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Pierre Couteron, Sébastien Ollier. A generalized variogram-based framework for multiscale
ordination. Ecology, Ecological Society of America, 2005, 86 (4), pp.828-834. <hal-00016494>

HAL Id: hal-00016494

https://hal.archives-ouvertes.fr/hal-00016494

Submitted on 23 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract 
 
Multi-scale ordination (MSO) deals with potential scale-dependence in species assemblages, 
by studying how results from multivariate ordination may be different on different spatial 
scales. MSO methods were initially based on two-term local covariances between species, and 
therefore required sampling designs composed of adjacent quadrats. A variogram-based MSO, 
applicable to very diverse sampling designs has recently been introduced by H.H. Wagner 
(2003, 2004). This refers to Principal Component Analysis, Correspondence Analysis and 
derived "two-table" (also called "direct") ordination methods, i.e., Redundancy Analysis and 
Canonical Correspondence Analysis. 
In this paper we put forward an enlarged framework for variogram-based MSO which relies 
on a generalized definition of inter-species covariance and on matrix expression of spatial 
contiguity between sampling units. This enables us to provide distance-explicit 
decompositions of variances and covariances (in their generalized meaning), that are 
consistent with many ordination methods in both their single- and two-table versions. A 
spatially explicit apportioning of diversity indices is proposed for some particular definitions 
of variance. Referring to two-table ordination methods allowed the multi-scale study of 
residual spatial patterns after factoring out of available environmental variables. Some aspects 
of the approach are briefly illustrated with vegetation data from a neotropical rainforest in 
French Guiana.  
 
Key words: diversity apportioning; species assemblages; multi-scale ordination; multivariate 
geostatistics; canonical correspondence analysis; spatial contiguity; tropical rainforest; 
variogram.  
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Introduction 
 
Determining to what extent multi-species patterns of association may be different on different 
spatial scales is obviously a central issue in ecology (Levin1992). The concern to integrate 
space in numerical studies of inter-species association has led to the development of a method 
of multi-scale ordination (MSO; Ver Hoef and Glenn-Lewin 1989). This requires data from 
continuous sampling designs (e.g. belt transects) since it is based on the computation of two- 
term local covariances between species (Greig-Smith 1983). In two recent papers, H.H. 
Wagner (2003, 2004) proposed a new method for MSO based on the variogram (Wackernagel 
1998) thereby allowing the use of data collected by means of very diverse sampling designs. 
This insightful approach was proposed for two usual ordination methods, i.e., Principal 
Component Analysis (PCA) and Correspondence Analysis (CA). Extension to "direct" 
ordination methods (Legendre and Legendre 1998), using two data tables, such as 
Redundancy Analysis (RDA, relating to PCA) and Canonical Correspondence Analysis 
(CCA, relating to CA) was also proposed by Wagner (2004). 
 
This most recent contribution is a considerable step forward since CA is generally preferred to 
PCA for the study of inter-species associations. CA is a very popular and powerful method 
that positions species and sites along common ordination axes, by applying the same centering 
and weighting options to rows and columns of the site by species table. However, in spite of 
several attractive properties, there is no reason to consider CA as being automatically the most 
appropriate ordination method whatever the characteristics of the data and the aim of the 
study (Gimaret-Carpentier et al. 1998). Several alternatives to CA, with distinct properties, 
can be defined by changing weighting options for either sites or species. For instance, 
Pélissier et al. (2003) demonstrated that changing species weighting, i.e. placing varying 
degrees of emphasis on scarce species, could be used to define three ordination methods 
(including CA) and that each was consistent with one classical diversity index (richness, 
Shannon's, Simpson's). On the other hand, Dolédec et al. (2000) used a uniform weighting of 
sites to derive an alternative to CCA with interesting properties for the separation of species 
niches. Hence, it would be preferable for ecologists to become aware of the potential 
adaptability of both single- and two-table methods of ordination to their specific aims and to 
the characteristics of their data. Such adaptability should also encompass the emerging field of 
spatially explicit ordinations. 
 
The paper presented here was triggered by the pioneering work conducted by Wagner (2003, 
2004) but aims to define a broader framework for variogram-based multi-scale ordinations. 
We intend to demonstrate that it is possible to partition by distance the results of very diverse 
ordination methods, as defined by re-scaling and weighting options for the rows and columns 
of the data tables. To do so, we will introduce a generalized definition of covariance between 
species which encompasses several ordination methods while being amenable to scale-explicit 
decompositions. Consistency with the additive decomposition of common diversity indices 
(Pélissier et al. 2003; Couteron and Pélissier 2004) will be highlighted, while referring to 
methods of two-table "direct" ordination will allows the explicit analysis of residual spatial 
patterns after the factoring out of some environmental variables. This aspect will be 
emphasized in a brief illustration based on vegetation data from a neotropical rainforest. In 
this report, we have chosen to keep mathematical developments to a minimum while 
providing a complete treatment in matrix form in an appendix published in the Electronic 
Ecological Archives. Computer programs are freely available from the first author (Matlab® 
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version) or on http://pbil.univ-lyon1.fr/CRAN/ (R [Ihaka and Gentleman 1996] version 
integrated in the ade4 package). 
 
A generalized definition of covariance 
 
Data tables containing counts of  individual organisms by sampling sites (say "quadrats") and 
taxa (usually species) are both a central and general feature of ecological studies. Let us 
consider such a table, based on N sampled individuals, for which fai is the total number of 
individuals belonging to species i (1<i<S) that were counted in quadrat a (1<a<Q). Let pai be 
the corresponding relative frequency (pai=fai/N) while pa+ and p+i are the relative frequencies 
for quadrat a and species i, respectively. We have introduced our topic with explicit reference 
to counted individuals, though the above parameters remain meaningful as long as fai is a non-
negative value (biomass measurements, semi-quantitative indices of abundance, 
presence/absence, …) expressing the abundance of species i in quadrat a.  
 
Ordination methods such as correspondence analysis CA and various versions of PCA (ter 
Braak 1983) are the usual tools employed to analyze quadrats by species tables. Central to all 
these methods is the application of singular values decomposition (svd), also called 
eigenanalysis, to a square S by S matrix, which is the usual variance-covariance matrix, C, for 
the species-centered (non-standardized) PCA and which is another matrix Q² in the case of 
CA (see Legendre and Legendre 1998:453 and Wagner 2004 for details). In Q², terms on the 
diagonal are homologous to variances and are proportional to the portions of the total chi-
square of the data table (Legendre and Legendre 1998:452) that are attached to each of the S 
species. Off-diagonal terms are homologous to the usual pairwise covariances and measure to 
what extent two arbitrary species may conjointly depart from expected abundance values. 
 
We can see matrices C and Q² as nothing more that special cases of a square matrix 

 based on an appropriate generalization of the notions of species variance 

(diagonal values) and covariance (off-diagonal values). This generalized measure of 
covariance is, for two arbitrary species i and j: 
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=TG

∑∑
= =

−−=
Q

a

Q

b
babjajjibiaiij xxwwxxg

1 1
)()(

2
1 δδ        (1) 

variance being a special case with i=j. 
Here, wi weighs the influence of species i, while δa  and δb are the weights given to quadrats a 
and b, respectively;  xai denotes any measure of abundance of species i in quadrat a  that can 
be derived from the initial value fai via re-scaling options (Table 1). 
 
The choice of weighting options is a central yet often eluded question when using multivariate 
techniques, since weighting along with re-scaling and centering defines the nature of the 
distance between quadrats and, for some methods, also between species. Moreover, the choice 
of weighting options relates to very practical questions concerning, for instance, the influence 
that it seems meaningful to confer to a particular species in the definition of a multi-specific 
assemblage, or to a given quadrat in the investigation of an ecological gradient. Addressing 
such questions means that the biogeographic context must be taken into account (e.g., are 
there many scarce species? How abundant are the most frequent species?) along with the 
sampling design (does it give a fair estimate of species abundance in a region?) and, for two-
table methods, the nature of the ecological gradients under study (are there strong limiting 
factors or threshold effects?). More detailed discussions on the consequences of weighting can 
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be found in Dolédec et al. (2000, regarding quadrats in direct gradient analysis) and in 
Pélissier et al. (2003, regarding species). 
 
Combining re-scaling and weighting options opens up a wide selection of ordination methods 
and associated properties. Some examples, based on published methods, are presented in 
Table 1, but other possibilities are obviously imaginable. The presentation of classical 
ordination methods in terms of weighting of rows and columns was introduced by Escoufier 
(1987) and was used by Sabatier et al. (1989) and Dolédec et al. (2000) for several single- and 
two-table methods (including CA, CCA and classical versions of PCA and RDA). Pélissier et 
al. (2003) used this presentation to compare the properties of the three methods corresponding 
to option IV in Table 1, and to investigate their relationship with diversity measures. All these 
authors based their presentation of the methods on a species-centered version of the data table 
containing differences between individual observations, xai, and the δa-weighted mean 
value, ix , found for each species. Alternatively, in Eq. 1, we use all pairwise differences 
between observations to compute variance and covariance. The equivalence of the two 
approaches is explained in the appendix (see Eq. A.5 to Eq. A.10). 
 
Generalized spatial covariance 
 
From Eq. 1, the contribution made by a given pair (a,b) of quadrats to the covariance between 
two species can be expressed as:  

babjajjibiaiij xxwwxxbag δδ)()(
2
1),( −−=        (2) 

This translates easily into a generalized version of cross-variograms (i≠j) and variograms 
(i=j), namely: 
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where h is the central value of a given distance class, and where K(h) is a scaling coefficient, 

such as:   ∑
≈
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Considering all species together leads to a generalized variogram of species composition 
("generalized" since potentially relating to several ordination methods and distance metrics): 

∑=
i

ii hh )()( GG γγ            (5) 

      
Eq. 4 is a crucial point since K(h) standardizes )(hGγ in such a manner to equate its expected 
value (sill) with the total variance of the ordination method defined by weighting options. 
This is completely different from computing the usual experimental variogram from 
ordination scores, except for the special case of uniform quadrat weights (as in Wagner 2003) 
where K(h) is proportional to the number, nh, of pairs of quadrats relating to distance class h. 
Conversely, if quadrat weights are not uniform, scaling by K(h) is the only manner to ensure 
that, whatever the distance class, the expected value of )(hGγ  is the total variance ("inertia")  
attached to matrix GT and computed from the sum of its diagonal elements. Note that such a 
property is not guaranteed by the manner in which Wagner (2004) defined her version 
(denoted as )(hQγ ) of the CA-related variogram since the corresponding scaling remains 
proportional to nh despite the fact that quadrat weights are not uniform. The scaling by K(h) is 
of particular interest if weightings of both species and quadrats are chosen as to relate to a 
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diversity measurement (option IV in Table 1). In this case, the trace of GT is the diversity 
among quadrats (Couteron and Pélissier 2004), which means that )(hGγ  measures the average 
beta-diversity between pairs of quadrats corresponding to distance class h. Equivalently,  

∑=
i

ii bagbaVAR ),(),(          (6) 

quantifies the contribution made by a given couple (a,b) of quadrats to beta-diversity. Some 
classical dissimilarity indices, such as Jaccard's or Sorensen's (Legendre and Legendre 
1998:256) are often used to quantify beta-diversity, though these have no direct connection 
with either geostatiscal tools or ordination methods. Conversely, Eqs.2 and 6 provide a family 
of dissimilarity indices some of which relate directly to both. 
 
Variograms and cross-variograms of ordination axes 
 
Regardless of the reference ordination method chosen, a generalized variance-covariance 
matrix, Gh, is computed for each distance class h. To ensure efficient computations by any 
matrix-oriented programming language, as we did with Matlab® and R (Ihaka and Gentleman 
1996), we introduced a matrix formulation of the method. It is based of a contiguity 
relationship (Thioulouse et al. 1995) consistent with the variogram, which  considers two 
quadrats as "neighbors at scale h" if the distance between them is within the bounds of the 
class centered around h (see Appendix). Assuming that distance classes include all pairs of 
quadrats while being mutually exclusive, we demonstrated (see Appendix, Eq. A.13) that the 
matrices Gh sum to GT, whatever the initial choice of the reference ordination method by 
weighting options.  
 
The eigenvectors and eigenvalues originating from the singular values decomposition (svd) of 
GT can be partitioned with respect to distance classes (Appendix), as a generalization of the 
fundamental principle introduced by Ver Hoef and Glenn-Lewin (1989). But the complete 
variance-covariance matrix, Fh, between eigenvectors can also be obtained (Appendix, Eq. 
A.13). Considering off-diagonal elements of Fh, namely covariances at scale h between 
eigenvectors, is a new perspective in MSO which can be used to investigate the potential 
existence of a scale-dependent covariance between distinct ordination axes. This question, 
though ignored by most papers devoted to MSO, is closely related to the initial concern of 
Noy-Meir and Anderson (1971), namely that ordination results may substantially vary with 
spatial scales. This would mean, for example, that species displaying the most prominent 
variations of abundance may not be the same depending on the average distance between the 
quadrats, or that distinct species assemblages may be found for different distance classes.  
How can we test whether this is the case or not? One way would be to carry out an ordination 
for each of the Gh matrices and compare the results, but this is likely to be cumbersome while 
objective criteria for the comparison are not straightforward to define. We propose a more 
efficient approach by constructing cross-variograms of eigenvectors from the off-diagonal 
values of Fh matrices after appropriate scaling by K(h). All these cross-variograms have an 
expectation of zero, since the eigenvectors of  GT are globally uncorrelated, but some may 
have significant departures from this expectation on particular scales. (Of course, only the 
cross-variograms for the most prominent eigenvectors are to be analyzed.) If this is the case, it 
is possible to know at which scales it may be worthwhile carrying out specific ordination 
analyses via the svd of the corresponding Gh matrices.  
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Taking environmental heterogeneity into account 
 
 If the species by quadrats table is accompanied by environmental variables assessed at the 
quadrat scale, it is advantageous to factor out the influence of such variables prior to 
analyzing the residual spatial patterns of species composition. Technically, this verifies 
whether some basic assumptions, such as "intrinsic" stationarity (used to interpret the 
empirical variogram), or independence of residuals (assumed to fit a linear model of species-
environment relationship) are met by the data (see Wagner 2004 for an extensive discussion). 
In terms of ecological interpretation, it is judicious to see residual spatial patterns of 
community composition as predominantly shaped by biotic processes, such as species 
dissemination or species interactions (Wagner 2004) and as potentially informative on the 
scale at which such processes may operate.  
 
Any two-table "direct" ordination starts from the decomposition of  the quadrats by species 
table, X, into an approximated table A, modelled from environmental variables by a weighted 
linear regression and a residual table R. Such a decomposition may be carried out in a manner 
consistent with a two-table version of any of the ordination methods mentioned in Table 1 
(Sabatier et al. 1989; Pélissier et al. 2003) when the linear regression uses the quadrat weights 
defining the ordination. (For instance, defining table X along with species and quadrat 
weights so as to make them consistent with CA means that an ordination on A would be a 
CCA.) To study residual spatial patterns, it is possible to break down GR, i.e., the variance-
covariance matrix computed from R, into additive variance-covariance matrices, GRh, each 
corresponding to a certain distance class, and on which a variogram-based multi-scale analysis 
can be based (see Appendix).  
 
Brief illustration based on tropical rain forest data 
 
We considered 7,189 trees (diameter at breast height above 10 cm) belonging to 59 species 
sampled in a lowland tropical rain forest of ca. 10, 000 ha in French Guiana. The sampling 
design was based on 411 rectangular quadrats of 0.3 ha each, located at the nodes of a 400 m 
by 500 m grid. Environmental information at the quadrat scale was expressed by a synthetic 
nominal variable (12 categories) primarily based on topography and soil water regime (see 
Couteron et al. 2003 for details). Performing CA on the quadrats by species table showed two 
main floristic gradients corresponding to the second and third axes (CA2 and CA3). The first 
axis (CA1) resulted from the spurious occurrence of a scarce species (17 trees) in a particular 
quadrat and this illustrates a well-known drawback of CA. Results of the non-symmetric 
correspondence analysis (NSCA) were free from this problem, while the two main axes, 
NSCA1 and NSCA2, correlated strongly with CA3 and CA2 (r = 0.76 and r = 0.84, 
respectively) despite being defined from distinct species. For this data set, shifting emphasis 
from scarce to abundant species changed the hierarchy between the ordination axes, but the 
detection of two main floristic gradients proved robust with respect to species weighting. To 
go beyond these results established by a previous study (Couteron et al. 2003) we explicitly 
considered inter-quadrats distances by applying the generalized variogram-based MSO with 
CA and NSCA as reference ordination methods. First, we partitioned the total variance 
attached to each ordination axis (eigenvalue) among distance classes. Since diversity-related 
ordinations were used (Pélissier et al. 2003), it was the total among-quadrats diversity (sensu 
the species richness for CA or the Simpson-Gini index for NSCA) which was successively 
broken down with respect to main floristic gradients (eigenvalues) and distance classes. 
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The floristic gradient defined by CA2 and NSCA2 failed to show any obvious spatial pattern 
since variograms were found to waver between confidence envelopes, and this regardless of 
the reference ordination (Fig. 1-a and b). The study of residual patterns, after factoring out the 
12 environmental categories (unconstrained ordinations on the residual variance-covariance 
matrix, R) showed significant departures of the CA-based variogram for distances under 2 
km. Such a change in the variogram stemming from the partialling out of the environmental 
variable typifies the complex interaction which can be expected between the environmental 
heterogeneity and spatial patterns of species assemblages. It also illustrates the advantage of 
studying such an interaction within a unified theoretical framework of multi-scale ordination 
since it enabled us to express in the same unit all kinds of results derived from a particular 
ordination method. This renders variograms of both initial and residual patterns directly 
comparable, i.e. a desirable property that could not have been achieved by the computation of 
classical variograms from ordination scores. The other floristic gradient (defined by CA3 and 
NSCA1) showed a strong spatial pattern that pointed toward non-stationarity (see Wagner 
2004 for a detailed definition) since both initial variograms (Fig. 1-c and 1-d) continued to 
rise up to 8 km without reaching a sill. The variograms of the homologous axes provided by 
CA and NSCA after factoring out the qualitative environmental categories appeared to be very 
similar. This indicated that the observed spatial patterns relating to this floristic gradient were 
not determined by the spatial distribution of the environmental categories.  
 
By separately analyzing spatial patterns of distinct ordination axes we have implicitly 
hypothesized  the absence of any scale-dependent relationship between the ordination axes or, 
equivalently, the stability across scales of inter-species covariances (“intrinsic” covariances 
sensu Wackernagel, 1998). Such a hypothesis can be easily addressed by computing the cross-
variograms between the ordination axes (from off-diagonal elements of matrices Fh, Eq. A.18 
in the Appendix). Only cross-variograms computed from the residual variance-covariance 
matrix (R) are shown (Fig. 1-e and –f) since homologous cross-variograms from the initial 
data table were very similar. No scale dependence was observed between the two ordination 
axes given by NSCA (Fig. 1-f) and covariances between abundant species thus appeared to be 
stable across scales. This was not the case when the emphasis was placed on scarcer species 
by the use of CA since most values of the corresponding cross-variogram were outside the 
confidence envelopes (Fig. 1-e). Indeed, by diagonalizing the pooled variance-covariance 
matrices for distances under 4 km vs. distances above 4 km, we obtained two clearly distinct 
sets of species with high loadings on the ordination axes (results not shown). This result 
exemplified how scale-dependence may be detected by analyzing cross-variograms between 
ordination axes, while also illustrating the influence that species weighting may have: CA 
results proved scale-dependent though NSCA results did not. 
 
Concluding remarks 
 
In the above illustration, we deliberately restricted ourselves to some particular analyses that 
can be obtained from the generalized variogram-based MSO, but other kinds of analyses are 
clearly possible. For instance, it may be of interest to compare the spatial patterns of all 
individual species and identify scales on which some patterns may differ from others. This 
can be done by analysing, for instance by PCA, the table containing the generalized 
variograms of all species (prior standardization  by variances of individual species as to have 
all sills equal to one is likely to be preferable). It may also be of interest to study the manner 
in which the distribution of the eigenvalues changes with scale, by analyzing the table 
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containing  the generalized variogram of the eigenvalues. Any type of MSO can address these 
questions, but our unifying approach also provides a choice between ordination methods 
while offering links with diversity measurement and apportioning. As a consequence, future 
users  may be able to select the particular ordination method (either direct or indirect) that best 
suits their data and aims. 
 
Furthermore, the presentation of the method in matrix-form, with the use of contiguity 
matrices (Appendix), not only allows for efficient programming, but also opens up interesting 
methodological perspectives. Indeed, two-term local variances and covariances 
(TTLV/TTLC) on which the "classical" MSO relies (Ver Hoef and Glenn-Lewin 1989) have 
been also formulated using contiguity matrices (Di Bella and Jona-Lasinio 1996,  Ollier et al. 
2003). Such a formulation is obviously a sound basis, not only for a further generalization of 
the TTLV/TTLC-based MSO, as performed by us with the variogram-based MSO, but also 
for a thorough investigation of the respective properties of the two approaches. 
 
Acknowledgements 
 
We are indebted to D. Chessel (University of Lyon-1) for important insights into several 
topics mentioned in this paper, to R. Pélissier (IRD/UMR AMAP) for his valuable comments 
on preliminary drafts, and to H. H. Wagner for pertinent comments on the initial version. 
 
 
Literature cited 
 
Couteron, P., and R. Pélissier. 2004. Additive apportioning of species diversity: towards more 

sophisticated models and analyses. Oikos, 107: 215-221.. 
Couteron, P., R. Pélissier , D. Mapaga, J.-F.  Molino, and L. Teillier. 2003. Drawing 

ecological insights from a management-oriented forest inventory in French Guiana. 
Forest Ecology and Management 172:89-108. 

Di Bella, G., and G. Jona-Lasinio. 1996. Including spatial contiguity information in the 
analysis of multispecific patterns. Environmental and Ecological Statistics 3: 269-280. 

Dolédec, S., D. Chessel, and C. Gimaret-Carpentier. 2000. Niche separation in community 
analysis: a new method. Ecology 81:2914–2927. 

Escoufier, Y. 1987. The duality diagram: a means of better practical applications. Pages 139-
156 in P. Legendre and L. Legendre, editors. Development in numerical ecology. 
Springer-Verlag, Berlin, Germany. 

Gimaret-Carpentier, C., D. Chessel,  and J.-P. Pascal. 1998. Non-symmetric correspondence 
analysis: an alternative for species occurrences data. Plant Ecology 138:97–112. 

Greig-Smith, P. 1983. Quantitative Plant Ecology. 3rd ed. Blackwell Science Publishing, 
Oxford, UK.  

Ihaka, R., and R. Gentleman. 1996. R: a language for data analysis and graphics. Journal of 
Computational and Graphical Statistics 5:299-314. 

Legendre, P., and L. Legendre. 1998. Numerical ecology. Elsevier, Amsterdam, The 
Netherlands. 

Levin, S. 1992. The problem of pattern and scale in ecology. Ecology 73: 1943-1967. 



Variogram-based multi-scale ordination 10

Noy-Meir, I., and D. Anderson. 1971. Multiple pattern analysis or multiscale ordination: 
towards a vegetation hologram. Pages 207-232 in G. P. Patil, E.C. Pielou, and E.W. 
Water, editors. Statistical ecology: populations, ecosystems, and systems analysis. 
Pennsylvania State University Press, University Park, Pennsylvania, USA. 

Ollier, S., D. Chessel, P. Couteron, R. Pélissier, and J. Thioulouse. 2003. Comparing and 
classifying one-dimensional spatial patterns: an application to laser altimeter profiles. 
Remote Sensing of Environment 85: 453:462. 

Pélissier, R., P. Couteron, S. Dray, and D. Sabatier. 2003. Consistency between ordination 
techniques and diversity measurements: two strategies for species occurrence data. 
Ecology, 84:242-251. 

Sabatier, R., J.-D. Lebreton, and D. Chessel. 1989. Principal component analysis with 
instrumental variables as a tool for modelling composition data. Pages 341–352 in R. 
Coppi and S. Bolasco, editors. Multiway data analysis, Elsevier Science Publishers, The 
Netherlands. 

ter Braak, C. J. F. 1983. Principal components biplots and alpha and beta diversity. Ecology 
64: 454-462. 

Thioulouse, J., D. Chessel, and S. Champély. 1995. Multivariate analysis of spatial patterns: a 
unified approach to local and global structures. Environmental and Ecological Statistics 
2: 1-14.  

Ver Hoef, J. M., and D. C. Glenn-Lewin. 1989. Multiscale ordination: a method for detecting 
pattern at several scales. Vegetatio 82: 59-67. 

Wackernagel, H. 1998. Multivariate geostatistics. Second completely revised edition. 
Springer, Berlin, Germany. 

Wagner, H. H. 2003. Spatial covariance in plant communities: integrating ordination, 
geostatistics, and variance testing. Ecology 84: 1045-1057. 

Wagner, H. H. 2004. Direct multi-scale ordination with canonical correspondence analysis. 
Ecology 85: 342-351. 



Variogram-based multi-scale ordination 11

Table 1. Definition of some ordination methods from re-scaling and weighting options  
D is the total diversity computed from the species frequency distribution 
( , while I∑ ++ −=

i
iii ffwD )]1([ N is the total "inertia" corresponding to the ordination of the 

species by quadrats table (trace of the generalized variance-covariance matrix, GT). See text 
for other denotation. 

Re-scaling  
options 

Weighting 
options for 

quadrats, δa  

Weighting options 
for species, wi

Corresponding 
ordination method 

Link with 
diversity 
indices 

(I)  
xai = pai

 
δa = 1/Q 

 
wi = 1 

Species-centered 
PCA*  

 

(II) 

i

ai
ai

V
px = ** 

 
δa = 1/Q 

 
wi = 1 

 

PCA on the species 
correlation matrix* 

IN=S 
(richness) 

(III)  
xai = pai/pa+

 
δa = 1/Q 

 
wi = 1 

Species-centered 
PCA on proportions 
(ter Braak 1983) 

IN = Simpson-Gini 

 
wi = 1/p+i

Correspondence 
analysis (CA)* 

D = S-1 
(richness – 1) 

 
wi=log(1/p+i)/ 

(1-p+i) 

(Pélissier et al. 
2003) 

 
D = Shannon 

(IV) 
 
 

xai = pai/pa+ 
 

 
 
 

δa = pa+

 
wi = 1 

Non-symmetric 
correspondence 
analysis (NSCA) 
(Gimaret-Carpentier 
et al. 1998) 

 
D = SimpsonGini 

* (Legendre and Legendre 1998); ** ∑ +−=
a

iaiQi pp 21 )(  V

 
Legend for Figure 1 
 
Spatial patterns shown by the main ordination axes provided by the application of 
correspondence analysis (CA) and non-symmetric correspondence analysis (NSCA) to 
vegetation data from the Counami Forest Reserve in French Guiana (7,189 trees of 59 species 
sampled in 411 quadrats of 0.3 ha each). a) Generalized variogram for axis CA2 of the initial 
table (filled circles) and for the homologous axis from the residual table, after factoring out of 
12 environmental categories (open circles). The dashed lines denote the 95% bilateral 
envelopes computed from 300 re-allocations of the specific composition to geographical 
locations (complete randomization for variograms from the initial data table and 
randomization within environmental categories for variograms from the residual table). The 
dotted line denotes the mean values for randomizations. b) Same as a) but for axis NSCA2. c) 
Same as a) but for CA3 (confidence envelopes are omitted  for legibility, values within 
envelopes are marked by a square). d) Same as a) but for NSCA1. e) Generalized cross-
variograms between the two main CA axes of the residual table. f) same as e) for NSCA.
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Appendix A. Matrix-algebraic presentation of the concepts and computations..  
 

General denotation 

 

Let X be a table expressing a measure of the abundance xai of S species (columns) within Q 

quadrats (rows). xi and xj are two columns of table X, relating to species i and j, respectively. 

Let D be a matrix containing quadrat weights (δa , 1=∑
a

aδ ) on its main diagonal and zeros 

for all off-diagonal values, and let W be a S by S matrix containing the square root of species 

weights ( iw ) on its main diagonal and zeros outside.  (In the main paper, Table 1 gives 

some options for abundance re-scaling and for quadrat and species weighting.) 

 

Contiguity relationships 

 

Let Lh be a Q by Q matrix expressing a contiguity relationship (sensu Lebart 1969) between 

the quadrats. For our variogram-based approach, we consider quadrats a and b as neighbors if 

the distance between the two is within the bounds of the distance class centered around h: 

Lh(a,b)=1  if ha,b≈h  and Lh(a,b)=0 otherwise.      (A.1) 

To introduce quadrat weights into the analysis, we define the matrix Mh and the vector Eh 

such that: 

DDLM hh =    and   Qhh 1ME =         (A.2) 

where 1Q is the vector containing Q values equal to 1. 

Mh contains, for each pair (a,b) of neighboring quadrats at "scale" h, the product δa δb of their 

weights. Eh features, for each quadrat a, the sum of the weights of its neighbors multiplied by 

δa. Let Nh be the Q by Q matrix with Eh on its main diagonal and zeros elsewhere. 

 



We shall assume that distance classes include all pairs of quadrats while being mutually 

exclusive. In such a case, the two following matrices: 

∑=
h

hMMT   and         (A.2b) ∑=
h

hNNT

are such that MT is a Q by Q matrix that containing zeros on the diagonal while all values off 

the diagonal are equal to δa δb; NT is a Q by Q matrix that containing (1-δa)δa values on the 

diagonal and zeros elsewhere. With MT and NT it is as if each quadrat has all other quadrats as 

neighbors. Denoting IQ the Q by Q diagonal identity matrix, we can also write: 

D)D(INT −= Q    and           (A.3) )DI1D(1M t
T QQQ −=

(where the exponent ' t ' is the matrix transpose). Thus: 

D1D1DMN t
TT QQ−=−          (A.4) 

 

Equivalent expressions of the generalized variance-covariance matrix 

 

Let GT be the generalized variance-covariance matrix, irrespective of distance classes, that 

can be directly computed from table X using weighting options for rows and columns defined 

by matrices D and W, respectively. GT contains, for each species couple (i,j), the generalized 

covariances, gij as defined by Eq. 1 and Eq. 2 in the main paper:  

∑=
ba

ijij bagg
,

),(           (A.5) 

Usual algebraic manipulations allow us to re-write Eq. 1 and Eq. A.5 as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −∑ jiajai

Q

a
ajiij xxxxwwg δ          (A.6) 

where ix and jx are the D-weighted means of xi and xj, respectively.  

( ia
Q

a
ai xx ∑= δ  or, equivalently, Q

t
iix D1X= ) 

The matrix expression of gij is thus: 

WD1xD1xDxW(x )Q
t

jQ
t

ij
t

iijg −=           (A.7) 

which generalizes into: 

WXDXDXW(XGT )tt −=          (A.8) 

where DX11X t
QQ=  and where [ ]ji

t xx=XDX       (A.9) 

Note that we may also write: 

WXXDXXWGT )()( −−= t          (A.10) 



 

On the other hand, it is important to note that GT can be directly computed as: 

)XWM(NWXG TTT −= t            (A.11) 

Proof of Eq. A.11: 

D)X1D1(DX)XM(NX TT
t

QQ
tt −=−     (using Eq. A.4) 

XDXDXXD)X1D1(DX ttt
QQ

t −=−     (using Eq. A.9) 

Noting that XDXXDX tt = , allows us to write: 

XDXDXX)XM(NX TT
ttt −=−            (A12) 

 

Partition of the generalized variance-covariance matrix among distance classes 

 

The very definition of matrices NT and MT (Eq. A.2b), along with Eq. A.11, enables partition 

of  GT into strictly additive components, Gh, that relate each to a distance class: 

∑ ∑ −==
h h

hhh XWMNWXGG t
T )(          (A.13) 

Gh is the generalized variance-covariance matrix defined for the distance class h by the 

neighboring relationship expressed by the matrices  and . GhN hM h translates easily into 

generalization of Wagner's variogram matrix (2003) by a division of all its values by 

 ∑
≈

=
hhba

ba

ab

hK
,

)( δδ   or             (A.14) QhQhK 1M1 t=)(

Equations A.2, A.13 and A.14 are used for easy programming of the method as well as 

efficient computations via any matrix-oriented programming environment, as we did with 

Matlab® and R (Ihaka and Gentleman 1996):  see the freely available library "msov" on 

http://pbil.univ-lyon1.fr/CRAN/.) 

For a particular species couple i and j we obtain: 

WxMNWx t
jhhiij hg )()( −=                         (A.15) 

Dividing by the scaling factor K(h) gives the value at "scale" h of the generalized version of 

either cross-variogram (i≠j) or variogram (i=j) : 

)(
)(

1)( hg
hK

h ijij =Gγ                         (A.16) 

 



Multi-scale ordination 

 

All the ordination methods mentioned in Table 1 of the main paper are based on the singular 

values decomposition (svd) of the appropriate version of GT to compute eigenvectors, uf, and 

associated eigenvalues, λf. Let Uf be the matrix having all the eigenvectors uf as columns and 

let Λ be the diagonal matrix having the eigenvalues λf on its diagonal. Both eigenvectors and 

eigenvalues of  GT can be partitioned by distance classes:  

fh
t

fh UGUF =  and         (A.17) fh
t

ff h uGu=)(λ

Fh is the variance-covariance matrix of the eigenvectors at scale h. Scale-dependent 

variogram/cross-variogram matrices of the eigenvectors are deduced by the appropriate 

scaling (Eq. A.16). Note also that: 

ΛUGUUGUF T ==⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑ f

t
ff

h
h

t
f

h
h       (A.18) 

 

Taking environmental heterogeneity into account 

 

Let us now suppose that a table, Z, containing assessments of P environmental variables for 

the Q quadrats, is available in addition to table of species composition. It is well established 

that the centered by columns table, , may be partitioned into an approximated table,  CX

CC DXZDZ)Z(ZA tt 1−=            (A.19) 

and a residual table,  (Sabatier et al. 1989). AcXR CC −=

In the same manner, it may also have a direct decomposition of the initial table X: 

)XM(NZ)Z)M(NZ(ZA TTTT −−= − tt 1  and AXR −=        (A.20) 

After factoring out the environmental variables, residual spatial patterns may be studied by 

the multi-scale analysis of spatial covariances derived from table R or . The total residual 

variance-covariance matrix, G

CR

RT, is computed as: 

W)RM(NWR)RWM(NWRG CTTCTTRT −=−= tt      (A.21) 

and is broken down with respect to distance classes: 

W)RM(NWR)RWM(NWRG CCR hh
t

hh
t

h −=−=       (A.22) 

The additive partitioning of  GRT with respect to distance classes thus enables an investigation 

of the residual spatial patterns by a multi-scale ordination scheme analogous to that defined 

by Eq. A.17 and Eq. A.18. 
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