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Pierre Couteron, Raphaël Pelissier, Eric Nicolini, P. Paget

To cite this version:
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Summary 

 

1. Predicting tropical forests stand structure parameters from remotely sensed data has 

numerous important applications, such as estimating above-ground biomass and carbon 

stocks, providing spatial information for forest mapping and management planning as well 

as detecting potential ecological determinants of plant species distributions. As an 

alternative to direct measurement of physical attributes of the vegetation and individual 

tree-crown delineation, we present a powerful holistic approach using an index of canopy 

texture that can be extracted from either digitized air photos or satellite images by means of 

the two-dimensional spectral analysis by Fourier transform.  

2. We defined an index of canopy texture from the ordination of the Fourier spectra computed 

for 3,545 1-ha square images of an undisturbed tropical rain forest in French Guiana. This 

index expressed a gradient of coarseness vs. fineness resulting from the relative importance 

of small, medium and large spatial frequencies in the Fourier spectra. 

3. Based on twelve 1-ha control plots, the canopy texture index showed highly significant 

correlations with tree density (R2 = 0.80), diameter of the tree of mean basal area 

(R2 = 0.71), distribution of trees into d.b.h. classes (R2 = 0.64) and mean canopy height 

(R2 = 0.57), which allowed us to produce reasonable predictive maps of stand structure 

parameters from digital aerial photographs. 

 

4. Synthesis and applications. Two-dimensional Fourier analysis is a powerful method to 

obtain quantitative characterization of canopy texture, with good predictive ability on stand 

structure parameters. Forest departments should use routine forest inventory operations to 

set up and feed regional databases, featuring both tree diameter figures and digital canopy 

images with the ultimate aim to calibrate robust regression relationships and to derive 

predictive maps of stand structure parameters over large areas of tropical forests. Such 

maps would be particularly useful for forest classification and to guide field assessment of 

tropical forest resources and biodiversity. 

Key-words: canopy texture, French Guiana, sub-metric images, two-dimensional spectral 

analysis. 
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Introduction 

Retrieving tropical forests stand structure parameters from remotely sensed data is of primary 

importance for estimating global carbon stocks in above-ground biomass (Houghton et al. 

2001; Grace 2004) as well as for obtaining large-scale information required by regional 

biodiversity studies or forest type classification and mapping (Tuomisto et al. 1995). Indeed, 

stand structure parameters such as tree density, basal area or canopy height not only allow 

predictions of forest biomass (e.g. Chave et al. 2003) but may also provide spatial information 

on potential determinants of plant species distributions (e.g. Couteron et al. 2003) such as the 

gap-phase regeneration stages (e.g. Riéra, Pélissier & Houllier 1998) or the variations in 

substratum conditions and soil fertility (e.g. Ashton & Hall 1992; Paget 1999). 

Thanks to the various kinds of satellite or airborne remotely sensed data available 

predicting stand structure parameters over large areas with a spatial resolution of a dozen to 

several dozen meters seems to be nearly achievable, e.g. Landsat TM (Lu et al. 2004), SPOT 

(de Wasseige and Defourny 2002), Laser Vegetation Imaging Sensor (Drake et al. 2002), 

Synthetic Aperture Radar JERS–1 (Santos et al. 2002). It is, however, surprising that fine 

spatial resolution techniques capable of detecting small-scale variation in physical signals 

have only been of limited applicability for the study of tropical forest structure and therefore 

of limited use for both ecological research and operational management/conservation (Read 

2003). In fact, small-footprint laser altimeters have proven to be of limited efficiency in dense 

tropical forests because of inconsistent ground returns (Nelson, Oderwald & Gregoire 1997; 

Dubayah & Drake 2000; Drake et al. 2003, but see Clark, Clark & Roberts 2004). Recent 

metric and sub-metre resolution optical data, such as IKONOS and QuickBird panchromatic 

images, have been mostly used in tropical forests for visual tree crown delineation (Asner et 

al. 2002; Read et al. 2003; Clark et al. 2004a; 2004b) although Asner & Warner (2003) used 

an automatic quantification of shadowing while Hurtt et al. (2003) reported preliminary 

investigations on automatic crown delineation. However, tropical foresters have more than 

half a century tradition of delineating and mapping forest types by visual interpretation of 

aerial photographs (see Tab.1 in Polidori et al. 2003) a practice that could be easily extended 

to modern very-high resolution (VHR) satellite imagery. Furthermore, air photos when 

digitized at metric spatial scales, have enabled numerical extraction of textural information in 

temperate forest  (Sommerfeld et al. 2000) and semi-arid vegetation (Couteron & Lejeune 

2001; Couteron 2002). Such techniques could such also be applied on satellite images. 

The present paper aims to demonstrate that texture analysis of digitized air photos by 

two-dimensional Fourier transform (Mugglestone and Renshaw 1998), as adapted by 

 
 
 

3



 
Couteron et al. - 12/12/05 

Couteron (2002), is a valuable approach to characterizing tropical rain forest canopies and 

obtain reasonable predictions of tropical forests stand structure parameters. 

 

Materials and methods 

STUDY SITE 

The study was conducted as part of the DIME “Diversité Multi-échelles (multi-scale 

diversity)” project, within an area of 65 km2 of undisturbed lowland evergreen rain forest, 

located at about 10 km east of the Petit-Saut reservoir dam in French Guiana (5°00'N, 

52°55'W). A small river (Crique Plomb) running along a geological boundary divides the area 

into a hilly landscape (hilltops from 80 to 210 m a.s.l.) lying on sedimentary rocks (pelite) to 

the north, and the Montagne Plomb volcano-sedimentary massif that reaches its highest point 

at 332 m a.s.l. to the south (Delor et al. 2003). The varied geomorphology of the site results in 

contrasted textural aspects of the forest canopy, which are apparent on the aerial photographs.  

 

DIGITIZED AERIAL PHOTOGRAPHS 

A set of black and white aerial photographs at 1:25,000-scale (n° 379 to 383, 397 to 401 and 

456 to 460 of coverage 1992-GUF-91/250) were obtained from the Institut Géographique 

National (IGN, France). Each image was digitized into 256 grey-levels with a Nikon® 

Scantouch 210 flatbed scanner, using a resolution of 600 dots per inch (dpi), corresponding to 

a pixel size of 1 m in the field. On images, the fully sunlit crowns of canopy trees appeared in 

white or light grey, while shadowed inter-crowns gaps were dark-grey or black. A monotonic 

relationship between grey-level scale and canopy height can thus be assumed as long as there 

is no substantial relief-induced shadowing. Contacts n°399 and 401 were separately submitted 

to spectral analysis (see next section) without any prior correction. In each photo, we only 

analysed the central part, i.e. a 4.8 km by 4 km block (1 920 ha) in which convex deformation 

due to camera lens is of minor importance (Avery & Berlin 1992). For field navigation, a 

copy of the digitized images were assembled, georeferenced and superimposed on a digitized 

1:50,000 topographical map (sheets Kourou S.-O. NB-22-VIII-1a and Haut Kourou N.O. NB-

22-II-3c; IGN, France) using ArcGIS (ArcGIS TM Version 8.3, ESRI, Inc., Redlands, CA, 

USA). 

 

SPECTRAL ANALYSIS BY FOURIER TRANSFORM 

Only broad outlines of two-dimensional spectral analysis by Fourier transform are provided 

here, since detailed presentations (e.g., Ripley 1981) as well as applications to digital images 
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(Mugglestone & Renshaw 1998; Couteron 2002) are already available. For simplicity, only 

square images will be considered although the method applies also to rectangular images. A 

digital image is here defined as an n by n array of grey-scale values in the range 0-255 

expressing the panchromatic radiance of each pixel. Spectral analysis aims at modeling such 

data as a weighted sum of cosine and sine waveforms of varying traveling direction and 

spatial frequency. For a particular geographical direction, the wavenumber, p, quantifies 

spatial frequency and corresponds to the number of times a waveform repeats itself within the 

image. The two-dimensional Fourier periodogram features the decomposition of the total 

image variance according to all possible integer pairs, (p, q), of wavenumbers along the two 

Cartesian geographical directions (with 1≤ p ≤ n /2 and 1≤ q ≤ n /2). When expressed in polar 

form (Mugglestone & Renshaw 1998) periodogram values, Irθ , are portions of image 

variance accounted for by a waveform having spatial frequency r and traveling direction θ , 

with 22 qpr +=  and θ = tan−1(p /q) . 

For each r spatial frequency summing Irθ  values on all possible traveling directions 

yields an azimuthally cumulated "radial" spectrum, I(r), that provides a convenient way to 

quantify coarseness-related textural properties by studying the decomposition of variance 

among spatial frequencies. Images with a coarse texture will yield a radial spectrum that is 

skewed towards small wavenumbers, whilst fine-textured images are expected to produce a 

more balanced spectra (see Fig. 3 in Couteron 2002 for a schematic illustration). An image in 

which each pixel takes a random value independent of the value taken by any other pixel, will 

have the finest possible texture and a virtually flat spectrum. 

 

ORDINATION OF RADIAL SPECTRA 

We carried out a systematic textural analysis that started by partitioning the canopy 

photographs into square windows of 1 ha at which scale radial spectra were computed. A 

general table was built in which each row was the radial spectrum of a given window, while 

each column contained I(r) values, i.e. the portions of the grey-levels variance explained by a 

given spatial frequency or wavenumber, r. This table of spectra was submitted to a principal 

component analysis (PCA; Manly 1994), which means that windows were considered as 

statistical observations characterized by their spectral profiles, i.e., the way in which the grey-

level variance is broken down in relation to spatial frequencies. Conversely, spatial 

frequencies were seen as quantitative variables that are to be linearly combined to yield 

principal components. We used standardized PCA, so that principal components were defined 
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from the eigenvector analysis of the correlation matrix between spatial frequencies. Note that 

our method of textural analysis, which fully relies on Fourier spectra, is totally distinct from 

the approach of Sommerfeld et al. (2000) who only use the Fourier transform to filter an 

image before identifying trees by applying a binary threshold. 

 

GROUND CONTROL DATA 

Twelve 1-ha control plots were laid out to serve as ground-truth for the textural analysis. We 

used a Magellan SporTrak Color handheld GPS unit (Magellan Systems Corp., San Dimas, 

CA, USA) to locate the plots in the field, link them to the aerial photographs, and extract the 

corresponding digital images using GIS. Each plot was a 100 x 100 m square in which we 

measured diameter at breast height (d.b.h.) or above the buttresses if present, of all the trees 

greater than 10 cm d.b.h. and sampled 49 canopy trees for total height measurement using a 

calibrated optical telemeter (Birnbaum 2001). Canopy trees with a crown exposed to full 

overhead sunlight (values of Dawkins (1958) crown classification index of 4 or 5) were 

systematically selected over a 15 x 15 m grid covering the entire plot, with trees closest to the 

nodes of the grid being selected regardless of their size. We computed from these data five 

simple structural characteristics of the forest stands (Table 1): density (D), basal area (G), 

diameter of the tree of mean basal area (Dg), mean canopy height (Hm), and the standard 

deviation of mean canopy height as an index of canopy roughness (R). All measured trees 

were also classified into 8 d.b.h. classes of 10 cm width, plus an additional class in which all 

the trees ≥ 90 cm d.b.h. were pooled. The table crossing plots with d.b.h. classes was 

submitted to correspondence analysis (CA; Manly 1994) to summarize diameter distributions. 

The first CA axis, which was prominent (73% of the variance of the table) ranked d.b.h. 

classes in their natural order and expressed a gradient from the smallest class (10-20 cm) to 

the largest (≥ 50 cm). Plots scores on this axis were then used as a latent variable summarizing 

the diameter distributions (CA1 in Table 1). Subsequent CA axes proved difficult to interpret 

and were not considered further. 

 

Results 

TEXTURAL ANALYSIS 

A preliminary PCA analysis dealing with all the 3,840 windows of 1 ha highlighted that a 

limited number of windows (about 7.5% of the total) were strongly differentiated from the 

remainder. These windows, which displayed large features (at the scale of 1 ha) such as forest 
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roads or stream valleys and since could not be adequately assessed for forest canopy, were 

excluded from subsequent analyses. A second PCA was run on the 3,545 remaining windows, 

yielding a first factorial plane (Fig. 1 top) that reflected a progressive transition from spectra 

dominated by the first wavenumber (r=1, positive part of PCA axis 2), to spectra 

characterised by the relative importance of small (r=2-3, negative part of axis 1), intermediate 

(r=4-8, negative part of axis 2) and large wavenumbers (r>8, positive part of axis 1). 

Accordingly, we found windows displaying coarse-grained canopy aspects (e.g. Fig. 1-b) on 

the negative extremity of axis 1, while fine-grained canopy textures were found on the 

positive extremity (e.g. Fig. 1-f). Windows of intermediate texture were located all around the 

axes origin, though the best illustrations of these textural types (e.g. Fig. 1-c and Fig. 1-d) 

were found around the negative extremity of axis 2. The textural properties of the canopy 

frequently resulted from size and spatial distributions of gaps and aggregates of crowns rather 

than from size distribution of individual crowns. This was particularly the case for the coarser 

textural types (e.g., Fig 1–b). 

All windows having high positive scores along axis 2 displayed heterogeneity mostly 

due to the influence of relief on sun illumination: for instance, on Fig. 1-a and 1-g, about one 

half of the window appeared sunlit and the other half in shadow. Most of those windows 

encompassed a prominent relief feature such as a ridge or a pronounced valley. Some of those 

windows displayed either a coarse-grained or a complex canopy texture (e.g. Fig. 1-a) while 

some others had a fine-grained canopy (Fig. 1-g). In this second case, the spectrum was 

characterised by the dominance of both first and large wavenumbers. 

 

RELATIONSHIPS BETWEEN CANOPY TEXTURE AND STAND STRUCTURE  

We used coordinates of the plots on the textural ordination axis 1 as an index of canopy 

texture (PCA1) while explanatory power regarding stand structure parameters of Table 1 was 

tested using ordinary linear regressions (Fig. 2). It is noteworthy that while PCA1 was a good 

predictor of the mean stem density (R2 = 0.80, P < 0.0001) the regression against mean basal 

area displayed almost no slope. This was due to the limited variability of basal area across the 

reference plots. Good predictions were also obtained for stand structure parameters such as 

the diameter of the tree of mean basal area (R2 = 0.71, P < 0.001) and plots coordinates along 

axis 1 of the correspondence analysis summarising the size (d.b.h.) distribution of trees 

(R2 = 0.64, P < 0.01). The relationship with mean canopy height was weaker but statistically 

significant (R2 = 0.57, P < 0.01), as with standard deviation of canopy heights (R2 = 0.55, 

P < 0.01), a proxy for stand canopy roughness. 
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PREDICTIVE MAPS OF STAND STRUCTURE PARAMETERS 

To complement the textural analysis, we submitted the table of the radial spectra to k-means 

clustering (Manly 1994), using the Euclidean distance after prior standardization by column 

standard deviations so as to remain consistent with results of standardized PCA. In this 

example, clustering using five classes yielded the most meaningful results. Textural classes 

T2 (coarse-grained canopy) to T5 (fine-grained) were ordinated along PCA axis 1 of the 

textural analysis (see Fig. 1). Class T1 differentiated from other coarse-grained classes along 

PCA axis 2, on the basis of image macro-heterogeneity due to relief-induced illumination 

discrepancy. Class T5 encompassed all fine-grained canopy windows whatever the level of 

illumination heterogeneity. 

Though allocating canopy windows to an arbitrary number of classes is less objective 

information than ordination scores it is very convenient for mapping. For instance, Figure 3 

presents a map of the canopy texture based on the five classes for contact n°399 while Table 2 

shows predictions of the most significant mean stand structure parameters of these classes, as 

inferred from the above regressions (Sokal & Rolf 1995, p. 472). Figure 3 reveals a clear 

spatial partition between: i) coarse- to intermediate-grained canopies (T2-3; red and green 

squares) which were observed on volcano-sedimentary materials on the slopes of Montagne 

Plomb in the southern part of the study site, corresponding to tall stands (  ca. 29-30 m) 

with a low density (   ca. 400-500 trees per ha) of large trees (  ca. 32-34 cm d.b.h.), and 

ii) intermediate- to fine-grained canopies (T4-5; yellow and light-blue squares) on pelitic 

formations in the northern hilly part of the site, corresponding to low stands (  ca. 26-28 

m) with a high density (   ca. 600-700 trees per ha) of small trees (  ca. 26-29 cm d.b.h.). 

In this northern part, fine-grained windows were intermixed with coarse-grained windows 

(T1; dark-blue squares) containing sharp relief features such as ridges or deep valleys (see 

Fig. 1a-g). These features, while fairly well detected by the textural analysis (Fig. 3), were 

infrequent on smooth slopes of Montagne Plomb but frequent in the hilly northern part. 

Furthermore, it is on steep slopes in this northern part, where unfavourable substratum 

conditions (virtually no soil on the alterite) determine dense stands of small trees, that 

frequent occurrence of the finest-grained windows (like Fig. 1-g) was observed. 

ˆ H m
ˆ D ˆ D g

ˆ H m
ˆ D ˆ D g
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Discussion 

Two-dimensional Fourier analysis is a powerful method to obtain both quantitative 

characterization of canopy texture and reasonable estimations of stand structure parameters 

from VHR optical images. This conclusion, drawn from the use of digitized air photos, is 

likely to hold regarding sub-meter pixel satellite images that are easier to use with respect to 

georeferencing and assembling into large maps. But the availability of such images at 

affordable cost is still problematic if the aim is to document large areas of tropical rain forest. 

In addition, frequent cloud coverage limits the acquisition of satellite scenes of good quality. 

Visual interpretation is not only time consuming but also of limited spatio-temporal 

consistency and this is a likely reason for which it has not been widely applied in the tropics 

though extensive air coverage has been available for as long as in the temperate zone. Indeed, 

only an automatic or a semi-automatic approach can deal with the subtle and spatially intricate 

variations that characterize tropical evergreen forest stands. Most examples of visual 

interpretation quoted by Polidori et al. (2003) dealt with contrasted and spatially segregated 

forest types, e.g., deciduous vs. evergreen. 

Automatic recognition and delineation of individual tree crowns has been attempted in 

homogeneous, even-aged tree stands from VHR optical data at the price of complex 

algorithms and heavy computation (e.g., Gougeon 1995; Pouliot et al. 2002). Automatic 

delineation is also under investigation for heterogeneous natural stands (Hurtt et al. 2003). 

There are, anyhow, good reasons to consider automatic delineation of individual crowns as a 

difficult task in tropical stands, due to frequent crown merging between adjacent trees. Asner 

et al. (2002), who performed a thorough manual delineation of tree crowns, acknowledged 

situations for which deciding between single crowns vs. merged crowns is virtually 

impossible and reported a serious positive bias on crown size estimation from VHR satellite 

imagery. Hence, broad-scale applicability of individual trees approaches to tropical stand 

characterization cannot be considered in the near future. On the other hand, our more holistic 

approach, which considers canopy texture as a whole, presents good prospects of immediate 

large-scale applicability. From this point of view, it represents a promising alternative to 

direct measurements of physical attributes of the vegetation, such as canopy tree height 

estimates from LIDAR (light detection and ranging), which requires complex algorithms to 

separate ground returns from overlying vegetation returns, a process remaining subject to 

increased random errors in dense, multi-layered evergreen forests (Clark, Clark & Roberts 

2004). 
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However, as for every regression-based parameter retrieval technique, there is a need 

for both calibration and validation, because values of the canopy texture index are relative to a 

particular set of images and also because the ecological relationship between canopy texture 

and stand parameters has remained up to now poorly investigated. The need to measure 

additional field plots to re-calibrate regression coefficients, for each new study area and each 

new set of images may, at first sight, appear as a serious hindrance to a wide-scale 

implementation of the method. However, it is not unrealistic to think that large datasets 

featuring both tree diameter data and digitized canopy images for many 1-ha plots could be 

efficiently set up by forest departments, as part of their routine field operations of forest 

monitoring and inventory. From such databases, textural indices and regression coefficients 

having broad regional validity could be easily derived to yield automatic estimates of forest 

stand structure parameters over vast areas of tropical forests. This would be particularly useful 

to guide preparation of field prospects for consistent resource inventory, forest classification 

and management planning. 
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Table 1. Stand structure parameters measured for twelve 1-ha ground-truth plots in study area 

of the DIME project near the Petit-Saut reservoir dam, French Guiana. Dg corresponds to the 

diameter of the tree of mean basal area; R is the standard deviation of Hm; CA1 corresponds 

to plot scores along axis 1 of the correspondence analysis carried out on diameter distributions 

(see text). 

Plots Density 

in trees.ha-1 

 

(D) 

Basal area 

in m2.ha-1 

 

(G) 

Mean tree 

diameter in cm 

 

(Dg) 

Mean canopy 

treeheight  

in m 

(Hm) 

Canopy 

roughness 

 

(R) 

Diametric 

structure 

 

(CA1) 

1 455 37.45 32.3 30.4 8.28 0.236 

2 458 28.41 28.1 27.5 7.45 0.020 

3 481 38.57 31.9 26.0 7.37 0.134 

4 746 37.08 25.2 26.8 6.36 -0.098 

5 802 39.44 25.0 26.3 5.02 -0.107 

6 548 39.26 30.2 28.1 6.48 0.156 

7 989 32.96 20.6 21.1 5.28 -0.284 

8 461 42.38 34.2 29.9 8.44 0.337 

9 461 36.55 31.8 27.5 9.25 0.184 

10 547 37.16 33.2 29.0 5.57 0.058 

11 476 35.14 30.6 29.5 6.66 0.168 

12 861 33.03 22.1 24.4 4.56 -0.208 
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Table 2. Predictions of mean stand structure parameters (with standard error) for the five 

classes of canopy texture (see Figure 2 and text). Study site of the DIME project, near the 

Petit-Saut reservoir dam, French Guiana. 

Textural 

classes 

Predicted density 

ˆ D  in trees.ha-1

Predicted mean tree diameter

ˆ D g  in cm 

Predicted mean canopy tree 

height 

ˆ H m  in m 

T1 453.2 (35.2) 32.2 (1.0) 29.0 (0.7) 

T2 382.0 (43.7) 33.8 (1.3) 29.8 (0.9) 

T3 482.2 (32.3) 31.6 (0.9) 28.7 (0.7) 

T4 583.2 (25.9) 29.3 (0.7) 27.5 (0.5) 

T5 738.2 (32.9) 25.8 (0.9) 25.7 (0.7) 
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Figure captions 

 

Figure 1. Results of the multidimensional comparison of spectral profiles for 3,545 forest 

canopy windows of 1 ha in the study area of the DIME project near the Petit-Saut reservoir 

dam, French Guiana. The five textural classes (T1 to T5) identified by k-means clustering (see 

text) are plotted against the two main axes yielded by the principal component analysis (PCA) 

of the spectra table. The envelopes of classes delineate twice the standard deviation of PCA 

scores of the constituting windows. Windows a) to g) have been automatically selected as the 

most illustrative (largest distance from axes origin) with regards to successive angular 

directions in the PCA plane and, thus, to the relative importance of the corresponding ranges 

of wavenumbers. Top-left inset: distribution of relative eigenvalues. Top-right inset: 

correlations of wavenumbers (some of the wavenumbers above 10 are omitted for legibility) 

with PCA axes 1 and 2; each radial direction in the PCA plane corresponds to the relative 

importance in the spectrum of particular ranges of wavenumbers. 

 

Figure 2. Stand structure parameters (see Table 1) as a function of scores of the ground-truth 

plots along PCA axis 1 used as an index of canopy texture (see Fig. 1). Study site of the 

DIME project near the Petit-Saut reservoir dam, French Guiana. 

 

Figure 3. Left: central part of contact image n°399 (coverage 1992-GUF-91/250, IGN, 

France) in the study area of the DIME project, near the Petit-Saut reservoir dam, French 

Guiana. Right: same area with coloured squares corresponding to 1-ha forest canopy windows 

coded in five classes of canopy texture (see Fig. 1, Table 2 and text): dark-blue = T1 (coarse-

grained texture for windows marked by relief-induced illumination discrepancy); red = T2 

(coarse-grained canopy texture); green = T3 (coarse- to intermediate-grained); yellow = T4 

(intermediate- to fine-grained); light-blue = T5 (fine-grained).  
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