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Abstract

To stimulate advances in meta-
learning using deep learning techniques
(MetaDL), we organized in 2021 a
challenge and an associated workshop.
This paper presents the design of
the challenge and its results, and
summarizes presentations made at the
workshop. The challenge focused on
few-shot learning classification tasks of
small images. Participants’ code sub-
missions were run in a uniform manner,
under tight computational constraints.
This put pressure on solution designs
to use existing architecture backbones
and/or pre-trained networks. Winning
methods featured various classifiers
trained on top of the second last
layer of popular CNN backbones,
fined-tuned on the meta-training data
(not necessarily in an episodic manner),
then trained on the labeled support
and tested on the unlabeled query sets
of the meta-test data.

1. Introduction

The performance of many machine learn-
ing algorithms depends highly on the qual-
ity and quantity of available data, and (hy-
per)parameter settings. In particular, deep
learning methods, including convolutional
neural networks, are known to be ‘data-
hungry’ and require properly tuned hyper-
parameters (LeCun et al., 2015; Sharma
et al., 2019). Meta-Learning is a way to ad-
dress both issues (Hospedales et al., 2020;
Vanschoren, 2018). Simple, but effective
approaches reported recently include pre-
training models on similar datasets. This
way, a good model or good hyperparameters
can be pre-determined or previously learned
model parameters can be transferred to the
new dataset. As such, higher performance
can be achieved with the same amount of
data or similar performance with less data
(few-shot learning).

The term Meta-Learning has been
around for a long time, and initially mainly
addressed the algorithm selection prob-
lem (Brazdil et al., 2008), selecting a good
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algorithm with adequate hyperparameters
(e.g., the learning rate or the number of lay-
ers of a neural network). This form of Meta-
Learning was often based on meta-features
and is applied in various Automated Machine
Learning tools, to enhance predictive perfor-
mance (Feurer et al., 2015). The Open Algo-
rithm Selection Challenge (OASC) is a recent
example of a competition that was hosted on
this topic (Lindauer et al., 2017, 2019).

Recently, a new community emerged
that adopted the term Meta-Learning as a
way of transfer learning (Vanschoren, 2018).
This form of meta-learning directly opti-
mizes the parameters of a model, e.g., the
weights of a neural network. Many tech-
niques have been proposed or adapted to
enable learning across datasets; these are
typically divided into one of the following
sub-categories: metric-based (e.g., prototyp-
ical networks (Snell et al., 2017), Siamese
networks (Koch et al., 2015)), model-based
(e.g., Meta-Learning with MANNs (Santoro
et al., 2016), meta networks (Munkhdalai
and Yu, 2017)) and optimization-based
(e.g., LSTM optimizer (Andrychowicz et al.,
2016), MAML (Finn et al., 2017)). These
are only a few examples from the large body
of scientific papers (Hospedales et al., 2020;
Huisman et al., 2021b).

As with all thriving fields with many
active researchers, it is hard to establish
consensus about which techniques have the
greatest potential and to make meaningful
statements about what is state-of-the-art.
There are only a few tools that can be used
with ease. Additionally, there are only a few
standardized benchmarks and uniform pro-
tocols. By organizing the MetaDL compe-
tition, we aim to address this issue. Dur-
ing the AAAI Conference, we hosted the
Workshop on Meta-learning with co-hosted
MetaDL competition.

This paper is organized as follows. Sec-
tion 2 reviews the highlights of the workshop,

including presentations of keynote speakers,
information regarding competition partici-
pants, and accepted papers in the areas of
transfer of knowledge in deep learning and
algorithm selection. Section 3 describes the
MetaDL competition. Section 4 describes
the baselines and the winning approaches in
the MetaDL challenge. Section 5 concludes.

2. Workshop highlights

We will reflect on both the contributions
of the invited keynote speakers and the ac-
cepted papers.

2.1. Keynote Speakers

The workshop featured four high-profile
keynote speakers. All keynotes can be
found on the YouTube channel of our work-
shop1. The first keynote speaker, Oriol
Vinyals (Google Deepmind), gives an intro-
duction to meta-learning as well as an ex-
tensive definition. One of the key obser-
vations is that good benchmarks in meta-
learning are always a moving target. Cur-
rently, the miniImageNet benchmark is pop-
ular (Vinyals et al., 2016), but due to the
overlap in classes, one can ask themselves
the question of whether determining a cer-
tain type of dog (e.g., Husky) is challenging,
after many other types of dogs (or general-
izations of this class-type, such as mammals)
have been seen. Notably, he points to the
new Meta-Dataset benchmark (Triantafillou
et al., 2020), which challenges practitioners
to train further out of distribution. After
this introduction, he reviews the important
components of meta-learning (data, model,
loss function, and optimization strategy)
and presents a taxonomy of meta-learning
solutions (model-based, metric-based, and
optimization-based). One in particular inter-

1. See: https://www.youtube.com/channel/

UCgiiHLuiWkn-qrnHHsXnm2w
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esting model-based technique is GTP3 (Ope-
nAI), which meta-trains on the whole inter-
net and can translate sentences not seen be-
fore.

The second keynote speaker, Chelsea
Finn (Stanford University), makes a strong
case for the difference between real-world
settings and research settings, wherein real-
world scenarios, concept drift plays an im-
portant role. Before diving into this, she
gives an introduction to meta-learning, and
real-world examples beyond image classifi-
cation where meta-learning plays an impor-
tant role, i.e., robotics, predicting proper-
ties/activities molecules, adapt models to
new diseases, and land cover classification
in different regions. She argues that there
are several solutions to concept drift, i.e.,
fine-tuning the model on the updated data
distribution, or build a structure to solve
this problem (e.g., convolutions, which work
great when we know the structure and how to
build it in). However, both solutions are not
always practical. In her talk, she discusses
two recent works that address various forms
of concept drift. The first work addresses
distribution shift, by using MAML to decom-
pose the weights of a neural network into the
equivariant structure and corresponding pa-
rameters. This way, the latter can be up-
dated in the inner loop of MAML, retaining
the equivariant. The second work addressed
group shift. Common approaches focus on
robustness across various groups, at the ex-
pense of average accuracy, whereas when us-
ing MAML we can focus on adaptivity, re-
taining average accuracy.

The third keynote speaker, Lilian Weng
(OpenAI), talks about actual meta-learning
challenges in robotics. A key aspect of meta-
learning is defining a series of tasks to learn
and transfer information from to the next
task. Rather than defining these tasks be-
forehand, they could be generated deliber-
ately. One such way is automatic domain

randomization (ADR) to create a varied set
of tasks, and another is asymmetric self-
play, in which one agent tries to make the
tasks increasingly harder for another agent.
This is expertly shown in an OpenAI project
in which a Rubik’s cube is solved with a
single human-like robot hand. Asymmet-
ric self-play is used here to generate a di-
verse distribution of training tasks. At test
time this policy was able to generalize to
many unseen tasks such as setting a table,
stacking blocks, and solving simple puzzles.
Such memory-augmented models trained on
an ever-growing distribution of training envi-
ronments, either generated by ADR or self-
play, can do meta-learning at test time and
achieve amazing generalizability in environ-
ments or tasks that are not seen during train-
ing.

The final keynote speaker, Richard Zemel
(University of Toronto), reviews various
paradigms of meta-learning in the few shot-
learning setting. He then focused on semi-
supervised few-shot learning, exploiting ‘con-
text’ (either spatial or temporal). Using a
synthesizer of panoramic imagery, they de-
veloped a new dataset called ‘roaming room
dataset’. It consists of images of interior
scenes, displaying various furniture and ob-
jects, some labeled and some not. They
developed an online contextualized few-shot
learning algorithm (called ‘agent’), capable
of recognizing old classes and learning new
ones. The room serves as context, but the
agent is not informed on room changes and
room labels. To be able to keep track of past
contexts, the authors implemented a notion
of short, medium, and long-term memory,
through replay buffers, weights, and mem-
ory models (contextual prototypical mem-
ory, build on top of CNNs, RNNs, and
prototypical networks). Connections were
made by the authors between their memory
model and cognitive science. The RNN plays
the role of the ‘working memory’ (medium-
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term), the CNN that of the long-term statis-
tical learning, and the prototypical network
that of the semantic memory (short term).

2.2. Accepted papers

We categorize the accepted papers into three
categories: (i) the winning submissions to
the competition, (ii) submissions address-
ing the design and analysis of algorithms
for meta-learning to transfer knowledge in
deep learning, and finally (iii) submissions
addressing meta-learning for algorithm selec-
tion.

2.2.1. Competition Participants

The top two finishers of the competition were
invited to submit their solution to the work-
shop. Chen et al. (2021) propose MetaDelta,
a meta-ensemble approach that leverages the
4 GPUs at their disposal to meta-train 4
meta-learners. Each meta-learner consists of
a pre-trained encoder on ImageNet. These
backbones are then fine-tuned with the meta-
train dataset data in a non-episodic fash-
ion. Beyond the first place in the compe-
tition, in the paper, they present good re-
sults on other benchmarks as well. Chobola
et al. (2021) contribute an algorithm that is
based on PTMAP (Hu et al., 2020), which
leverages optimal transport and power trans-
forms. First, a ResNet (He et al., 2016) back-
bone is trained on the meta-train dataset in
a non-episodic fashion. The classifier head
is detached and then the resulting encoder is
used to extract support and query features
of an episode. A post-processing step is per-
formed to ensure that these vectors follow
a Gaussian-like distribution using a power
transformation. Finally, the Sinkhorn algo-
rithm is used to estimate class centers. In
the paper, they present good results on both
the miniImageNet (Vinyals et al., 2016) and
CUB benchmarks (Wah et al., 2011). Both

approaches will be described in more detail
further on.

2.2.2. Transfer knowledge in deep
learning

Several works focus on the design and analy-
sis of algorithms for meta-learning to transfer
knowledge in deep learning.

Aimen et al. (2021) devise a stress test to
discover the limitations of few-shot learning
methods. By increasing the task complex-
ity, they show that initialization strategies
for meta-learning methods such as MAML
quickly deteriorate, while approaches that
use an optimization strategy such as the
Metalearner-LSTM (Ravi and Larochelle,
2017) perform significantly better. More-
over, a hybrid approach combining an opti-
mization strategy for meta-learning trained
in a MAML manner works even better and
achieves higher transferability from simple to
complex tasks.

Ayyad et al. (2021) propose prototypi-
cal random walks, an extension of prototyp-
ical networks, as a graph-based learning sig-
nal derived from unlabeled data. It aims at
maximizing the probability of a random walk
that begins at the class prototype, yielding
a more discriminative representation, where
the embedding of the unlabeled data of a
particular class got magnetized to its corre-
sponding class prototype. They demonstrate
the superiority of prototypical random walks
on the Omniglot, miniImageNet, and Tiered-
ImageNet datasets.

Kuo et al. (2021) address the issue of
catastrophic forgetting, which is a common
issue in few-shot learning approaches. A
well-known insight is that this can be ad-
dressed by injecting the learner with figures
from previous tasks. The authors build upon
this insight, and combine it with MetaSGD,
further addressing the catastrophic forget-
ting and also preventing base learners from
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overfitting and achieved high performances
for all tasks.

Kvinge et al. (2021) speculate that
metric-based approaches (according to the
categorization of Vinyals) will only benefit
if the classes that the model is evaluated
on (meta-test set), are quite similar to the
classes that the model is trained on (meta-
train set). To this end, they develop a new
label set, and demonstrate that their hy-
pothesis is valid. To address the issue, they
develop a new model-type, Fuzzy Simplicial
Networks, that addresses this issue.

Majee et al. (2021) tackle the problem
of few-shot object detection (FSOD) in a
real-world, class-imbalanced scenario involv-
ing road driving images. It compares meth-
ods from both metric learning and meta-
learning on two types of task distributions:
only road images and a more real-world open
set. The results show that metric learning
outperforms meta-learning in both settings,
opening new grounds for few-shot learning
studies.

Mitchell et al. (2021) address the topic of
compositional generalization. They describe
compositional generalization with the exam-
ple of a human knows how to ‘walk’ and how
to ‘walk quickly’, once they learn to ‘cook’,
they should be able to understand the con-
cepts ‘cook quickly’ by combining the afore-
mentioned concepts. The authors conclude
that meta-learning can serve as a tool for in-
jecting indictive bias into neural networks,
however that significant future work is re-
quired.

2.2.3. Algorithm Selection

Kashgarani and Kotthoff (2021) compare
two alternative strategies to leverage a ‘port-
folio’ of expert algorithms, which are special-
ists of certain tasks: selection of the best can-
didate or parallel runs. The authors study a
particular problem of SAT solving. In their
setting, they use a 32 core machine (with

128 GB RAM), which allows them to run
up to 32 algorithms in parallel. The time
limit is 5000 CPU seconds. Because memory
is shared among algorithms, a larger num-
ber of runs fail (per algorithm) when paral-
lelism augments (because of time out or out
of memory). They conclude in favor of se-
lecting the best candidate.

Leite and Brazdil (2021) improve on a
previous algorithm they proposed, called Ac-
tive Testing. The algorithm seeks to rec-
ommend an algorithm (workflow) on a new
task. The meta-training data consists of a
performance matrix of algorithms on previ-
ous datasets/tasks. The search for the best
algorithm on a new task is initialized by the
topmost algorithm returned by the average
ranking method. The next algorithm to be
tested is selected based on the best-predicted
performance gain concerning the current in-
cumbent. The performance gain is estimated
by averaging the performance gains obtained
from meta-training tasks, weighted by the
similarity between the new task and previ-
ous meta-training tasks. This method does
not use classical dataset characteristics, but
rather performance-based similarity between
vectors of performance values. The Spear-
man correlation is used in this process. This
has the advantage that it can be dynamically
updated as more algorithms get tested on the
new task. The authors show that this new
strategy leads to improved results.

Liu and Guyon (2021) study under which
conditions algorithm recommendation can
benefit from meta-learning. They formally
define a meta-distribution, i.e., the dis-
tribution of algorithm performances across
datasets. In that sense, algorithms can be
seen as independent if their performance is
independent of the performances of other al-
gorithms and dependent otherwise. A formal
analysis shows that when algorithms are not
independent of one another, a greedy search
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strategy based on the meta-data of other al-
gorithms can often be optimal.

Meskhi et al. (2021) propose a novel
method of inducing abstract meta-features
as latent variables learned by a deep neu-
ral network. While model-based and land-
marking induce a learning model for each
dataset (meta instances) and extract features
from this model, in the proposed approach,
a model is induced using the meta-base (all
datasets). By training a deep neural network
on the traditional meta-feature space, the au-
thors learn a new latent representation for
datasets (abstract meta-features).

3. The MetaDL competition

MetaDL is a few-shot learning competition
under tight computational constraints. In-
deed, each participant has to train and eval-
uate their models in 2 hours of wallclock
time, using 4 GPU’s.2 This is considered a
rather low budget, meaning that participants
should design smart solutions to deal with
this. We introduce the MetaDL problem
statement and discuss the different choices
we made for the MetaDL competition.

3.1. Problem statement

Finn et al. (2017) defines the few-shot learn-
ing problem as the capacity of a model
to adapt to a new task with a few train-
ing examples. An image classification task
is associated to a dataset D = {Dtr,Dte}
(where typically Dtr = {X tr, Y tr} and Dte =
{X te, Y te} both correspond to labeled exam-
ples). In the few-shot learning literature Dtr
and Dte are often referred to as support set
and query set, respectively. In this context,
we define a meta-dataset M as a collection
of such image classification tasks. We denote
by Mtr and Mte the meta-train and meta-
test dataset respectively. Since we deal with

2. GPU details are provided in section 3.2.5

a multitude of datasets, we indicate a specific
dataset i from the meta-dataset with sub-
script Di = {Dtri ,Dtei }. In those cases, one
dataset Di is often called an episode. In cases
when the context indicates that there is only
one dataset, we omit the subscript from the
notation. Still, it is important to note that
Di and D represent the same concept.

The essence of the meta-learning prob-
lem is to provide a learning procedure that
can extract information from tasks in Mtr

such that the model can adapt using only a
few training examples on a new unseen task
from Mte. The leveraged information from
Mtr can take various forms such as weight
initialization (Finn et al., 2017), a learned
metric (Snell et al., 2017) or even a neural
network’s update rule (Ravi and Larochelle,
2017; Huisman et al., 2021a).

In the context of our challenge, each
phase (will be explained further on) consists
of the problem defined by a meta-train stage
a meta-test stage). More specifically, a phase
is composed of a couple {Mtr,Mte} and par-
ticipants have to extract relevant informa-
tion from Mtr to perform well on unseen
tasks fromMte. During meta-train, the par-
ticipants train a meta-learner that seeks to
perform well across all datasets from Mtr,
whereas during meta-test it is supposed to
adapt to a specific test-dataset D.

In the context of classical machine learn-
ing, we define a learner L as:

L : Dtr → P (1)

where P is a predictor P : X te → Yte. A
meta-learner in our context is defined as:

Ameta :Mtr → L (2)

Therefore the goal is to find Ameta such
that the resulting learner L could perform
well on a new dataset D from Mte. More
specifically, L is optimized on the associated
Dtr and outputs P such that its performance
predicting the labels in Dte is high.
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In contrast with previous challenges like
AutoDL (Liu et al., 2021), we focus on a sin-
gle modality: images. Moreover, we evalu-
ate meta-algorithms on their performance on
tasks composed of unseen image classes, thus
emphasizing quick adaptation.

3.2. Competition design

The competition was held online: a partici-
pant had to submit a python script contain-
ing the definition of their meta-algorithm so
that we can run and evaluate their approach
from scratch. Each submitted script respects
a specific API that we defined as challenge
organizers. This API is meant to be flexi-
ble enough to be used to describe any meta-
learning procedure. It defines 3 main classes
for which their methods need to be overrid-
den to completely define a meta-learning al-
gorithm. Its design relies on the definition
of the different algorithms’ implementation
levels that have been described by Liu et al.
(2019). The 3 main classes are the following:

• Meta-learner: has a meta fit()

method that encapsulates the meta-
training procedure. Using the previ-
ously defined notation, it essentially
process the meta-dataset and capture
the reusable information across meta-
training tasks. It takes Mtr as an ar-
gument and outputs a learner.

• Learner: has a fit() method that en-
capsulates the training procedure (e.g.,
the adaptation phase). It takes Dtr as
an argument from a dataset D along
with the associated information from
the meta-learning procedure to output
a predictor.

• Predictor: has a predict() method
that predicts the labels of test exam-
ples. It takes Dte as an argument for
the associated dataset D.

3.2.1. The learning procedure

Once a participant makes a submission, two
stages will be invoked, i.e., the meta-train
and meta-test stage. In meta-train, the up-
loaded algorithm is presented with the meta-
data and a learner is to be returned (in cor-
respondence with Eq. 2). In the meta-test
stage, the returned learner from the previ-
ous phase is presented with the train obser-
vations from datasets, and a labeling is to be
returned (in correspondence with Eq. 1). We
describe both stages in more detail.

Meta-training The ideal few-shot
learning algorithm can leverage the knowl-
edge gathered from all these different tasks
in Mtr to increase performance on unseen
tasks at meta-test time. Within a phase,
the data are sampled from the associated
Mtr. The way we sample these tasks will be
described in section 3.2.4.

The participants have the choice of se-
lecting a specific configuration of the data
fed to their meta-algorithm. There are 2 dif-
ferent types of configurations one can choose
from:

• Episode mode: The data arrive
in the form of episodes, where each
episode represents a given dataset of
an equal amount of classes. Each of
these tasks has the same dataset for-
mat that is often used in standard ma-
chine learning with the particularity of
having just a few examples in the train
set.

• Batch mode: The data arrive in the
form of a batch, completely ignoring
the structure of episodes. It could be
viewed as a very large standard dataset
containing all the classes and their as-
sociated examples we could have gen-
erated with the episode mode. This
technique is usually considered to con-
struct benchmarks and measure the
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Figure 1: MetaDL challenge’s evaluation process for a single phase defined by its as-
sociated meta-dataset. The evaluation of a submission is divided into 2 processes:
ingestion and scoring. When a participant submits a solution, the ingestion pro-
cess starts which is essentially the meta-training phase. Once this process termi-
nates, the scoring (i.e., evaluation) process starts. The resulting learner from the
ingestion phase is loaded, trained on support data, and evaluated on query exam-
ples for each task. This last step is done for 600 episodes. Note that participants
need to make sure the 2 processes are completed in 2 hours maximum.

meta-learning effect of approaches that
have been trained episodically.

Meta-testing During this phase, the
data arrive in the form of episodes. To
measure the performance across many image
classification tasks, 600 episodes are sampled
and used for evaluation, as it is usually done
in previous few-shot learning benchmarks.
For each episode, the labels of the test set
are hidden.

For each new task, we use the learner gen-
erated from the meta-training part to output
a predictor using Dtr. This process is en-
capsulated in the learner’s fit() function.
Then, the learner predicts the labels of test
examples (i.e., the unlabelled query exam-
ples of the associated task) using the result-
ing predictor. The different meta-learning
algorithms differ in the way they generate
a learner and how they use the information

from Mtr coupled with Dtri to perform well
on Dtei for a given dataset Di.

3.2.2. Evaluation metrics

While the meta-algorithms can be fed with
data arriving in the form of episodes or batch
at meta-train time, they are always evaluated
with episodes with a fixed setting at meta-
test time. This way, we measure the capac-
ity to quickly adapt to a new task from just
a few examples. Performance is measured
with a standard classification metric. These
episodes follow the 5-way 1-shot classifica-
tion protocol which essentially means that
image classification episodes have 5 classes
and Dtr contains only 1 example per class.
We use the associated categorical accuracy
to evaluate performance, for an image classi-
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fication task and its associated dataset Dtei :

CatAccuracy =
∑

yj∼Dte
i

1ŷj=yj

N
(3)

where ŷj and yj are respectively the predic-
tion label and the true label associated to the
jth test example of the task, N is the total
number of examples in Dtei .

To prevent the randomness impact, we
run participants’ final implementation three
times with different seeds and select the one
with the lowest performance. Figure 1 dis-
plays the details of the complete evaluation
process.

3.2.3. Competition Phases

The few-shot image classification litera-
ture has significantly developed during the
past few years. As stated by Doersch
et al. (2020), recent research essentially
benchmarks adaptability (Triantafillou et al.,
2020). Indeed, the Meta-Dataset benchmark
was introduced to measure the performance
of a meta-learner meta-trained on ImageNet
data and then evaluated on image classifi-
cation tasks from other domains. Here we
focus on the single domain few-shot learning
scenario. For each phase of the challenge, we
construct a pair of meta-datasets Mtr and
Mte based on a dataset. Forming these two
sets essentially means splitting the classes
from the original dataset. For example, the
Omniglot dataset is used during the public
phase and contains 1623 classes. We create
a set of 964 classes for meta-training and 659
classes for meta-testing. The data used in
meta-training and meta-testing is then sam-
pled from examples associated with the cor-
responding class split. This process is done
for each of the 3 phases of the MetaDL chal-
lenge.

The choice of datasets for each of the 3
phases is as follows. The description of the
data used is summarized in Table 1.

• Public: This first phase consists of
letting participants have full access
to a popular dataset in the few-shot
learning literature. For this, we used
Omniglot but changed the original
class split that was originally proposed
to be more challenging as described
by Triantafillou et al. (2020). This
phase enables participants to test the
algorithms and analyse their meta-
evaluation results locally.

• Feedback: The associated dataset is
kept hidden from participants. Partic-
ipants can submit their code and have
performance feedback on the meta-test
dataset associated with this phase. We
selected CIFAR100 (Krizhevsky, 2009)
but with a class split similar to the one
introduced by Oreshkin et al. (2018).
This split aims to be more appropri-
ate for a few-shot learning problem,
i.e., it avoids mixing concept types be-
tween meta-train, meta-validation and
meta-test splits. This phase is run on
our systems, and each participant can
make up to 5 submissions per day.

• Final: This phase determines the final
ranking of participants, and is run by
the organizers behind the scenes. The
best meta-algorithm obtained during
the feedback phase is ran from scratch
using a new and unseen meta-train and
meta-test dataset. The performance
on meta-test episodes is the one we
use to rank participants at the end of
the competition. The data we use for
this phase are not public so the meta-
algorithm needs to blindly adapt to
these new images.

3.2.4. Tasks generation

The MetaDL data generation parts are based
on Meta-Dataset data pipeline (Triantafil-
lou et al., 2020). We generate batches

9



Advances in MetaDL: AAAI 2021 challenge and workshop

Table 1: MetaDL meta-datasets summary. For each phase, image classes are split to
define a meta-train, meta-validation, and meta-test dataset.

Domain Class number Sample number Tensor dimension
Phase Mtr Mte per class row col channel

Public (Omniglot) hand-writing 964 659 20 28 28 3

Feedback objects 80 20 600 32 32 3

Final objects 85 15 600 32 32 3

and episodes from the relevant ‘pools’ of
classes. This way, we ensure that the meta-
learning algorithm is meta-trained with cer-
tain classes and evaluated on unseen classes.

To create a N -way K-shot episode, we
first uniformly sample N classes. Then, we
sample K examples per class to create Dtri ,
and an arbitrary number of examples per
class for Dtei . Notice that at the meta-train
time, the number of examples in Dtei is not
subject to constraints in our setting. Partici-
pants can choose this number based on their
experiments since it has a direct impact on
the learning procedure of most meta-learning
algorithms. Participants can also experiment
with different values of N , similar to the ex-
periments by (Snell et al., 2017).

At meta-test time, the number of test
examples per episode is fixed and depends
on the available examples per class in a
dataset. Consider the Omniglot dataset used
at the public phase, which contains over 1623
classes of 20 examples each. For each class,
we need one example to be used in the train
set, leaving 19 examples for the test set. To
obtain a stable evaluation, we use all these
examples. As we use the 5-way 1-shot set-
ting, this makes the episodes consist of 5
train episodes and 95 test episodes. It is
worth noting that the sampling procedure is
controlled on the challenge organizer side via
setting random seeds.

3.2.5. CodaLab: platform for
running competitions

As in the AutoDL Challenge (Liu et al.,
2021), the MetaDL challenge was run on Co-
daLab. The CodaLab platform3 is a power-
ful open-source framework for running com-
petitions that involve result or code submis-
sion. CodaLab facilitates the organization
of computational competitions from the or-
ganizers’ point of view, as well as provides
a rich set of tools (e.g., forum, leaderboard,
online submission) to help participants. In
MetaDL, participants can submit their codes
and receive (almost) real-time feedback on a
leaderboard (i.e., during the feedback phase),
where the performances of different partici-
pants can be compared. More specifically,
every submission was run for 2 hours with
the same VMs on Azure: 4 Tesla M60 GPU,
224 Go of RAM, and 24 cores. Note that
2 hours is relatively short for meta-learning
approaches, however, due to the small image
sizes, we were able to test these techniques
in a low-budget setting.

4. Baselines, winning approaches,
and results

We provided 3 baselines for the competition,
1) fo-MAML 2) prototypical networks, and
3) a transfer learning-based method. The
associated code is available publicly online4.

3. https://competitions.codalab.org/
4. See: https://github.com/ebadrian/metadl
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Table 2 regroups the baseline results as well
as the winning approaches for all the compe-
tition phases.

4.1. fo-MAML

The fo-MAML is the first-order approxima-
tion of the popular MAML algorithm de-
scribed by (Finn et al., 2017). It essen-
tially means that we do not involve comput-
ing second-order gradient in the bi-level op-
timization loop. The model is meta-trained
episodically in the 5-way 1-shot classification
protocol. Each meta-training episode has 5
classes, the support set contains 1 example
per class and the query set contains 19 ex-
amples per class. The image size considered
is 28x28. We use the 4 convolutional lay-
ers presented in the original paper and SGD
as the optimization algorithm for both meta-
learner’s weights and the learner’s weight.
We use a learning rate of 0.005 for the for-
mer and 0.05 for the latter. We run the algo-
rithm for 1100 epochs with a meta-batch size
of 32 (i.e., the number of tasks considered per
outer-loop).

4.2. Prototypical Networks

Snell et al. (2017) introduced prototypical
networks. This algorithm falls in the cat-
egory of non-parametric approaches. Con-
sider a neural network fθ parametrized by its
weights θ, that serves as an embedding func-
tion of images and outputs a d-dimensional
vector. The algorithm starts to compute a
prototype for each class via the examples in
Dtri in the embedding space induced by fθ.
Then, to classify an example from Dte, it
computes the softmax distribution of its dis-
tances (e.g., Euclidean distance) with each
prototype and assigns the label of the closest
one.

As in the original paper, we use episodes
that contain 60 classes and 1 example per
class in the meta-training phase. The basic

architecture is 4 convolutional layers as in the
original paper, taking images of size 28x28
as inputs. We run the algorithm for 1500
epochs with an Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 0.005.
The classifier’s distance used is the Euclidean
distance. This method is considered an ef-
fective approach for few-shot learning image
classification due to its simplicity and com-
putational efficiency. Based on our exper-
iments, prototypical networks are generally
faster to learn than an optimization-based al-
gorithm and thus require less computational
time than counterpart methods.

4.3. Transfer baseline

The transfer baseline is similar to standard
fine-tuning methods. It uses a pre-trained
network on miniImageNet and we fine-tune
the network with the data in the meta-
training phase. In contrast with the previ-
ous methods, data arrive in the form of batch
during the meta-training phase. Each batch
contains 50 images from each of the available
classes. During the meta-testing, the data
still comes in the form of episodes as for all
few-shot learning algorithms. Therefore we
drop the classifier on top of the network and
only keep the embedding function. A new
classifier is then trained with the data from
an episode support set while the embedding
function remains frozen. We train on these
data for 10 epochs using an Adam optimizer
with a learning rate of 0.001.

The transfer baseline struggles to obtain
a good representation of images at meta-test
time and it is probably due to the lack of
associated training examples (1 per class).
Also, the MAML baseline is slow compared
to the prototypical one and it is difficult to
obtain an efficient learner within the time
limit. Prototypical networks learn faster
than the aforementioned methods as it is
suited to tackle different tasks and learns a
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Table 2: Baseline and results of winning approaches on public, feedback and final
meta-datasets used in MetaDL challenge. Three baseline methods (fo-MAML, pro-
totypical networks, and transfer learning) are applied to all 3 meta-datasets. Per-
formances are 5-way classification accuracy averaged over 600 meta-test episodes
along with the 95% confidence interval. Each algorithm is first trained using meta-
train data, then evaluated on meta-test 5-way 1-shot episodes. The Meta Learners
team had an implementation that was not suited to deal with the high number of
classes in Omniglot.

Method : Accuracy (%) ± Confidence (%)

Baselines Winning approaches
Phases fo-MAML Proto Networks Transfer Meta Learners ctom MIG Edinburgh

Public 26.4 ± 0.68 78.3 ± 0.81 27.4 ± 0.77 – 89.5 ± 0.75 69.6 ± 0.87
Feedback 37.8 ± 0.64 35.3 ± 0.62 21.2 ± 3.7 65.4 ± 1.02 48.7 ± 0.83 40.6 ± 0.63

Final 25.2 ± 0.52 26.3 ± 0.56 23.2 ± 0.36 40.2 ± 0.95 35.7 ± 0.85 28.9 ± 6.3

simple metric. Finally, we believe that better
results could be obtained with careful hyper-
parameter tuning.

4.4. Winning Approaches

We briefly present the MetaDL top-3 ap-
proaches in this section. All the associated
code is available on the dedicated website5.
The first 2 teams wrote a paper describing
their methods.

• 1st place. Team Meta Learners
(Chen et al., 2021): They pro-
posed MetaDelta, a meta-ensemble ap-
proach that leverages the 4 GPU at
their disposal to meta-train 4 meta-
learners. Each meta-learner consists of
a pre-trained encoder on miniImageNet
(ResNet50 (He et al., 2016), ResNet152
(He et al., 2016), WRN50 (Zagoruyko
and Komodakis, 2016) and MobileNet
(Howard et al., 2017)). These back-
bones are then fine-tuned with the
meta-train dataset data in a non-
episodic fashion (e.g., 100-way classi-
fication). To predict query labels of
a meta-valid episode, a parameter-free
decoder computes softmax of distances

5. https://metalearning.chalearn.org/

between prototypes and query features
(generated from the 4 encoders) as in
the prototypical network’s algorithm.
The ‘meta-module’, which consists of
a vote of 4 classifiers taking the con-
catenation of the 4 softmax distribu-
tions, is trained on meta-validation
data. The best model is kept to
evaluate the system performance with
meta-test episodes and use a variant of
the aforementioned parameter-free de-
coder that uses query features to com-
pute prototypes (Kye et al., 2020). The
system also has a central controller to
ensure time and resource efficiency.

• 2nd place. Team ctom (Chobola et al.,
2021): Their approach is heavily based
on the recent work of Hu et al. (2020)
that leverages the optimal transport
and power transforms. First, a ResNet
backbone is trained on the meta-train
dataset in a non-episodic fashion. The
classifier head is detached and then
the resulting encoder is used to ex-
tract support and query features of an
episode. A post-processing step is per-
formed to ensure that these vectors fol-
low a Gaussian-like distribution using
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a power transformation. Finally, the
Sinkhorn algorithm is used to estimate
class centers. The predicted label of
a query example is determined by the
closest class center to its feature repre-
sentation.

• 3rd place. Team MIG Edinburgh:
Their model is a ConvNet with 3 con-
volutional layers coupled with a QDA
classifier on top of the network. It is
trained on the meta-train dataset in an
episodic fashion. Performance is evalu-
ated with meta-test episodes with the
resulting model.

5. Conclusion and Further Work

We presented the design of a new challenge
to stimulate the few-shot learning commu-
nity to embrace deep learning and tackle the
hard problems of automating the learning
procedure for few-shot image classification
tasks. We have run baseline methods and
provided a benchmark, under a hard time
constraint, of popular methods along with
MetaDL winning approaches. The setting
allowed participants to use existing architec-
ture backbones and/or pre-trained networks,
which were a starting point to the solution
of all top-ranking participants. Such back-
bones (pre-trained or not) were (re-)trained
on the meta-train dataset, in a non-episodic
manner for the top two ranking teams. The
classification method then varied from team
to team but generally used the output of the
second last layer of the backbone as input to
a classifier trained on the support set and un-
labeled query set. The conclusions may have
been biased by the specifics of our setting.
The competition series will continue with an
extended version of the MetaDL challenge
at NeurIPS 2021, featuring a larger variety
of datasets, bigger images, more data, and
more computational resources, to consolidate
these findings.
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