across the AOI.
(b) rSSM across the AOI at 100-m resolution on September 09, 2018 (orbit overpass at approximately 18:00 UTC). (c) 3-h precipitation between 15:00 and
18:00 UTC on September 6, 2019, across the AOI. (d) rSSM across the AOI at 100-m resolution on September 6, 2019 (orbit overpass at approximately
18:00 UTC).

IV. COMPARISONS WITH IN SITU

DATA FROM COSMOS-UK
In situ soil moisture data were taken from the Cosmic-ray

Soil Moisture Observing System United Kingdom

(COSMOS-UK) network [52]–[54] in order to evaluate
the retrieval of the rSSM time series. The COSMOS-UK
network has been producing observations of meteorological
and soil moisture variables since 2013 [55]. Both the depth
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TABLE III

COSMOS-UK SITE PROPERTIES

and footprint diameter of the COSMOS-UK cosmic-ray
neutron (CNR) sensor vary with the underlying soil moisture
values [56] with both footprint size and penetration depth
being inversely proportional to soil moisture. For this project,
volumetric water content (VWC) data from three sites that
fall within the AOI (Chimney Meadows, Sheepdrove, and
Waddesdon, soil, and land properties displayed in Table III),
taken between January 2016 and December 2019, were used
to compare and evaluate the rSSM algorithm and time series.

Across this period, the effective measurement depth of the
VWC measurements via CRNs from these three sites ranged
from 12.3 to 25.2 cm with a mean effective depth of 17.5 cm.
This measurement depth is deeper than that of the rSSM time
series, which, by its nature, is only of the top few centimeters
of the surface [29]. The footprint radius of the CRNs was
assumed to be 200 m, as changes in soil moisture (and, thus,
observed cosmic rays) outside of 200 m have previously been
found to make negligible contributions [56] to the return of
the COSMOS-UK CRNs.

In order to make appropriate comparisons between the
rSSM and the VWC time series, the VWC data were trans-
formed into a normalized dimensionless index, similar in
method to the rSSM time series, as shown in the following
equation:

VWCI(t) = VWC(t) − VWCmin

VWCmax − VWCmin
[%] (4)

where VWCI(t) is the VWC dimensionless index at time t ,
VWC(t) is the VWC at time t , and VWCmax and VWCmin

are the minimum and maximum VWC values across the time
series.

The VWCI time series consists of data taken on the same
day as the Sentinel-1 orbits so that the VWCI and rSSM time
series can be directly comparable. Then, a 14-orbit moving
average is calculated across both the VWCI and rSSM data
in order to focus more on the general temporal trends of soil
moisture.

Fig. 5 shows the smoothed VWCI and rSSM time series
(using the monthly multiple regression normalization factors,
spatially averaged to a spatial resolution of 100 m), for the
three COSMOS-UK sites. To aid with the comparison of the
two soil moisture products, daily precipitation totals (measured
using a Pluviometer rain gauge at the COSMOS-UK sites) are
shown.

In general, the VWCI and rSSM time series capture similar
temporal trends, with particularly good agreement over the
October–May period at Chimney Meadows (r2 = 0.53 and
RSME = 7.0%) and some agreement over the same time
period at Waddesdon (r2 = 0.41 and RMSE = 12.4%).
At Chimney Meadows, there appears to be an overestimation
over the summer/early autumn months, where the VWCI val-
ues decrease, yet the rSSM values increase, before decreasing
approximately in October. This deviation is clear over the
summer of 2018, where the Thames catchment (and the rest of
Southern England) suffered a period of unseasonably hot and
dry weather. This deviation may be due, in part, to vegetation
effects on the Sentinel-1 observations, as there would be
more vegetation biomass over the surface during the summer
months. It should be noted that, currently, the TWCDA does
not have an appropriate way to explicitly take vegetation
dynamics (such as biomass or vegetation water content) into
account. At Chimney Meadows, the hay meadow grows during
the summer, before being harvested in the autumn. This over-
estimation can also be seen in the summers in the Waddesdon
data; however, there is a general overestimation of rSSM in
the 2018 time period.

The VWCI data at Sheepdrove have a low agreement with
the rSSM time series (r2 = 0.35 and RMSE = 9.5) and with
some degree of the temporal pattern being exhibited (increase
during the winter months, decrease in the summer months,
with a larger decrease being seen in 2018); however, the
rSSM values often underestimate the soil moisture compared
to the VWCI. One potential reason behind the overarching
underestimation could be the land use type, as both Chimney
Meadows and Waddesdon have been denoted as “Improved
Grassland,” whereas Sheepdrove is denoted as being “Arable
and Horticulture.”

Comparisons were also made between the COSMOS-UK
VWCI and rSSM estimations using spatial resolutions of 1000,
500, and 250 m in addition to 100 m, as well as using the two
pairs of different normalization factors (direct and multiple
regression slopes, calculated at both the traditional annual and
novel monthly timescales, as detailed in Section II-B), using
a 14-orbit moving average, for all three COSMOS-UK sites,
as shown in Table IV.

Across all COSMOS-UK sites, regardless of the normaliza-
tion factor used, it can be seen that RMSE values decrease
as the spatial resolution increases (for example, Chimney
Meadows, using the monthly regression normalization factor,
the RMSEs are 11.9, 11.5, 7.8, and 6.7 for the 1000-m,
500-mm, 250-m, and 100-m spatial averagings, respectively).
This is to be expected, as the CRNs’ footprint radius of
200 m is smaller than the spatial resolution of the larger
grid sizes, meaning that the rSSM values using the larger
grid sizes would contain rSSM information from outside the
CRNs’ footprint, whereas the smaller grid sizes only use
the relevant pixels that fall within the CRNs’ footprint. Unlike
the RMSE values, the r2 values increase with an increasing
spatial resolution for only Chimney Meadows. For Sheep-
drove and Waddesdon, r2 decreases slightly with increasing
spatial resolution. However, the decrease in r2 is small (by
approximately 0.25 for Sheepdrove and approximately 0.2 for
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Fig. 5. VWCI and rSSM time series, using the monthly multiple regression normalization factor, 100-m spatial resolution, and 14-orbit moving average for
(a) and (b) Chimney Meadows, (c) and (d) Sheepdrove, and (e) and (f) Waddesdon. For subplots (a), (c), and (e), daily Pluviometer rain accumulations are
plotted in blue, with dates where erroneous data are returned being plotted in gray. For subplots (b), (d), and (f), the VWCI and rSSM are directly compared,
with the color denoting the month of observation.

Waddesdon). Together, the RMSE and r2 patterns suggest that,
while the rSSM time series cannot be used to estimate VWCI

values (something that is to be expected, given the differences

in measurement depths, methodologies, and assumptions made
as part of the estimation), the general temporal trends are
captured.
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TABLE IV

COMPARISON OF VWCI AND RSSM RMSE AND r2 VALUES AT DIFFERENT SPATIAL SCALES USING THE DIFFERENT NORMALIZATION FACTORS

When looking at the four normalization factors used, it can
be seen in Table IV that the RMSE values are not primarily
impacted, with similar values being found for each normaliza-
tion factor used, regardless of spatial resolution. The largest
range of RMSE was found for the 250-m grid box size at
Chimney Meadows, being just 1.1. The r2 values, however,
have a larger, spread of values for a given resolution. Indeed,
the r2 values also have a distinct difference between the
monthly and annual normalization factors, with the annual
normalization factors having a greater r2 value for Chimney
Meadows and Sheepdrove. For Waddesdon, this distinction
between annual and monthly normalization factors cannot be
seen.

It can also be seen, when looking at the values of RMSE and
r2 in Table IV, that using the monthly slopes slightly decreases
the performance of the TWCDA compared to using the annual
slopes. This slight performance drop may be due to both the
direct and multiple monthly regression slopes, as well as the
TWCDA, not explicitly taking the vegetation dynamics into
account, as shown by the time lag between the peak NDVI
value (taking place in May) and the peak value of monthly
regression slopes (taking place in July), as shown in Fig. 1.

Using Fig. 5 and Table IV, it is clear that, while the TWCDA
may not be appropriate for use of determining the rSSM of
an exact 100-m pixel, the RMSE and r2 values suggest that
it would be appropriate for determining the general temporal
trends at different spatial scales, whether that be catchment-
wide or, to a lesser extent, intrafield scales. As such, it shows
that the TWCDA would be of use for land- and soil-based
NFM measures, providing a general temporal pattern for areas
of different (nonforest-based) NFM measures.

V. EVALUATION OF RSSM VALUES ACROSS DOMINANT

LAND COVER TYPES

Using Fig. 2, the rSSM time series across the entire
timespan were produced for the two dominant land cover
types across the AOI: Arable and Horticulture and Improved
Grassland, as shown in Fig. 6, using the monthly multiple
regression normalization factors, and a spatial resolution of
100 m. The raw temporal time series, similar to the analysis

in Section IV, is subject to a 14-orbit moving average window
in order to reflect the general trend in rSSM across both land
uses.

It can be seen that both the Arable and Horticulture and
the Improved Grassland time series follow a similar general
temporal trend, with larger rSSM values during the later
autumn, winter, and early spring (October–March), and with a
rapid decrease in rSSM over March and April, before slowly
increasing in rSSM until October. Looking at the time series in
full, the Arable and Horticulture rSSM data tend to be larger
over the wetter winter period with the Improved Grassland
rSSM values being larger over the drier summer months; as
shown in Fig. 7, displaying the monthly averages of rSSM.

Using the analysis of Fig. 6, an increase in rSSM estima-
tions is present over the summer months. This increase is
unexpected, as the summer months have reduced precipitation
totals, as well as an increase in evapotranspiration, due to the
water temperatures; both of which should lead to a decrease,
not an increase, in rSSM values. This perceived increase in
the rSSM signal is most likely, like that of Fig. 5, due to an
increase in vegetation biomass above the surface. This increase
in vegetation canopy would, thus, produce a contributing
backscatter influence, which would artificially increase the
rSSM value calculated by the TWCDA. This vegetation impact
is more noticeable when looking at the mean annual cycle
for both the Arable and Horticulture and (to a lesser extent)
Improved Grassland land uses (see Fig. 7). The sudden
decrease in rSSM between March and April coincides with
both a reduction of rainfall, following the seasonal pattern of
precipitation, and (in the case of Arable and Horticultural land
use) the planting and early growth of vegetation. This increase
in rSSM between May and July (especially with the Arable
and Horticulture land cover), however, is counterintuitive to
the expectation that soil moisture content would be lowest
during the summer months due to the seasonality of both soil
moisture and precipitation.

In addition to the driving factor of additional contribution
to the backscatter from overlying vegetation, early harvesting
at some locations may lead to a small increase in rSSM due to
a reduction in transpiration from the now bare soil. Vegetation



4410613 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 6. Mean rSSM time series using the monthly multiple regression normalization factors and spatial resolution of 100 m with a 14-orbit moving average
for Arable and Horticulture (black) and Improved Grassland (red) across the AOI.

Fig. 7. Monthly mean rSSM time series using the monthly multiple regression
normalization factors and spatial resolution of 100 m with a 14-orbit moving
average for Arable and Horticulture (black) and Improved Grassland (red)
across the AOI.

roots would stop absorbing moisture from the soil, as well as
there being a reduced amount of interception from the now
missing vegetation. The early harvesting of some Arable and
Horticulture land, but not of Improved Grassland, goes some
way to explain why there is a smaller increase in rSSM in the
Improved Grassland than that of Arable and Horticulture in
Fig. 7. The Improved Grassland areas may experience some
grazing or mowing; however, grow-back would occur quite
rapidly, thus reducing the impact of the loss of transpiration
and interception of precipitation to the soil.

VI. CONCLUSION

In this study, Sentinel-1 SAR backscatter data have been
used, in conjunction with the TWCDA, in order to assess

temporal patterns of rSSM across the study area. In addition to
using the TWCDA, numerous different normalization factors
were applied, a direct linear relationship known as the direct
regression slope and, in addition, a more complex multiple
regression slope. Both the direct and the multiple regression
slopes were calculated as a single annual value and at a
novel monthly resolution. Wet and dry algorithm thresholds
are calculated, and the sensitivity of the algorithm is briefly
discussed with respect to land cover.

The spatial pattern of rSSM on two different orbits was
compared against two localized precipitation events, showing
that the spatial distribution of high and low rSSM values
closely matches the spatial distribution of precipitation.

The rSSM time series were also compared against in situ
data from three different sites within the COSMOS-UK net-
work (Chimney Meadows, Sheepdrove, and Waddesdon) using
four different spatial resolutions (1000, 500, 250, and 100 m),
as well as four combinations of normalization factors (direct
regression slope and multiple regression slope, at a traditional
annual, and a novel monthly temporal resolution). Across all
three sites, using any spatial resolution or normalization factor,
the rSSM time series captures the general trend exhibited
within the VWCI data although a difference in measure-
ment depth does introduce variability into the observations,
making day-to-day direct comparison of soil moisture values
problematic.

It was shown that the two annual normalization factors
yielded slightly smaller RMSE and a higher r2 value for two of
the COSMOS-UK sites than using the two monthly normaliza-
tion factors. For the third site, Waddesdon, the differences in
RMSE and r2 values were negligible. In addition, the impact
of using the direct regression slope or multiple regression slope
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normalization factors was minimal, with similar RMSE and r2

values across all three COSMOS-UK sites and across all four
spatial resolutions.

The presence of a vegetation effect, not accounted for by the
TWCDA, was noted in the rSSM time series over the growing
season (May–October), with an artificial increase in rSSM
being present due to an added contribution to the backscatter
signal by the growing vegetation. This vegetation impact could
be seen in the two dominant land use types: Arable and
Horticulture, and Improved Grassland. The vegetation impact
was shown to have a greater artificial rise in rSSM in the
Arable and Horticulture time series although it was still sig-
nificant within the Improved Grassland time series. It should
be noted that early harvesting in summer (July–August) at
some locations in the study area could lead to an increase in
rSSM due to reductions in evapotranspiration and interception
from the nonexisting vegetation and bare soil in the Arable
and Horticulture signal.

The retrieved rSSM time series indicates that the TWCDA
is capable of recording and measuring rSSM trends over time.
The comparison with VWCI data indicates that rSSM trends
can be recorded at sub-kilometer scales; however, additional
analysis using a larger sample of the COSMOS-UK could give
further evidence to this.

Sub-kilometer rSSM data retrieval can be used to investigate
soil moisture changes and trends across different spatial scales,
from large river basins to smaller catchments and subcatch-
ments, and interfield and intrafield scales. For NFM, this could
enable exploring the role of different land uses on soil water
storage, including looking at the impact of soil types. Beyond
NFM, there are wider applications to hydrological modeling,
where soil moisture is needed as an input or as verification
data.
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