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Estimation of Robust Invariant Set for Switched Linear Systems using
Recursive State Updating and Robust Invariant Ellipsoid

Hiroshi OKAJIMA ∗ and Kakeru FUJINAMI ∗

Abstract : This paper provides an analysis method of a robust invariant set for discrete-time linear switched systems
with peak-bounded disturbances. In the case of a switched linear system, it is challenging to analyze the robust invariant
set accurately than that of the linear time-invariant system. We propose a novel method to estimate a robust invariant
set using a combination of a recursive state updating and an invariant ellipsoid for a common Lyapunov function. The
effectiveness of the estimation accuracy by the proposed method is illustrated using numerical examples.
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1. Introduction

Switched linear systems have been widely studied in the past
few decades[1]–[6].Typically, a switched linear system has a
number of subsystems, and there is a switching signal deter-
mining which subsystem is active. They have been integrated
into many practical systems, such as automobiles, power sys-
tems, and aircraft.

In this paper, we consider the problem of estimating a robust
invariant set for discrete-time switched linear systems. A set
is called an invariant set if the state of a system always stays
in the given region in state space. In general, the invariant set
is defined for autonomous systems. Moreover, invariant sets of
state are considered for a system with a bounded disturbance,
and such cases are called ”robust invariant set”[7]. Many stud-
ies have been developed[8]–[14]. Here, we analyze the invari-
ant set for arbitrary switching signals and disturbances with a
constrained peak value. In the case of robust invariant sets in
linear systems, time-variant systems, and switching systems,
the set of similarity expansion an invariant set is also an in-
variant set, and there is a countless number of invariant sets.
To precisely estimate the impact of a disturbance on a state in
terms of the size of the invariant set, it is important to esti-
mate a smaller invariant set. Estimating robust invariant set can
be used for power systems[15], constrained systems[16], quan-
tized control systems[17], for example. If the system is a linear
time-invariant system, a reachable set of the state is the smallest
robust invariant set. The reachable set of states for a discrete-
time linear time-invariant system is, in principle, obtained by
setting the initial value of the state to zero, updating the state
set with the state equation as the update rule, and then advanc-
ing the update rule to time infinity. Of course, this is impracti-
cal, so methods for estimating the reachable set by finite steps
have been studied, such as [9],[10]. On the other hand, it is
complicated for a switched linear system to estimate the reach-
able set because the number of parameters to be calculated is
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much larger than that of a time-invariant system. In addition,
the reachable set for the switched linear system is not always
become a convex set.

On the other hand, there are methods for estimating a Lya-
punov function-based robust invariant set as an ellipsoid[9]. In
this method, a robust invariant set for the linear time-invariant
system is estimated as an ellipsoid region. In addition, a robust
invariant set is estimated as an ellipsoidal region using Lya-
punov function-based methods for the case with a switching
system[18]. It is possible to compute a robust invariant set using
a common-Lyapunov matrix for each subsystem of a switching
system. However, considering the existence of a size gap be-
tween the reachable set and the invariant set estimated as an
ellipsoid region and the use of a common-Lyapunov matrix, we
expect a highly conservative result. For improving the conser-
vativeness of the estimated set, a method with multiple Lya-
punov strategies was proposed in [19].

This paper proposes a novel method for estimating a robust
invariant set that combines a Lyapunov function-based ellipsoid
estimation method with an updating the state equation. We ap-
ply the proposed method to the switched linear systems to es-
timate the robust invariant set of the switched linear system for
peak-bounded disturbances accurately.

This paper is organized as follows: In Section 2, we first
introduce methods for estimating reachable set by recursive
computation using the discrete-time state equation and ro-
bust invariant ellipsoid by Lyapunov functions for linear time-
invariant systems. In Section 3, we set up the problem of esti-
mating a robust invariant set for switched linear systems. Fur-
thermore, we estimate the robust invariant set of the switched
linear system based on previous studies and investigate the
analytical performance accuracy. In Section 4, we present a
method for estimating robust invariant set using recursive state
updating and robust invariant ellipsoid as the main result. The
effectiveness of the proposed method is further verified by us-
ing numerical examples in Section 5.

In the conference paper of SICE Annual Conference[20], a
robust invariant set is analyzed for linear time-invariant sys-
tems. This paper is an advanced version of [20]. In particu-
lar, robust invariant set analysis for the switching systems are
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discussed.

2. Preparation

2.1 Robust invariant set and state reachable set

In this section, we describe robust invariant set and state
reachable set for linear time-invariant systems. First, consider
the following linear time-invariant systems

xk+1 = Axk + Bwk (1)

wherexk ∈ Rn is the state vector，wk ∈ W is the disturbance，
and the bounded setW ⊂ {w ∈ Rm} is a convex polyhedron
with an origin. In addition, letA ∈ Rn×n，B ∈ Rn×m, and the
matrix pair (A, B) is a controllable andA is a Schur stable ma-
trix.

For the control system (1), a robust invariant set of states is
defined as follows[9].

Definition 1 For a pair of discrete-time linear time-invariant
systems (A, B) and bounded disturbanceswk ∈ W, if

xk ∈ X → Axk + Bwk ∈ X (2)

holds at any timek, the setX is a robust invariant set.

Although invariant set is generally defined for autonomous
systems, the invariant set defined here is the invariant set for
the application of a peak-constrained disturbancewk, which is
called a robust invariant set to indicate it. For a given robust in-
variant set, the control system guarantees that the state will not
deviate from the set for any disturbance that satisfies the con-
straints. In addition, given a robust invariant set, the set con-
taining it is also a robust invariant set, and there are countless
such sets.

Then, we consider the reachable set with the origin as the
initial state. The reachable set is a region that can be taken by a
statexk for a disturbancewk and is defined as follows[10].

Definition 2 For a pair of discrete-time linear time-invariant
systems (A, B) and a bounded disturbancewk ∈ W, the state
reachable setℜ∞ is given by

ℜ∞ = {xk ∈ Rn | x0 = 0, xk satisfies(1),

wk ∈ W, k ≥ 0}.
(3)

By Definition 2,ℜ∞ can be re-written as the following term
in case of the linear time-invariant systems:

ℜ∞ = {xk ∈ Rn | x0 = 0, ∃wk ∈ W, ∃t ≥ 0,

xk =

t−1∑
i=0

At−1−i Bwi}.
(4)

The reachable setℜ∞ represents the state region where the state
vectorx(∞) is reachable fromx(0) = 0 with appropriate choice
of σ(k). It can be considered the smallest robust invariant set.
In another view,X is the set coveringℜ∞ from the outside, and
the relation

ℜ∞ ⊂ X (5)

holds. Therefore, to estimateℜ∞, it is important to estimate
how smallX is.

ℜ∞ is also used to guarantee the safety of the system, and
there are various studies on how to estimate this set. In this sec-
tion, we introduce two methods for approximatingℜ∞. One is
to approximateℜ∞ by a convex polyhedral set, which is ob-
tained by recursive state updating with the initial state, and the
other is to approximateℜ∞ from the outside by a robust invari-
ant set estimated as an ellipsoid region.

2.2 Estimation of state reachable set by recursive state up-
dating

In this section, We explain how to caluculate the region
where statex(k) is reachable by timek and thereby approximate
the state reachable setℜ∞. Specifically, we consider bounded
disturbances and calculate the state region (convex polyhedron
setLk) by recursively updating the state equation (1). First, we
set up the set of disturbancesWp as a convex polyhedron as
follows:

Wp = {w ∈ Rm : MWpw ≤ mWp} (6)

where MWp ∈ RSWp×m，mWp ∈ RSWp are the matrices rep-
resenting the linear constraint equations that characterizeWp,
and 0∈ Wp is assumed to hold. In this case, the convex poly-
hedron setLk at timek can be calculated as follows:

L0 = {0},
Lk = {x ∈ Rn | x = Az+ Bw, z ∈ Lk−1,

w ∈ Wp}, k ≥ 1.

(7)

whereLk denotes the region where the state of the linear time-
invariant system can be reached from the origin byk steps and
can be used as a set to approximateℜ∞. ThisLk can be specif-
ically constructed by using the Fourier-Motzkin algorithm[21]
to remove the disturbance term and make it a linear constraint
on the state term only.

In this case, the relationship betweenLk andℜ∞ is as follow:

L0 ⊂ · · · ⊂ Lk−1 ⊂ Lk ⊂ Lk+1 ⊂ ℜ∞. (8)

Also, theoretically, limk→∞Lk = ℜ∞ is valid by computing up
to k = ∞. From the above,Lk becomes closer toℜ∞ ask is
set larger, and setting the value ofk appropriately gives a good
approximation ofℜ∞ for Lk. Thus, we can approximateℜ∞
from the inside by recursive state updating.

For example, Hirata[10] proposed a method to estimate the
setLk+ satisfyingℜ∞ ⊂ Lk+ by expanding it in a ratio that
depends on the accuracy of the estimate ofLk obtained for a
linear time-invariant system. In this method,ℜ∞ is estimated
from the outside.

2.3 Estimation of state reachable set by robust invariant
ellipsoid

In this section, we explain how to derive a robust invariant
set of states in the form of an ellipsoid. First, we set up the set
of disturbancesWc as follow:

Wc = {w ∈ Rm | wTw ≤ 1}. (9)

Then, consider the set of states of an ellipsoid using a positive-
definite matrixP that satisfies the following:

E(P) = {x ∈ Rn | xT Px≤ 1}. (10)

In this case, if
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(Ax+ Bw)T P(Ax+ Bw) ≤ 1 (11)

holds for the disturbancew ∈ Wc, the ellipsoidE(P) is one
of the robust invariant set from the Definition 1. In this con-
nection, the following theorem holds whereρ(A) is the spectral
radius of the matrixA and represents the absolute value of the
maximum eigenvalue.

Theorem 1 Let A ∈ Rn×n，B ∈ Rn×m, be given in a pair
of discrete-time linear time-invariant systems (A, B). Further-
more, we assume thatwk ∈ Wc holds for anyk. The nec-
essary and sufficient condition for an ellipsoidE(P) = {x ∈
Rn | xT Px ≤ 1} to be a robust invariant set of pair (A, B) is that
there exists anα ∈ [0,1− ρ(A)2] satisfying[

AT PA− (1− α)P AT PB
BT PA BT PB− αI

]
≤ 0. (12)

By finding P that satisfies the condition of the Theorem 1, the
ellipsoidE(P) becomes a robust invariant set of systems in (1),
and from (5) we have the following relation:

ℜ∞ ⊂ E(P). (13)

Therefore, if we use robust invariant ellipsoid, we can esti-
mateℜ∞ from the outside and thus guarantee the performance
of the analysis results. Besides, there are innumerable robust
invariant ellipsoids since there are innumerableP that satisfy
the Theorem 1.

3. Problem Formulation
3.1 Discrete-time switched linear system

In this paper, we discuss robust invariant set estimation for
switched linear systems by using linear time-invariant systems.
Consider the following discrete-time switched linear system.

xk+1 = Aσ(k)xk + Bσ(k)wk (14)

wherexk ∈ Rn is the state vector，wk ∈ Wp is the disturbance．
The set of disturbance signalsWp is given by (6). The switch-
ing signalσ(k) ∈ {1, · · · ,N} is a piecewise constant function
of the timek. whereN ≥ 1 is the total number of subsystems
and letAi ∈ Rn×n，Bi ∈ Rn×m，i ∈ {1, · · · ,N}．In addition, the
matrix pair (Ai , Bi) is a controllable andAi is Schur-stable for
all i.

In the same way as in Definition 1, we define the following
for the switched linear system (14).

Definition 3 For a pair of discrete-time switched linear sys-
tems (Aσ(k), Bσ(k)) with any switching signalσ(k) and bounded
disturbancewk ∈ Wp, if the following equation:

xk ∈ Y,→ Aσ(k)xk + Bσ(k)wk ∈ Y (15)

holds at any timek, the setY is a robust invariant set.

Moreover, In the same way as in Definition 2, we define the
following for the switched linear system (14).

Definition 4 For a pair of discrete-time switched linear sys-
tems (Aσ(k), Bσ(k)) with any switching signalσ(k) and bounded
disturbancewk ∈ Wp, the state reachable setR∞ is given by

R∞ = {xk ∈ Rn | x0 = 0, xk satisfies(14)

wk ∈ Wp, k ≥ 0}.
(16)

The state reachable setR∞ indicates the state region from the
origin and can be considered as the set that gives the smallest
estimate among the robust invariant sets. In another view,Y is
the set coveringR∞ from the outside, and the relation

R∞ ⊂ Y (17)

holds. Therefore, in order to estimateR∞, it is important to
estimate how smallY is.

3.2 Estimation of reachable set from inside by recursive
state updating

In this section, we apply Section 2.2 to approximate the
reachable setR∞ of the switched linear system from the inside.
As in Section 2.2, the region of states that can be reached from
the origin by each time is calculated recursively. However, it
should be noted that the switched linear system parameters are
time-varying. The region that the state can be reached by each
time for the switched systems may not be a convex polyhedron
set but a set of polyhedra with some concave parts. Therefore,
the treatment is different from that of the reachable set estima-
tion method for linear time-invariant systems (Section 2.2).

If the switching occurs at an arbitrary timek, the polyhedral
set of the switched linear systemVk can be calculated as fol-
lows:

V0,1 = {0},
Vk,N( jk−1−1)+i = {x ∈ Rn | x = Aiz+ Biw, z ∈ Vk−1, jk−1 ,

w ∈ Wp},
i ∈ {1, · · · ,N}, jk ∈ {1, · · · ,Nk},

Vk =

Nk∪
jk=1

Vk, jk , k ≥ 1.

(18)

Then,Vk, jk is determined by (18) for anyjk ∈ {1, · · · ,Nk}.
jk is the natural number that represents all combinations of
switches. Note that since we assume arbitrary switching at arbi-
trary times in this paper, the combination of switching becomes
exponentially larger whenk becomes large. The specific flow
of the calculation is as follows. For all polyhedral setsVk, jk

at time k with the origin as the initial state set, calculate the
polyhedron setVk, jk for all switch signals, respectively. Then
calculate the sum set of alljk for Vk, jk at time k. By doing
so, we can obtain the polyhedral setVk of the switched linear
system.
Vk, jk can be constructed by removing the disturbance term

using the Fourier-Motzkin algorithm[21] and making it a linear
constraint of the state term only. ThisVk indicates the region
where the state of the switched linear system, where switching
occurs at an arbitrary time, can be reached from the origin by
the k step. Also, sinceVk assumes all the switches fork, the
state region increases as follows:

V0 ⊂ · · · ⊂ Vk−1 ⊂ Vk ⊂ Vk+1 ⊂ R∞. (19)

Also, theoretically, limk→∞Vk = R∞ is valid by computing up
to k = ∞. Therefore, the largerk is set forVk, the better the
estimation results forR∞. However, in practice, it is not pos-
sible to computek = ∞ due to the enormous computational
complexity, and it is not possible to find a set that isVk = R∞.
In addition, unlike linear time-invariant systems, when the total
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number of subsystemsN is large, for example, the computa-
tional complexity increases exponentially with timek, as in the
case of the summation set operation in (18). In such a case, it
is complicated to calculateVk for a massivek, and we have to
stop the calculation for a lesserk.

We illustrate the results of estimatingR∞ by recursive state
updating using numerical examples. We considered a switched
linear system withN = 2 subsystems and set up the matrix as
follows:

A1 =

[
0.375 −0.9
0.3 0.45

]
, B1 =

[
1.2
0.4

]
,

A2 =

[
0.225 −0.75
0.45 0.225

]
, B2 =

[
0.1
0.4

]
.

(20)
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Fig. 1: State reachable setR∞ estimation by polyhedral setVk

Table 1: The computation timet ofVk

Vk V3 V4 V5 V6 V7 V8

t (sec.) 3.24 9.89 25.73 65.98 168.63 425.8

Given a disturbancewk ∈ Wp (whereMW = [1 −1]T , mW =

[1 1]T) and an arbitrary switching signal, Fig. 1 shows the cal-
culation results ofVk by recursive state updating.

As we can see from these comparisons,Vk is getting larger as
k increases, which corresponds to (19). Since the volume of the
V7,V8 is almost the same, we can estimateR∞ with sufficient
accuracy for this system from the inside ofR∞. In addition, the
elapsed time from the start of computation is shown in Table 1
(Not including the drawing time ofVk). Comparing Table 1
and Fig. 1, we can see that the computation time increases with
the improvement of the estimation accuracy.

HereVk is the inner set ofR∞ as indicated by (19), since it
stops at a finitek. If we analyze the system using the inner set
of R∞, the actual states may reach outside that set. Therefore,
if the system is analyzed usingVk computed by recursive state
updating, it does not guarantee the performance of the analysis

results. In addition, the estimation accuracy of the reachable set
becomes worse when the order of the system and the total num-
ber of subsystems are large. Therefore, recursive state updating
is not sufficient for the estimation of the reachable set of state
for switched linear systems.

3.3 Estimation of state reachable set by robust invariant
ellipsoid

We consider a method to approximateR∞ using a robust in-
variant set of an ellipsoid (robust invariant ellipsoid). For linear
time-invariant systems, the method introduced in Section 2.3
has been proposed, and in this paper, we consider a set of sys-
tems that extend it to the switched linear system.

In order to construct a robust invariant ellipsoid for a
switched linear system that occurs at any given time, we con-
sider a common Lyapunov function for all subsystems.

First, we extend the equation (9) and set the set of distur-
bancesW as follow:

Wc = {w ∈ Rm | wTw ≤ w2}. (21)

whereWc is the set containingWp given by Section 3.1 and
is set to satisfy (Wp ⊂ Wc). Then, consider the set of states of
an ellipsoid that satisfies

E(P) = {x ∈ Rn | xT Px≤ 1}. (22)

The ellipsoidE(P) is a robust invariant set from Definition 3 if
it satisfies the following equation:

(Ai x+ Biw)T P(Ai x+ Biw) ≤ 1 (23)

for the disturbance w and alli. The following Theorem holds
by applying a previous study [9]. whereρ(Ai) is the spectral
radius of the matrixAi and represents the absolute value of the
maximum eigenvalue.

Theorem 2 In the switched linear system (14) with arbitrary
switching signals, consider thatAi ∈ Rn×n，Bi ∈ Rn×m is given
for all i with bounded disturbancewk ∈ Wc. Then, A nec-
essary and sufficient condition for an ellipsoidE(P) = {x ∈
Rn | xT Px≤ 1} to be a robust invariant set of this system is that
there exists anαi ∈ [0,1− ρ(Ai)2] satisfying[

AT
i PAi − (1− αi)P Ai

T PBi

Bi
T PAi Bi

T PBi − αi

w2 I

]
≤ 0 (24)

for all i.

That is, By findingP that satisfies the condition of the The-
orem 2, the ellipsoidE(P) becomes a robust invariant set of
systems in (14), assuming an arbitrary switching signal and a
disturbancewk ∈ Wp.

If Theorem 2 is satisfied, the following relation holds from
(5):

R∞ ⊂ E(P). (25)

In Theorem 2, there is an infinite number ofP that satisfy the
inequality condition, and it is essential to find the smallest pos-
sible robust invariant ellipsoidE(P) among them. Based on this,
we consider the following inequality conditions:

1
γ

xT x ≤ xT Px. (26)
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Fig. 2: Comparison ofV8 andE(P)

Here, since the ellipsoid is given by{x ∈ Rn | xT Px≤ 1}, if (26)
is satisfied for alli, then, the following inequality:

1
γ

xT x ≤ 1 (27)

is satisfied. In other words, the ellipsoid fits within a sphere
(circle) of radius

√
γ, which enables us to evaluate the ellipsoid

based on its major axis. Applying the Shur’s complement to the
inequality (26), we can convert it to a matrix inequality such
that [

P 1
1 γI

]
≥ 0. (28)

The conditional expressions (24) and (28) can be regarded as
BMI with each element ofP andαi andγ as variables, or LMI
with αi fixed in small increments. Thus, we can estimateE(P)
based on the major axis of the smallest ellipsoid by finding the
smallestγ that satisfies the conditions of (24) and (28) for alli.

In this paper, we take the long axis of an ellipsoid as the
evaluation function, but there are various ways to uniquely de-
termine the ellipsoid, such as using the output as the evaluation
signal, depending on the purpose of the analysis.

Note that the conservativeness may be higher than in the lin-
ear time-invariant case [9], since the common Lyapunov matrix
P should be found for alli.

Then, in the switched linear system (14), we give a numeri-
cal example of (20) and illustrateE(P) with a positive definite
matrix P common to all subsystems. In order to compare the
accuracy with the method in Section 3.2, we setwTw ≤ w2

= 1
as the disturbance. When analyzing the state reachable set for
a disturbancew ∈ Wp, it is necessary to determineWp ⊂ Wc

andw as small as possible from the point of view of conserva-
tiveness.

To solve the matrix inequality in (24), we computeαi as a
fixed LMI with a total of 333 patterns in increments of 0.03
from 1. As a result, the evaluation signal for determining the
uniqueE(P) is γ = 10.61, and the calculatedE(P) is shown in
Fig. 2. Here we also show the sum set of the polyhedral setV8

calculated in Section 3.2.
As shown in (25),E(P) is the outer set ofR∞. Therefore, the

performance of the analysis results is guaranteed whenE(P)
is used for the analysis. Then, we discuss the accuracy of the
analysis using a robust invariant ellipsoidE(P).

From Fig. 2, we can see that we approximateV8, a reason-
able estimate ofR∞, from the outside by usingE(P). However,

we can see that there is a large gap between each set. This is
due to the fact thatR∞ is a polyhedron with a massive number
of parameters, which is approximated using an ellipsoid with
few parameters.

Thus, if there is a large gap between the estimated robust
invariant set andR∞, the analysis using it will result in conser-
vative analysis results. If the analysis results are highly con-
servative in control system analysis, it is not only difficult to
clarify the effects of disturbances in the actual system but also
difficult to use in the design of the control system. Therefore, it
is necessary to improve the gap withR∞ in the estimation of the
robust invariant set to reduce the conservatism of the analysis
results.

4. Main Result

4.1 Combining recursive state updating and robust invari-
ant ellipsoid

In this section, in order to guarantee the state reachable set
R∞ of the switched linear system from the outside, and to im-
prove the conservativeness of the results of control system anal-
ysis, we describe a method for estimating robust invariant set
using the method of our previous work [20], which combines
recursive state updating and robust invariant ellipsoidE(P). In
this paper, we use a robust invariant ellipsoidE(P) from the
viewpoint of computational simplicity, but it should be noted
that any form of robust invariant set is acceptable. First, we
discuss an idea for combining the two methods.

4.2 Basic idea

In this section, we explain the basic idea of the method in this
paper, which uses recursive state updating and robust invariant
ellipsoidE(P) in combination to reduce conservativeness. First,
if there exists a robust invariant setX, the state at a given time
k exists in that set. Assuming that the value of the disturbance
w is zero after that time, the state will converge to the origin.
Therefore, the robust invariant set also becomes smaller and
smaller. Therefore, by estimating the invariant setXk when ak
step has elapsed after applying a disturbancew = 0 toX, the
set is smaller than the original robust invariant setX. In other
words, the following relation holds.

{0} ⊂ · · · ⊂ Xk+1 ⊂ Xk ⊂ Xk−1 ⊂ · · · ⊂ X0 = X (29)

Also, theoretically, limk→∞Xk = {0} is valid by computing up
to k = ∞.

We further consider that the state set is a vector space of
states and that the state vector in a linear time-invariant sys-
tem is represented by the sum of zero input vector and zero
state vector. Then, we compute the sum of the vector space of
states fork steps of disturbance and the vector space of state
transitions withk steps of disturbance as zero. This configura-
tion corresponds to considering the direct sum of the set. The
following Theorem holds.

Theorem 3 For any positive integerℓ, Xℓ ⊕ Lℓ is a robust in-
variant set and the following relation holds.

Xℓ+1 ⊕ Lℓ+1 ⊂ Xℓ ⊕ Lℓ (30)

Proof 1 First, if Xℓ ⊕ Lℓ is a robust invariant set, the set of
states that the states in the invariant set take after 1 steps is
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Fig. 3:E(P)k,1(k = 1,2,3)

Xℓ+1 ⊕ Lℓ+1. From this, it follows thatXℓ+1 ⊕ Lℓ+1 is a subset
of Xℓ ⊕ Lℓ and (30) holds. Here, for a disturbancew ∈ Wp,

x ∈ Xℓ ⊕ Lℓ → Ax+ Bw ∈ Xℓ+1 ⊕ Lℓ+1 (31)

holds. Furthermore, since the relation (30) leads to

x ∈ Xℓ+1 ⊕ Lℓ+1 → Ax+ Bw ∈ Xℓ+1 ⊕ Lℓ+1, (32)

Xℓ+1 ⊕ Lℓ+1 is a robust invariant set. Therefore, we can show
by mathematical induction thatXℓ ⊕Lℓ is a robust invariant set
for anyℓ.

Since the direct sum of the set is a subset of the original set
from Theorem 3, the following relation holds.

Xk ⊕ Lk ⊂ Xk−1 ⊕ Lk−1 ⊂ · · · ⊂ X0 = X (33)

In the following, we will use this relationship to approximate
a robust invariant set for the switched linear system from the
outside. We can expect to find a set close toR∞ by generating a
robust invariant set with a large value ofk to the extent possible.

4.3 Analysis of robust invariant set for switched linear sys-
tems

In this section, based on the ideas in the previous section,
we present a specific analysis procedure for the switched linear
system. First, consider applying a zero input to the robust in-
variant set for the switched linear system (14). Note that since
the constraint equations of the switched linear system increase
exponentially, the robust invariant set handled here is a robust
invariant ellipsoidE(P), which is relatively easy to calculate
from the viewpoint of computational simplicity. When a zero
disturbance is applied to the initial setE(P), the invariant set
E(P)k, jk is calculated as

E(P)0,1 =E(P) = {x ∈ Rn | xT Px≤ 1},
E(P)k,N( jk−1−1)+i = {x ∈ Rn|x = Aiz, z ∈ E(P)k−1, jk−1},

i, jk, k satisfy (18).

(34)

ThenE(P)k, jk is determined by (34) for anyjk ∈ {1, · · · ,Nk}.
Fig. 3 showsE(P)k, jk for i = 1 (i.e. jk = 1 in (34)) for all k,
where we will use the numerical example in (20). From Fig. 3,
we can confirm thatE(P)k, jk becomes smaller ask is increased.
This corresponds to (29).

Also based on the ideas in the previous section, considering
the direct sum of the state setVk, jk for zero states and the state

setE(P)k, jk for zero disturbances for eachjk, we obtain the fol-
lowing state setPk, jk :

Pk, jk = Vk, jk ⊕ E(P)k, jk . (35)

In addition, we obtain the robust invariant setPk of the switched
linear system by finding the sum set of robust invariant setPk, jk

at each timek for all jk as follows.

Pk =
∪Nk

jk=1Pk, jk (36)

From the Theorem 3,Pk is a robust invariant set, andPk+1 ⊂ Pk

is available at any timek. To compute the setPk, we combine
the setE(P)k, which becomes smaller at every step when a zero
disturbance is applied to a robust invariant ellipsoid as the initial
set, and the setVk, which becomes larger at every step when a
disturbance is applied to the origin as the initial set. Therefore,
from (19) and (29), the following relationship betweenPk and
R∞ holds.

P0 = E(P) ⊃ · · · ⊃ Pk−1 ⊃ Pk ⊃ Pk+1 ⊃ R∞ (37)

Also, theoretically, if we calculate up tok = ∞,
limk→∞ E(P)k, jk = {0}, limk→∞Vk = R∞, then limk→∞ Pk = R∞
holds. Therefore, by computingPk with a computationally
large value ofk, we can obtain a robust invariant set with low
conservativeness. Furthermore, it should be noted that for any
k ≥ 0 the following relationship holds.

Vk ⊂ R∞ ⊂ Pk (38)

5. Numeral Examples
In this section, we give numerical examples of (20) for a

switched linear system given by (14), and illustrate a robust in-
variant set using the proposed method. The set of disturbances
Wp is given byMW = [1 −1]T , mW = [1 1]T . where the distur-
bancewk ∈ Wc (w = 1) is used to computedE(P),Wp ⊂ Wc.

The robust invariant setP2, P6 andP8 computed with the
proposed method are shown in Fig. 4,5,6 respectively. In addi-
tion, we also show a robust invariant ellipsoidE(P) and a good
estimate of the reachable setV8.

Fig. 4,5,6 shows that proposed robust invariant setP2,P6,P8

by the proposed method approximates from the outside the
polyhedral setV8, which seems to be a good estimate of the
state reachable setR∞, and is a better estimate than the robust
invariant ellipsoidE(P). Also, we can see thatP8 ⊂ P6 ⊂ P2 is
used, which corresponds to (37). From these results, it is con-
firmed that the larger the value ofk is taken, the more accurate
the robust invariant set is for the calculation ofPk, which ap-
proximates the state reachable setR∞. In addition, the drawing
time of the proposed robust invariant setP8 is 1162 sec (Not
including the computation time ofV8,i andE(P)8,i ,∀i). Note
thatPk = R∞ does not hold since it is impossible to compute
k = ∞ in practice. However, even if we terminate the calcula-
tion atk, Pk is the set that coversR∞ from the outside, and the
estimation accuracy is higher than the initial set.

In addition, we compare the method in [19]. The method
for estimating the state-reachable set using Lyapunov function
based inequalities based on multiple Lyapunov strategies was
provided in [19]. It is a method to approximate the state-
reachable set from the outside by determining the optimal plural
ellipsoid using a genetic algorithm and obtaining their product
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Fig. 4: Comparison ofP2,V8 andE(P)

Fig. 5: Comparison ofP6,V8 andE(P)

Fig. 6: Comparison ofP8,V8 andE(P)

setF . It is shown to be less conservative than the robust in-
variant ellipsoidE(P), which is constructed by the Lyapunov
function common to all subsystems. Here, a comparison be-
tweenF and the proposed robust invariant setP8 is shown in
Fig. 7. From Fig. 7, we can confirm that the robust invariant
set obtained by the method of this paper is smaller than the
robust invariant set. As described above, the robust invariant
set obtained by the proposed method enables us to estimate
the state of the system more accurately than the conventional
method [19], i.e., with less conservativeness, while guarantee-
ing how disturbances affect the state of the system.

Fig. 7: Comparison ofP8 andF in [19]

6. Conclusion

In this paper, we propose a method for estimating robust in-
variant set for switched linear systems by combining recursive
state updating and robust invariant ellipsoid. The direct sum of
the two sets is calculated to obtain a smaller robust invariant
set. Through simulations, we confirmed that the robust invari-
ant set obtained by the proposed method approachesR∞ when
the number of steps is increased, and it is possible to provide a
smaller estimated invariant set.
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