

Intervertebral motion biomarkers in chronic, nonspecific back pain?

Alan Breen DC, PhD, FRCC, Alexander Breen BSc(hons) MSc, PhD MIPEM

Faculty of Science and Technology, Bournemouth University, UK, Centre for Biomechanics Research, AECC University College Bournemouth, U

Paper presented at the 2022 'Back2Back' meeting, St Anne's College Oxford, 6th April 2

Biomarker

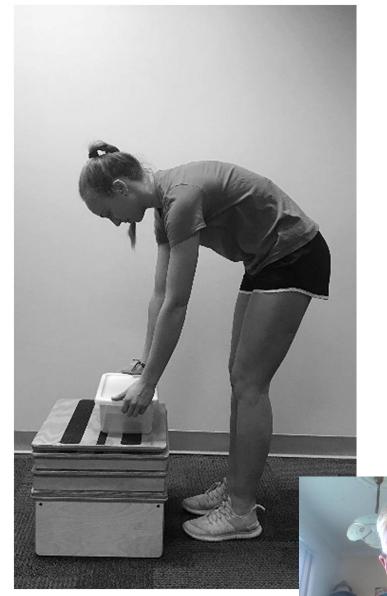
"a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or biological responses to a therapeutic intervention" (FDA)

Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Pharmacol Ther 69:89-95, 2001

Biomarkers in nonspecific back pain

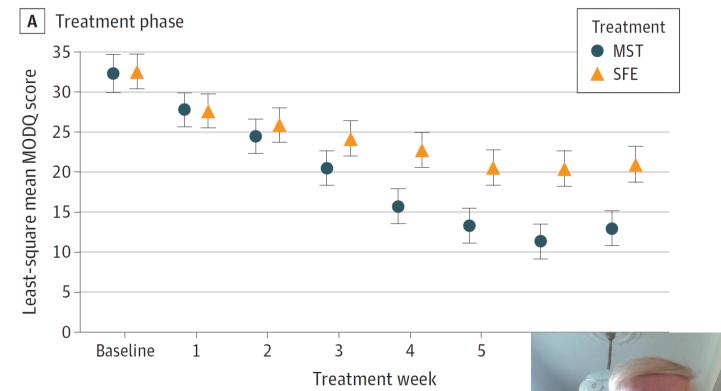
- Intrinsic mechanics (difficult to measure *in vivo*) (Panjabi 2006)
- Chemical markers (low grade inflammation if present) (Li, Liu et al 2016)
- Neuroplastic (once a chronic state established) (Nijs 2010)

Panjabi, M. M. (2006). "A hypothesis of chronic back pain: ligament subfailure injuries lead to muscle control dysfunction." European Spine Journal 15: 668-676.


Li, Y., J. Liu, Z.-Z. Liu and D.-P. Duan (2016). "Inflammation in low back pain may be detected from the peripheral blood: suggestions for biomarker." Bioscience Reports 36.

Nijs, J., Van Houdenhove, B., Oostendorn, R.A.B. (2010). "Rec sensitization in pat musculoskeletal pa neurophysiology in practice." Manual 1

Readiness to move


Hooker, Q. L. L., V.M., Roles, K., van Dillen L.R. (2022). "Motor skill training versus strength and flexibility exercise in people with chronic low back pain: Preplanned analysis of effects on kinematics during a functional activity." Clinical Biomechanics 92(105570).

van Dillen, L. R., Lanier, V.M., Steger-May, K., Wallendorf, M., Norton, B.J., Civello, J.M., Czuppon, S.L., Francois, S.J., Roles, K., Lang, C.E. (2020). "Effect of Motor Skill Training in Functional Activities vs Strength and Flexibility Exercise on Function in People With Chronic Low Back Pain A Randomized Clinical Trial." JAMA Neurology 78: 385-395.

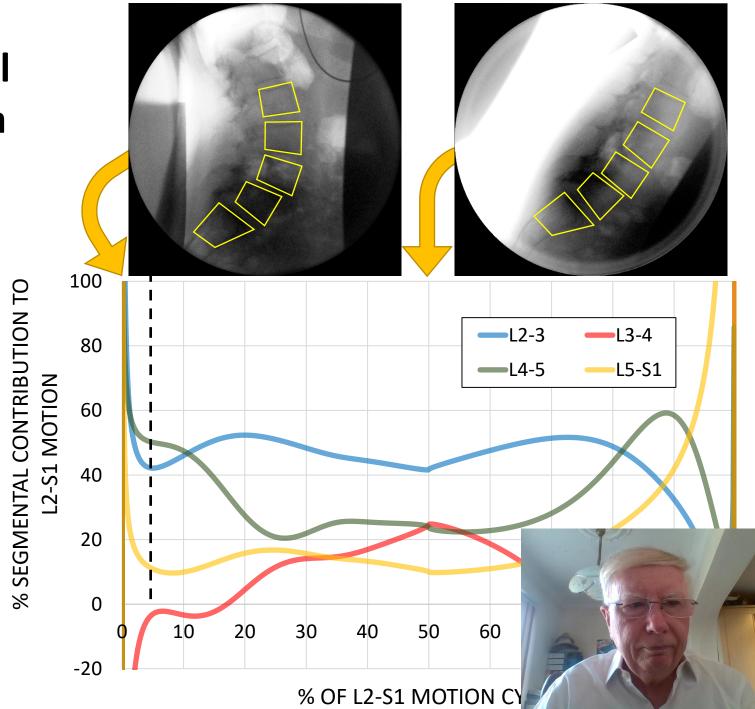
Disability Over Time Comparing MST and SFE

Implications

There may be value in investigating spine kinematics as CNSLBP biomarkers.

Contributions to motion may be more promising than raw values for population studies that look for biomarkers.

Quantitative Imaging Biomarkers (QIBs)


"...in an era of machine learning and artificial intelligence, it is increasingly desirable that we extract quantitative biomarkers from medical images that inform on disease detection, characterisation, monitoring and assessment of response to treatment."

O'Connor JPB, Jackson A, Asselin M-C, Buckley DL, Parker GJM, Jayson GC. Quantitative im in the clinical development of targeted therapeutics: current and future perspectives. The 2008;9:766–776. doi: 10.1016/S1470-2045(08)70196-7.

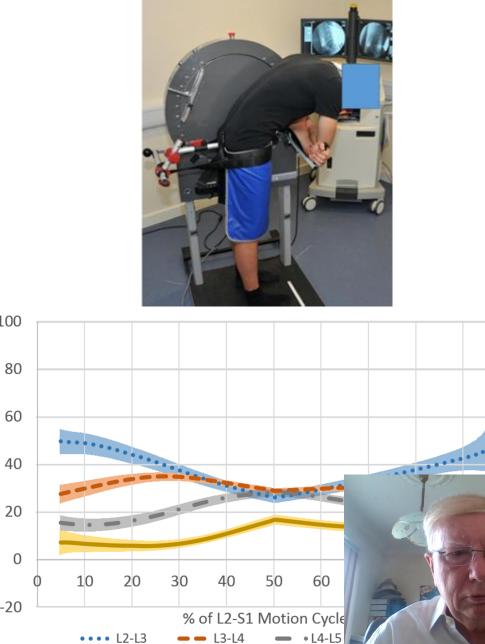
Continuous intervertebral motion contributions in a patient with L4 spondylolisthesis

Motion contributions for L2-S1 flexion and return (n=103)

-20

% Segmental Contribution

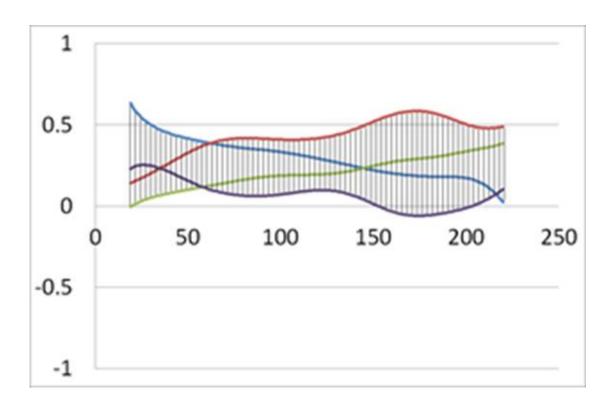
% of L2-S1 Motion Cycle

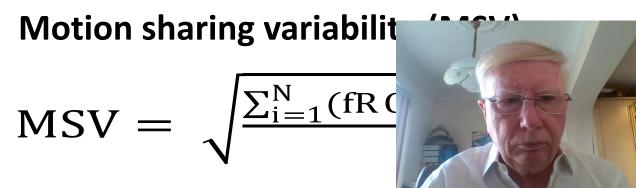

• L4-L5

_____L5-S1

-20

•••• L2-L3

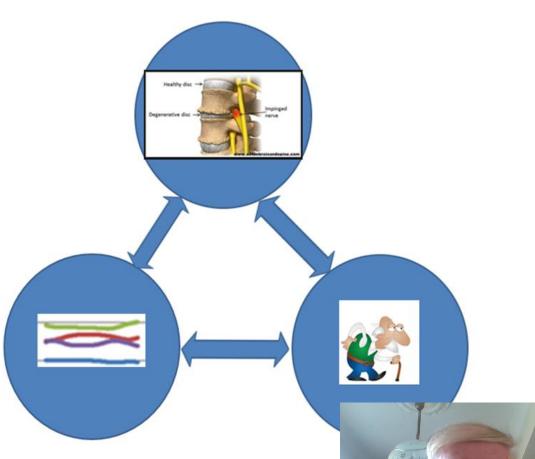

– – L3-L4



Expressions of the "evenness" of motion sharing

Breen, A. and A. Breen (2018). "Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy." Eur Spine J 27(1): 145-153.

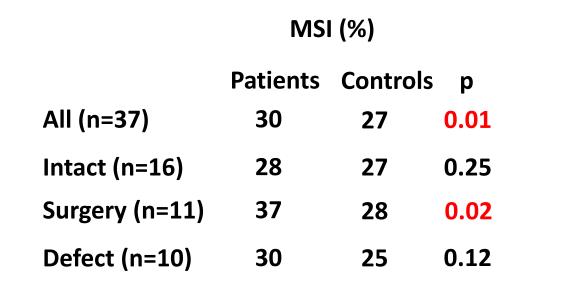
 $MSI = \frac{\sum_{i=1}^{N} fRC_i}{N}$ Motion sharing inequality (MSI)

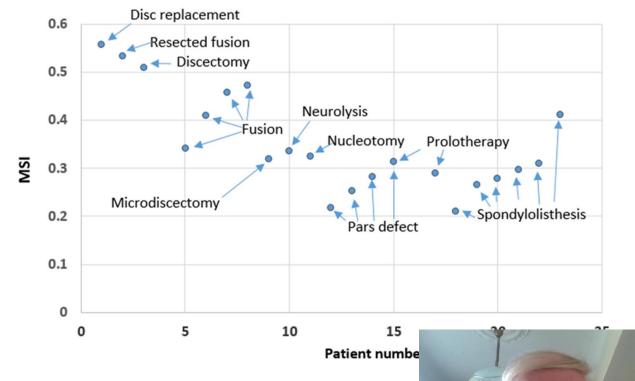

MSI, MSV and Composite DD in CNSLBP patients and matched controls

Recumbent flexion MSI greater in CNSLBP patients (29%) than controls (22%) (n=10, p=0.02)

Correlation of MSI/MSV with DD

	Recumbent	Weight bearing
MSI	r=0.70, p=0.03	r=0.43, p=0.23
MSV	r=-0.21, p=0.54	r=0.77, p=0.01


Only in patients with CNSLBP!

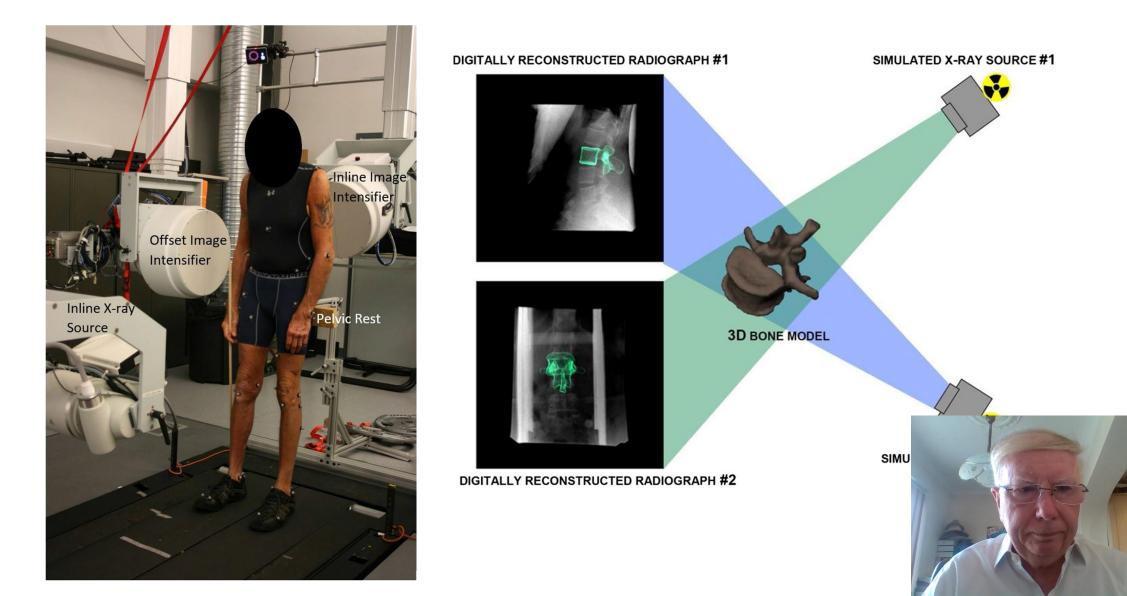


Breen, A. and A. Breen (2018). "Uneven intervertebral motion sharing is related to disc degener greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort contervertebral dynamics using quantitative fluoroscopy." Eur Spine J 27(1): 145-153

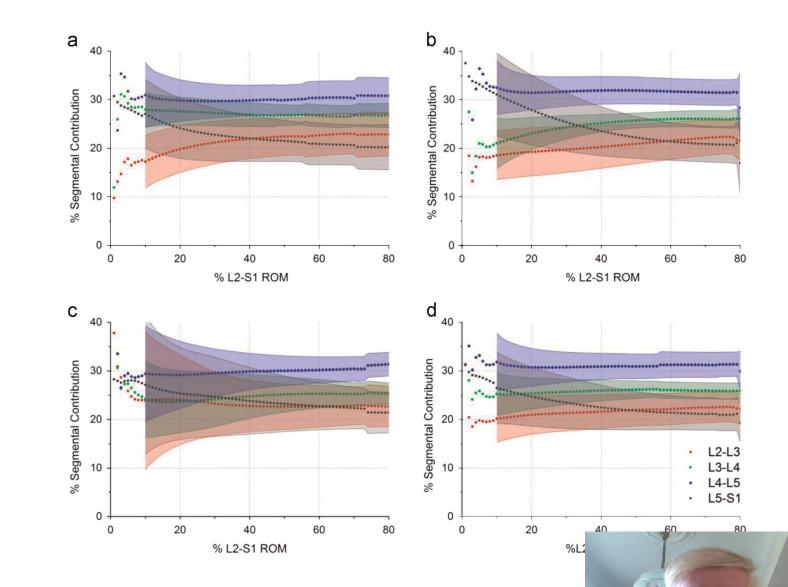
<u>Recumbent</u> MSI in a further cohort of 37 matched patients and controls

MSI in patients with previous disruption

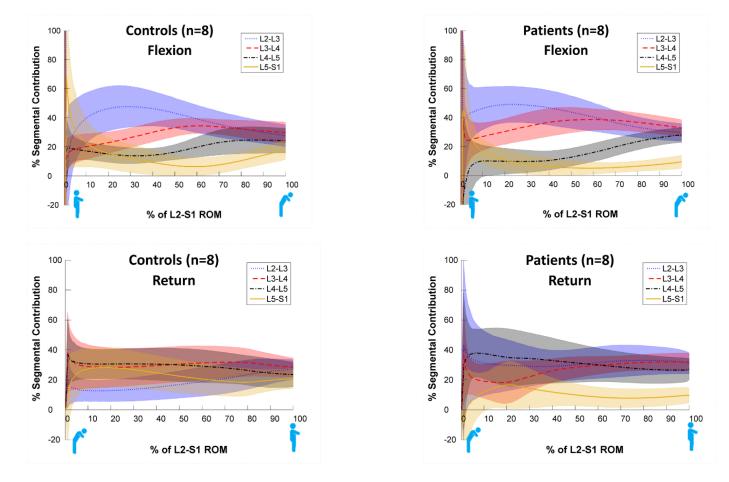
Breen Ax.C., Breen A.C. (2018). "Aberrant intervertebral motion in patients with treatment-resi low back pain: a retrospective cohort study and control comparison." <u>European Spine Journal</u> 2 2839 http://link.springer.com/article/10.1007/s00586-018-5666-1


<u>Weight bearing motion sharing in a different data set</u>

Breen Ax. C., Breen. A. C. (2019). "Dynamic interactions between lumbar interverteb segments during forward bending." Journal of Biomechanics 102 (109603) Doi.org/10.1016/jbiomech.2020. (109603).



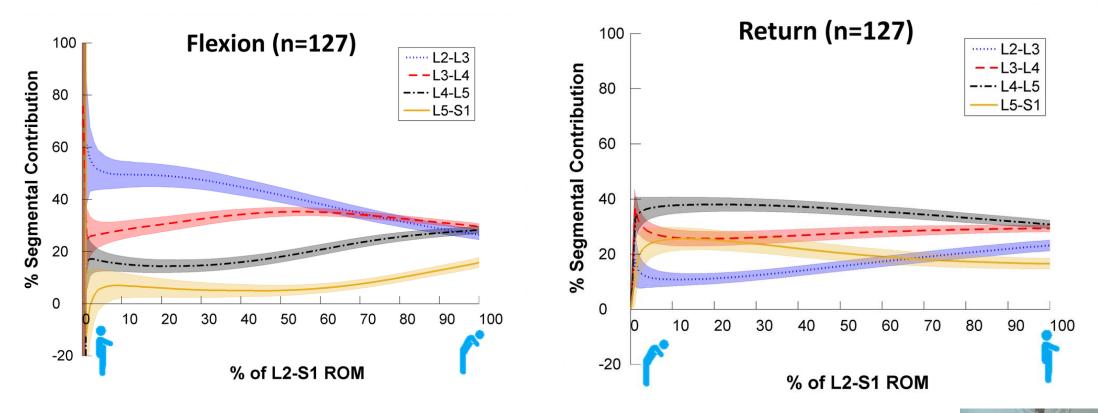
3-D quantitative fluoroscopy (University of Pittsburgh)


Return phase apportionment of intervertebral motion during lifting (n=6)

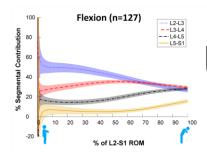
a: 4.5kg, b: 9.1kg, c: 13.6kg, d: mean of a-c



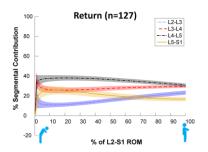
Aiyangar, A., L. Zheng, W. Anderst and X. Zhang (2015). "Apportionment of lumbar L2-S1 rot individual motion segments during a dynamic lifting task." Journal of Biomechanics 48(13):


Weight bearing motion with outward and return separated

Breen, A., De Carvalho, D, Funabashi, M, Kawchuk, G, Pagé, I, Wong, AYL., Breen, A.C. Reference Database of Standardised Continuous Lumbar Intervertebral Motion Analy Conducting Patient-Specific Comparisons." Front. Bioeng. Biotechnol 9:745837.



Normative database of weight bearing motion contributions



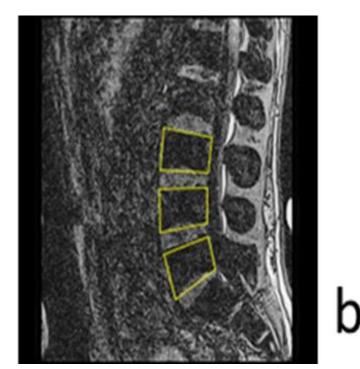
Breen, A., De Carvalho, D,, Funabashi, M,, Kawchuk, G, Pagé, I, Wong, AYL., Breen, A.C Reference Database of Standardised Continuous Lumbar Intervertebral Motion Analy Conducting Patient-Specific Comparisons." Front. Bioeng. Biotechnol 9:745837.

Uses of the normative database

1. drive dynamic models of joint and muscular forces

2. reference values against which to make patient-specific comparisons in suspected cases of lumbar spine motion disorders.*

3. Evaluate treatment effects*

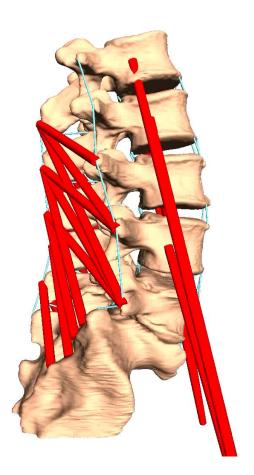

(*requires the patient investigations to be standardised to the same protocol)

Dynamic disc loading models

3-D Volumetric MRI with QF tracking templates

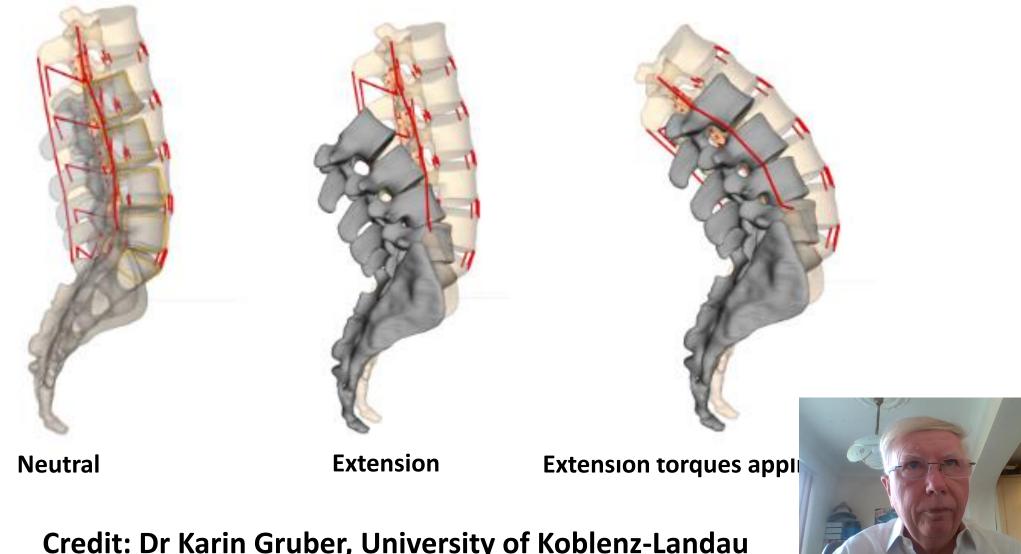
а

QF image with tracking templates


Finite element model of spinal levels

Zanjani-Pour, S., Meakin, J,R,, Breen, Ax., Breen A. (2018). "Estimation of in vivo inter-vertebral loading fluoroscopic and magnetic resonance image informed finite element models." Journal of Biomecha

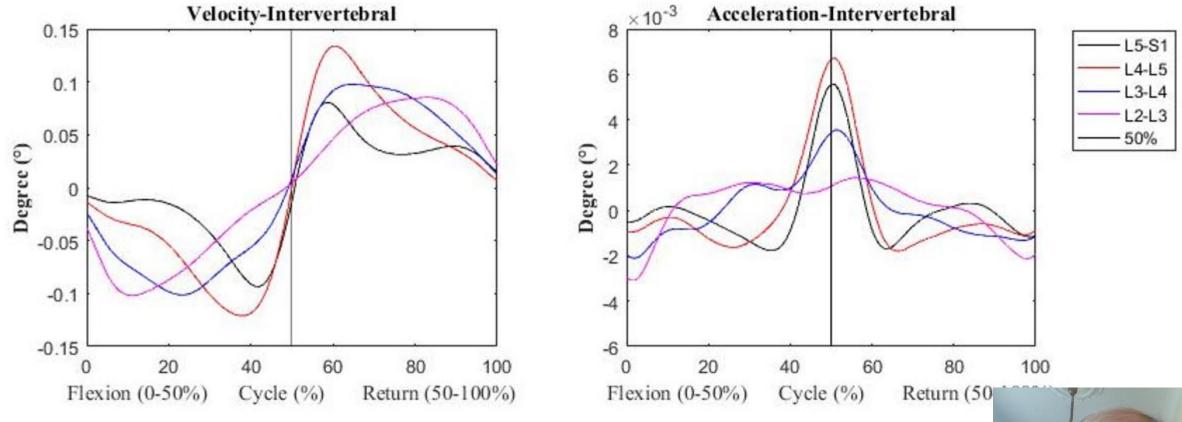
Model of muscle contraction during intervertebral motion in weight bearing flexion


Time = 0.004 s

Credit: Dr Ameet Aiyangar (EMPA) & Dr Karin Gruber, University of Koble

Attempted mathematical modelling of ligament torques during weight bearing extension

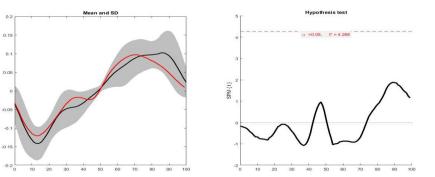
Credit: Dr Karin Gruber, University of Koblenz-Landau


Open Science Framework database

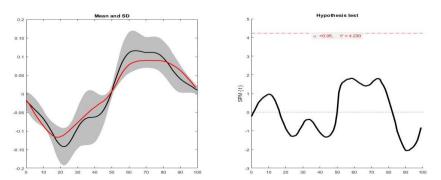
....contains the vertebral angles that formed the basis of the dynamic spinal rhythms published in Breen et al. (2021)

OSF Piex WB NormativeDatabe: × +														~ -	
\leftarrow \rightarrow C \triangleq osfio/f73pd/														0. 12 \$	D
M Gmail 🧧 Online TV 🧕 WhatsApp 🥠 123.hp.com - HP Of 🚥 https://www.bb/	🏙 https://	/coronavirus 🤞	https://covid19.	wh <u>R</u> https:/	/www.resear 🤇	Google Maps	🍯 Email - Alan B	reen (🔇 http:	s://www.ocado	ttps://www.l	nsbc.c 🍯 http	os://outlook.offi	https://scholar	.goo	
🐝 OSF HOME -									S	earch S	upport	Donate	Sign Up	Sign In	
Reference Database of Continuous Vert	Files	Wiki Ar	nalytics	Registration	IS										
Reference Database of Continuous Vertebral	Show rows with	n cells including:													
CE Change (Company, Employed)	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	Flex WB C	
– 🎲 OSF Storage (Germany - Frankfurt)	0.40962443	16.3398926	9.32237736	10.4724189	2.51661736	14 9596385	-5.5882073	-7.9663460	16.9825985	16.2940145	18.3282982	12.8196650	10.6760837		245
🙎 Flex WB Controls_n-8 Lumbar Vert-Angl	0.38355757	16.2575101	9.25184174	10.4320114	2.43555324	14.8889621	-5.6815185	-7.9823903	16.9439762	16.2493137	18.2191008	12.7020400	10.6071666		
Flex WB Non-mechanical Patients_n-8 L	0.35141942	16.1670786	9.17355152	10.3863481	2.34791584	14.8118468	-5.7832249	-8.0025946	16.9007811	16.1977643	18.0994373	12.5726069	10.5306029		
	0.31279142	16.0684290	9.08730165	10.3351928	2.25365720	14.7282379	-5.8934048	-8.0272507	16.8528455	16.1390256	17.9691520	12.4311089	10.4461901		
Flex WB NormativeDatabase 2022-03-1	0.26726713	15.961 <mark>43</mark> 25	8.99292782	10.2783257	2.15276368	14.6381235	-6.0120835	-8.0566420	16.8000192	16.0727805	17.8281527	12.2773504	10.3537659		
	0.21445641	15.8460029	8.89030971	10.2155461	2.04525583	14.5415373	-6.1392306	-8.0910405	16.7421719	15.9987401	17.6764139	12.1112010	10.2532128		
	0.15399000	15.7220986	8.77937376	10.1466745	1.93118738	14.4385597	-6.2747586	-8.1307044	16.6791937	15.9166477	17.5139797	11.9325986	10.1444601		
	0.08552434	15.5897234	8.66009530	10.0715535	1.81064384	14.3293197	-6.4185225	-8.1758743	16.6109968	15.8262812	17.3409661	11.7415509	10.0274870		
	0.00874642	15.4489273	8.53249988	9.99005021	1.68374052	14.2139945	-6.5703205	-8.2267715	16.5375164	15.7274570	17.1575612	11.5381365	9.90232452		
	-0.0766212	15.2998061	8.39666341	9.90205632	1.55062002	14.0928103.	-6.7298952	-8.2835949	16.4587109	15.6200308	16.9640249	11.3225041	9.76905569		
	-0.1708161	15.1425006	8.25271140	9.80748939	1.41144898	13.9660405	-6.8969356	-8.3465186	16.3745622	15.5038995	16.7606873	11.0948708	9.62781619		
	-0.2740306	14.9771951	8.10081730	9.70629257	1.26641464	13.8340041	-7.0710801	-8.4156907	16.2850755	15.3790015	16.5479455	10.8555191	9.47879277		
	-0.3864083	14.8041146	7.94120003	9.59843439	1.11572084	13.6970625	-7.2519191	-8.4912307	16.1902779	15.2453167	16.3262598	10.6047932	9.32222083		
	-0.5080400	14.6235216	7.77412072	9.48390817	0.95958407	13.5556161	-7.43899999	-8.5732288	16.0902173	15.1028661	16.0961476	10.3430942	9.15838089		
	-0.6389612	14.4357121	7.59987877	9.36273148	0.79822951	13.4100994	-7.63183110.	-8.6617444	15.9849603	14.9517107	15.8581780	10.0708750	8.98759409		
	-0.7791507	14.2410121	7.41880767	9.23494548	0.63188723	13.2609757	-7.8298885	-8.7568055	15.8745900	14.7919496	15.6129642	9.78863449	8.81021689		
	-0.9285296	14.0397740	7.23127060	9.10061434	0.46078861	13.1087311	-8.0326221	-8.8584074	15.7592038	14.6237185	15.3611561	9.49691125	8.62663511		
	-1.0869614	13.8323729	7.03765588	8.95982474	0.28516303	12.9538682	-8.2394631	-8.9665137	15.6389110	14.4471874	15.1034324	9.19627725	8.43725773		4
	-1.2542528	13.6192040	6.83837226	8.81268543	0.10523510	12.7968996	-8.4498316	-9.0810557	15.5138303	14.2625584	14.8404922		8.24251068		
exander C, and Alan Breen. 2022. "Re	ferer	13,4006793 [Data	base	e ^{-0.0787} f ⁰	C26383418	:in:uc	$U_{22}^{0.19334}$	/e_rte	ebral	F3018	kion	and		
ACE March 20 dai:10 17COF /OCE IO/		12.9492778	6.21080098	8.33457255	-0.4582416	12.3185040	-9.0962989	-9.4621458	15.1111535	13.6625360	14.0274996	7.91686884	7.63044135		į,
OSF. March 20. doi:10.17605/OSF.IO//	$\lambda Z P$	7470040	r 0004 7000	0.400C0307	0.0500400	40 4000404	0.0450007	0.00440570	** 0000000	40 4400000	10 700400	7	7 44004000		

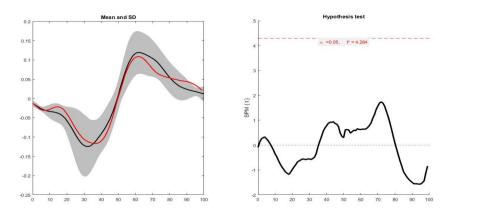
Intervertebral phase lag using velocity and acceleration patterns for weight bearing flexion and return (n=134)

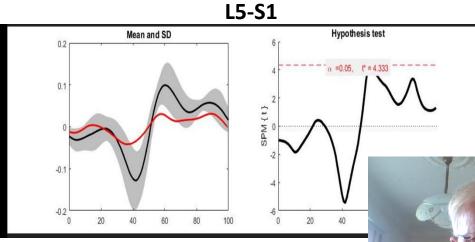


Credit: Dr Mehdi Nematimoez, University of Bojnord



L2-S1 velocities in 8 patients (-) and 8 controls (-)


L2-3



L3-4

L4-5

Credit: Dr Mehdi Nematimoez, University of Bojnord

Conclusions

There is evidence of intervertebral motion biomarkers for CNSLBP.

They do not yet contribute to understanding the mechanism of the condition or to the care pathway.

Exploration of correlations with other biomarkers may reduce this problem.

"Future work should address the variability of measurements, lack of harmonised systems for data acquisition and analysis, and lack of evion how such quantitation potentially affects clinical decision-making patient outcome." de Souza et al (2019) European Society of Radiolog

Thanks for listening!

abreen4@bournemouth.ac.uk

The authors acknowledge the support of the ECU Research Fund and Paramed ASG for this research.

