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using lumped processes constructed from Markov chains

Keywords: DNA sequence; Lumpability; Markov chain; Model selection.

Abstract
The most commonly used models for analysing local dependencies in DNA sequences are (high-
order) Markov chains. Incorporating knowledge relative to the possible grouping of the nu-
cleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating
lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to
lumpability, this problem can be formulated as the determination of an appropriate state space
(smaller than the original state space) such that the lumped chain defined on this state space
retains the Markov property. We propose a different perspective on lumpability where the state
space is fixed and the partitioning of this state space is represented by a one-to-many probabilis-
tic function within a two-level stochastic process. Three nested classes of lumped processes can
be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable
parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the
state space. Characterizations of the lumped processes on the original transition probability
matrix are derived. Different model selection methods relying either on hypothesis testing or
on penalized log-likelihood criteria are presented as well as extensions to lumped processes con-
structed from high-order Markov chains. The relevance of the proposed approach to lumpability
is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables
to highlight differences between intronic sequences and gene untranslated region sequences.

1 Introduction
Statistical and probabilistic properties of patterns (also called words or motifs) have been of
considerable interest in DNA sequence analysis; see Reinert et al. (2000) for a review. Most of
the proposed methods rely on (high-order) Markov chains that represent the local dependencies
in the sequences. In this framework, various methods have been proposed to find patterns with
unexpected frequencies (Prum et al., 1995) or to study the distances between two successive
occurrences of a given pattern (Robin and Daudin, 1999; Stefanov, 2003). It is also well know
that the class of high-order Markov chains is not structurally rich (Bühlmann and Wyner, 1999),
which implies that any kind of parsimonious parameterizations of local dependencies is not pos-
sible. This point is illustrated in Table 1 which shows the number of free parameters of four-state
Markov chains as a function of their order. The very “discontinuous” increase of the number of
free parameters causes the estimated high-order Markov chains to be generally overparameter-
ized. This drawback can be overcome by incorporating structure in order to define sub-classes
of high-order Markov chains. This point is notably illustrated by variable-order Markov chains
(Weinberger et al., 1995; Ron et al., 1996; Bühlmann and Wyner, 1999) where the order, or
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equivalently the memory length, is variable (and depends on the context) instead of being fixed;
see Mächler and Bülhmann (2004) for an example of DNA sequence analysis using variable-order
Markov chains. We will here investigate another approach which consists in taking into account
some knowledge relative to state grouping. In the case of DNA sequences (four-state sequences
where the states are the nucleotides A, C, G and T), grouping may be related either to the
purine-pyrimidine (A/G, C/T), to the strong-weak hydrogen bonding (G/C, A/T) or to the
keto-amino (T/G, A/C) classifications. A possible grouping can be illustrated by the human
intron example. The estimated transition probability matrix for the original four-state space
(Table 2) shows that the two rows corresponding to the purines A and G are close. This suggests
that the four-state first-order Markov chain is overparameterized. By grouping A and G into
a single state A/G that denotes purines, a lumped process can be estimated which achieves a
better tradeoff between the fit to the data and the parsimony of the model as shown in Section
6.1.

In the classical approach to lumpability (Burke and Rosenblatt, 1958; Kemeny and Snell,
1976), the problem of formulating lumpability hypotheses for a Markov chain can be stated as
the determination of an appropriate state space (smaller than the original state space) such
that the lumped chain defined on this state space retains the Markov property. It is known
that lumpability can be characterized on the transition probability matrix since the sums of
transition probabilities from each state in a partition group to all states of a fixed partition
group must be equal (row sum criterion). The applications targeted in this paper should be
clearly contrasted with the determination of an appropriate partition of a large state space
that may arise in performance and reliability modelling, manpower planning and other practical
settings; see Rogers and Plante (1993) whose first part is a tutorial. Our focus is on small but
‘dense’ (in the sense of having no or a few zero entries) transition probability matrices, not
on sparse but large transition probability matrices. Hence, the objective of reducing the state
space becomes less relevant and our objective is rather to find a parsimonious parameterization
of local dependencies in discrete sequences that help to reveal relevant underlying partitions of
the state space. We are thus naturally faced with a model selection problem.

In the proposed approach to lumpability, the state space is fixed and the partitioning of this
state space is represented by a one-to-many probabilistic function within a two-level stochastic
process. A two-level stochastic process is a pair of stochastic processes where the ‘output’ process
is related to the ‘state’ process, which is a Markov chain, by a probabilistic function. The
most well-known family of two-level stochastic processes are hidden Markov chains (Ephraim
and Mehrav, 2002) where the state-to-output mapping is such that a given output may be
observed in different states. In the following, we will restrict our attention to two-level stochastic
processes with discrete-valued output processes where the state-to-output mapping is such that
a given output is observed in a single state and investigate how this type of process can be
utilized to formulate lumpability hypotheses. Lumped processes are closely related to variable-
order Markov chains. For instance, two of the lumped processes proposed in this paper can
be interpreted as a mixed zero-order first-order Markov chain (see Section 3). Both lumped
processes and variable-order Markov chains define structurally rich classes of statistical models
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with reference to (high-order) Markov chains on the basis of a lumping mechanism that applies
to state in the case of lumped processes, and to memories in the case of variable-order Markov
chains.

The remainder of this paper is organized as follows. The basis of the classical approach to
lumpability is presented in Section 2 with particular emphasis on its translation in terms of
two-level stochastic processes. The three possible classes of lumped processes based on first-
order Markov chains are derived in Section 3 and the adaptation to our context of the model
selection methods used for determining the order of a Markov chain is presented in Section 4.
The derivation of lumped processes based on high-order Markov chains is outlined in Section 5.
The proposed approach to lumpability is applied to the analysis of DNA sequences in Section
6. Section 7 consists of concluding remarks.

2 Classical lumpability property
In the following, we consider a time-homogeneous first-order Markov chain {St; t = 0, 1, . . .}
with finite state space A = {0, . . . ,N − 1} and we assume that all the transitions are possible
(pmn > 0; m,n = 0, . . . ,N − 1). The Markov chain {St} is strongly lumpable with respect to a
partition Ã =

{
Ã (0) , . . . , Ã (J − 1)

}
of A (J < N) if, for every initial state distribution π, the

resulting chain
{
S̃t
}
is Markovian and the transition probabilities p̃ij are invariant under choices

of π. In what follows, since we consider only strong lumpability (and not ‘weak’ lumpability
(Kemeny and Snell, 1976)), we shall omit the qualifier. A necessary and sufficient condition for
{St} to be lumpable with respect to a partition Ã of A is that, for each pair

(
Ã (i) , Ã (j)

)
, the

probability of transition from m to some n ∈ Ã (j) is the same for each m ∈ Ã (i) (Kemeny and
Snell, 1976, theorem 6.3.2). If this condition is satisfied, the lumped chain

{
S̃t
}
is Markovian

with transition probabilities p̃ij where for each m ∈ Ã (i),

p̃ij = ∑
n∈Ã(j)

pmn. (row sum criterion) (2.1)

The classical lumpability property can be translated in terms of two-level stochastic processes
as follows (Ephraim and Mehrav, 2002). Let {Yt} be a stochastic process generated by the
original Markov chain {St}. Let h be a many-to-one function from A into Ã such that Yt = h (St);
hence, Yt = yt if and only if st ∈ Ã (yt). The deterministic function h may collapse one or more
states of the original Markov chain {St} onto a single output of {Yt}. The lumped process
{St, Yt} can be reparameterized as the lumped Markov chain

{
S̃t
}
if the row sum criterion (2.1)

is satisfied.
The conditional independence assumptions within the two-level stochastic process {St, Yt}

translate into the following factorization
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P (Y0 = y0, . . . , Yτ−1 = yτ−1)
= ∑

s0∈Ã(y0),...,sτ−1∈Ã(yτ−1)
P (Y0 = y0, S0 = s0, . . . , Yτ−1 = yτ−1, Sτ−1 = sτ−1)

= ∑
s0∈Ã(y0),...,sτ−1∈Ã(yτ−1)

P (S0 = s0)P (S1 = s1|S0 = s0) . . . P (Sτ−1 = sτ−1|Sτ−2 = sτ−2) ,(2.2)

where ∑
s0∈Ã(y0),...,sτ−1∈Ã(yτ−1) means sum on every possible state sequence of length τ such

that s0 ∈ Ã (y0) , . . . , sτ−1 ∈ Ã (yτ−1). Since the function h is deterministic, we have for each st,
P (Yt = yt|St = st) = 1 and the observation probabilities cancel out in the factorization.

If the row sum criterion (2.1) is satisfied, expression (2.2) can be rewritten as a simple
product of terms, the first being a sum of initial probabilities and the subsequent terms being
sums of transition probabilities

P (Y0 = y0, . . . , Yτ−1 = yτ−1) =
( ∑

s0∈Ã(y0)
πs0

)
τ−1∏
t=1

∑
st∈Ã(yt)

pst−1st .

3 Lumped processes
We now adopt a different mode of construction of lumped processes. Let {Xt} be a stochastic
process generated by a stationary Markov chain

{
S̃t
}
with finite state space Ã . Let f be a

probabilistic function from Ã into A such that Xt = f
(
S̃t
)
. In the case of a hidden Markov

chain (Ephraim and Mehrav, 2002), the function f is such that f (i) = f (j) may be satisfied for
some different i, j. Here, we will restrict our attention to two-level stochastic processes

{
S̃t,Xt

}
such that f is one-to-many. Hence, the state space corresponds to a partition of the output
space. In this case, the Markov chain

{
S̃t
}
is no longer ‘hidden’ since the value taken by Xt

determines uniquely the value taken by S̃t; hence, S̃t = s̃t if and only if xt ∈ Ã (s̃t).
The differences between the two ways of constructing lumped processes may be summarized

as follows:

• The function f is one-to-many while the function h is many-to-one. In the classical ap-
proach, the Markov chain {St} is therefore ‘hidden’ while in the proposed approach, the
Markov chain

{
S̃t
}
is not hidden. Hence, {St, Yt} is not in general a Markov chain while{

S̃t,Xt
}
is always a Markov chain (see below for justifications).

• In the classical approach the objective is to determine if the lumped process {St, Yt} can
be reparameterized as a more parsimonious lumped Markov chain

{
S̃t
}
, both defined on

the coarser state space Ã. In the proposed approach, the objective is to determine if the
original Markov chain {St} can be reparameterized as a more parsimonious lumped process{
S̃t,Xt

}
, both defined on the original state space A.
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• In the classical approach, the target process is the lumped Markov chain
{
S̃t
}
defined on

the coarser state space Ã while in the proposed approach, the target process is the two-level
lumped process

{
S̃t,Xt

}
. Hence, in the classical approach, only results in the coarser state

space are of interest (Kemeny and Snell, 1976) while in the proposed approach, results both
in the coarser state space and in the original state space may be of interest.

Since f is a probabilistic function (and not a deterministic function), different conditional
independence structures may be proposed to relate the output process to the state process. In this
manner, the proposed approach will be constructive, the state process

{
S̃t
}
being by definition

a finite state Markov chain and different possible lumped processes
{
S̃t,Xt

}
corresponding to

different conditional independence assumptions will be investigated. To preserve the Markovian
property within the lumped process

{
S̃t,Xt

}
, the output variable Xt cannot depend directly on

(state or output) variables delayed from more than one time step, i.e. Xt−r or S̃t−r with r > 1.
Hence,

P (Xt = xt|Xt−10 = xt−10
)

= P
(
Xt = xt, S̃t = s̃t|Xt−10 = xt−10 , S̃t−10 = s̃t−1t

)
= P

(
Xt = xt, S̃t = s̃t|Xt−1 = xt−1, S̃t−1 = s̃t−1

)
,

where Xt−10 = xt−10 is a shorthand for X0 = x0, . . . ,Xt−1 = xt−1 (this convention transposes to
the state sequence S̃t−10 = s̃t−1t ). Then,

P
(
Xt = xt, S̃t = s̃t|Xt−1 = xt−1, S̃t−1 = s̃t−1

)
= P

(
Xt = xt|S̃t = s̃t,Xt−1 = xt−1, S̃t−1 = s̃t−1

)
P
(
S̃t = s̃t|S̃t−1 = s̃t−1

)
,

since
{
S̃t
}
is a Markov chain.

Since f is one-to-many, we have

P
(
Xt = xt|S̃t = s̃t,Xt−1 = xt−1, S̃t−1 = s̃t−1

)
= P

(
Xt = xt|S̃t = s̃t,Xt−1 = xt−1

)
,

i.e. once Xt−1 is known, S̃t−1 conveys no further information about Xt. Hence, the output
variable Xt which depends on S̃t can also depend on either S̃t−1 or Xt−1. In the case of
first-order Markov chains, three different types of lumped processes

{
S̃t,Xt

}
(termed state-

dependent lumped process, two-state-dependent lumped process and output-state-dependent
lumped process) can then be defined
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P (Xt = xt|Xt−10 = xt−10
)

=




P
(
Xt = xt|S̃t = s̃t

)
P
(
S̃t = s̃t|S̃t−1 = s̃t−1

)
state-dependent,

P
(
Xt = xt|S̃t = s̃t, S̃t−1 = s̃t−1

)
P
(
S̃t = s̃t|S̃t−1 = s̃t−1

)
two-state-dependent,

P
(
Xt = xt|S̃t = s̃t,Xt−1 = xt−1

)
P
(
S̃t = s̃t|S̃t−1 = s̃t−1

)
output-state-dependent.

Hence, for a given partition Ã of A, the three classes of lumped processes are nested,
output-state-dependent lumped processes containing two-state-dependent lumped processes,
which themselves contain state-dependent lumped processes.
Since

P (Xt = xt|Xt−10 = xt−10
) =

{ P
(
Xt = xt|S̃t−1 = s̃t−1

)
(two-)state-dependent,

P (Xt = xt|Xt−1 = xt−1) output-state-dependent, (3.1)

the state-dependent and two-state-dependent lumped processes exhibit a stronger property than
the Markovian property of the output-state-dependent lumped processes.

The conditional independence assumptions within a lumped process
{
S̃t,Xt

}
can be ex-

pressed as a conditional independence graphs; see Lauritzen (1996) for an overview of graphical
models and Smyth et al. (1997) for discussions of graphical models applied to hidden Markov
chains and other two-level stochastic processes. In such a directed acyclic graph (Figure 1),
each vertex represents a random variable, either a state variable S̃t or an output variable Xt,
at some time t. The absence of an arc (or directed edge) from a vertex Yt1 (either of S̃ or of X
type) pointing towards a vertex Yt2 (t1 ≤ t2) indicates that the two random variables Yt1 and Yt2
are conditionally independent given all the other random variables (Yt; t ≤ t2). The three con-
ditional independence graphs corresponding to the three possible lumped processes are shown
in Figure 1. Hence, arcs from vertices S̃t−1 pointing towards vertices Xt are added for two-
state-dependent lumped processes (Figure 1b) while arcs from vertices Xt−1 pointing towards
vertices Xt are added for output-state-dependent lumped processes (Figure 1c) in comparison
with state-dependent lumped processes (Figure 1a).

The stationary Markov chain
{
S̃t
}

is uniquely determined by the transition probability
matrix P̃ = (p̃ij; i, j = 0, . . . , J − 1).
State-dependent lumped process: The output process {Xt} is related to the Markov chain

{
S̃t
}

by the observation (or emission) probabilities

bj (n) = P
(
Xt = n|S̃t = j

)
, j = 0, . . . , J − 1;n = 0, . . . , N − 1, (3.2)

with ∑
n∈Ã(j) bj (n) = 1.

The observation probabilities can be arranged as a J × N matrix, denoted by B, with all
rows summing to one and each column containing exactly one non-zero entry (in the case of a
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hidden Markov chain, each column contains at least one non-zero entry since the state-to-output
mapping is such that f (i) = f (j) may be satisfied for some different i, j).
Two-state-dependent lumped process: The output process {Xt} is related to the Markov chain{
S̃t
}
by the following observation probabilities

bij (n) = P
(
Xt = n|S̃t = j, S̃t−1 = i

)
, i, j = 0, . . . , J − 1;n = 0, . . . ,N − 1, (3.3)

with ∑
n∈Ã(j) bij (n) = 1.

Output-state-dependent lumped process: The output process {Xt} is related to the Markov chain{
S̃t
}
by the following observation probabilities

bm,j (n) = P
(
Xt = n|S̃t = j,Xt−1 = m

)
, m = 0, . . . , N − 1; j = 0, . . . , J − 1;

n = 0, . . . , N − 1, (3.4)

with ∑
n∈Ã(j) bm,j (n) = 1.

In what follows, the notation pmn will be used both for the transition probabilities of the
original Markov chain {St} - pmn = P (St = n| St−1 = m) - and the output transition prob-
abilities of the lumped process

{
S̃t,Xt

}
- pmn = P (Xt = n| Xt−1 = m) -. The objective is

now to derive criteria to determine if an original Markov chain {St} is lumpable with respect
to a partition Ã =

{
Ã (0) , . . . , Ã (J − 1)

}
of A, i.e. if the original Markov chain {St} can

be reparameterized as a more parsimonious lumped process
{
S̃t,Xt

}
. These criteria are direct

consequences of properties of the output transition probabilities pmn = P (Xt = n| Xt−1 = m)
which are given below.
Proposition 1.
State-dependent lumped process: The output transition probabilities pmn = P (Xt = n| Xt−1 = m)
satisfy the two following criteria:
(i) row equality criterion

pmn = bj(n)p̃ij = pm′n, m 	= m′;m,m′ ∈ Ã (i) ;n ∈ Ã (j) ,
(ii) column ratio criterion

pmn
pmn′

= bj(n)p̃ij
bj(n′)p̃ij = bj(n)

bj(n′) , m ∈ Ã (i) ;n 	= n′;n, n′ ∈ Ã (j) . (3.5)

Hence pmn/pmn′ do not depend on m.
Two-state-dependent lumped process: The output transition probabilities pmn = P (Xt = n|
Xt−1 = m) satisfy the row equality criterion

pmn = bij(n)p̃ij = pm′n, m 	= m′;m,m′ ∈ Ã (i) ;n ∈ Ã (j) .
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Output-state-dependent lumped process: The output transition probabilities pmn = P (Xt = n|
Xt−1 = m) satisfy the row sum criterion

∑
n∈Ã(j)

pmn = p̃ij = ∑
n∈Ã(j)

pm′n, m 	= m′;m,m′ ∈ Ã (i) . (3.6)

Hence, in this case, we obtain the row sum criterion of the classical lumpability property which
in our context is the weakest criterion.

These properties are direct consequences of the definition of lumped processes given by (3.2)
(3.3) and (3.4).

Theorem 1.
(i) The original Markov chain {St} can be reparameterized as a state-dependent lumped process{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the transition probabilities satisfy

the row equality and the column ratio criteria.
(ii) The original Markov chain {St} can be reparameterized as a two-state-dependent lumped
process

{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the transition probabilities

satisfy the row equality criterion.
(iii) The original Markov chain {St} can be reparameterized as an output-state-dependent
lumped process

{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the transition

probabilities satisfy the row sum criterion.
This theorem follows directly from the properties of the output transition probabilities given in
Proposition 1.

It is possible to adopt a different presentation of the criteria of reparameterization which
puts the focus on the nested character of the three lumped processes for a given partition Ã
of A. It is obvious that, for the three lumped processes, the output transition probabilities
pmn = P (Xt = n| Xt−1 = m) satisfy the row sum criterion (3.6). With reference to output-
state-dependent lumped processes, it is necessary to add the following column ratio criterion for
two-state-dependent lumped processes

pmn
pmn′

= bij(n)p̃ij
bij(n′)p̃ij = bij(n)

bij(n′) , m ∈ Ã (i) ;n 	= n′;n, n′ ∈ Ã (j) . (3.7)

Hence pmn/pmn′ do not depend on m for a fixed i.
And for state-dependent lumped processes, it is necessary to add the column ratio criterion
(3.5). The row equality criterion is directly deduced from the row sum criterion and the most
restricted column ratio criterion (3.7).

In the case of a state-dependent lumped process, the original transition probability matrix
P is related to the transition probability matrix P̃ and the observation probability matrix B of
the lumped process

{
S̃t,Xt

}
by

P = CP̃B, (3.8)
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where C is the transpose of B such that all the non-zero entries are replaced by 1’s (C is a
N × J matrix whose j-th column is a vector consisting of 1’s for the outputs aggregated in the
j-th state and 0’s otherwise). Since BC = I (the j, jth entry is ∑

n∈Ã(j) bj (n) = 1 while the
i, jth entry with i 	= j is zero) where I denotes the J × J identity matrix, relation (3.8) can be
rewritten as

BPC = P̃ .
This relation is used to compute P̃ from P and C in the framework of the classical approach

to lumpability (Kemeny and Snell, 1976). The matrix C is indeed the observation probability
matrix of the lumped process {St, Yt} defined in the framework of the classical approach to
lumpability; see Section 2. In this framework, the choice of B is by no means unique and all is
needed is that the j-th row have non-zero entries for outputs aggregated in state j.

To illustrate the construction of the three types of lumped processes
{
S̃t,Xt

}
, consider an

original 3-state Markov chain {St} with transition probabilities (pmn; m,n = 0, 1, 2). Suppose
this Markov chain is lumpable with respect to the partition

Ã = {{0} , {1, 2}} =
{
Ã (0) , Ã (1)

}
.

Illustration with a state-dependent lumped process: The transition probabilities (pmn; m,n = 0, 1, 2)
of the original Markov chain {St} are related to the transition probabilities (p̃ij ; i, j = 0, 1) and
the observation probabilities (bj (n) ; j = 0, 1; n = 0, 1, 2) of the state-dependent lumped process{
S̃t,Xt

}
by

P = CP̃B

=



1 0
0 1
0 1




( p̃00 p̃01
p̃10 p̃11

)( 1 0 0
0 b1 (1) b1 (2)

)

=



p̃00 p̃01b1 (1) p̃01b1 (2)
p̃10 p̃11b1 (1) p̃11b1 (2)
p̃10 p̃11b1 (1) p̃11b1 (2)


 .

The multiplication by the matrix C duplicates the rows corresponding to the states with
more than one possible output and thus generates the row equality criterion while the multipli-
cation by the matrix B adds columns with identical transition probabilities p̃ij and observation
probabilities constrained by ∑

n∈Ã(j) bj (n) = 1 for the outputs aggregated in a given state and
thus generates the column ratio criterion.
Hence,

p1n = p2n, n = 0, 1, 2,
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and
p01
p02 = p11

p12 = p21
p22 , where p11

p12 ≡ p21
p22

(≡ means both numerators and denominators equal).
The number of free parameters of the state-dependent lumped process

{
S̃t,Xt

}
is thus

N (N − 1) subject to

pmn = pm′n, m 	= m′;m,m′ ∈ Ã (i) ; i = 0, . . . , J − 1;n = 0, . . . , N − 1,
(N − J) (N − 1) constraints (row equality criterion), and

pmn
pmn′

= bj(n)
bj(n′) , m = 0, . . . , N − 1;n 	= n′;n, n′ ∈ Ã (j) ; j = 0, . . . , J − 1,

(N − 1) (N − J) constraints (column ratio criterion). We should also take into account the
(N − J) (N − J) double constraints resulting from both the row equality and the column ratio
criteria (see the above example). Finally, the number of free parameters is

N (N − 1)− (N − J) (N − 1)− (N − 1) (N − J) + (N − J) (N − J)
= J (J − 1) +N − J. (3.9)

In expression (3.9), J (J − 1) is the number of independent transition probabilities while
N − J is the number of independent observation probabilities.
Illustration with a two-state-dependent lumped process: The transition probabilities (pmn; m,n = 0, 1, 2)
of the original Markov chain {St} are related to the transition probabilities (p̃ij ; i, j = 0, 1) and
the observation probabilities (bij (n) ; i, j = 0, 1; n = 0, 1, 2) of the two-state-dependent lumped
process

{
S̃t,Xt

}
by

P =



p̃00 p̃01b01 (1) p̃01b01 (2)
p̃10 p̃11b11 (1) p̃11b11 (2)
p̃10 p̃11b11 (1) p̃11b11 (2)


 .

Hence,

p1n = p2n, n = 0, 1, 2.

The number of free parameters of the lumped process
{
S̃t,Xt

}
is thus N (N − 1) subject to

(N − J) (N − 1) constraints (row equality criterion). Finally, the number of free parameters is

N (N − 1)− (N − J) (N − 1) = J (N − 1)
= J (J − 1) + J (N − J) .
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Illustration with an output-state-dependent lumped process: The transition probabilities (pmn;
m,n = 0, 1, 2) of the original Markov chain {St} are related to the transition probabilities (p̃ij;
i, j = 0, 1) and the observation probabilities (bm,j (n) ; m = 0, 1, 2; j = 0, 1; n = 0, 1, 2) of the
output-state-dependent lumped process

{
S̃t,Xt

}
by

P =



p̃00 p̃01b0,1 (1) p̃01b0,1 (2)
p̃10 p̃11b1,1 (1) p̃11b1,1 (2)
p̃10 p̃11b2,1 (1) p̃11b2,1 (2)


 .

Hence,

p10 = p20, p11 + p12 = p21 + p22.

The number of free parameters of the lumped process
{
S̃t,Xt

}
is thus N (N − 1) subject to

∑
n∈A(j)

pmn = ∑
n∈A(j)

pm′n, m 	= m′;m,m′ ∈ Ã (i) ; i, j = 0, . . . , J − 1,

(N − J) (J − 1) constraints (row sum criterion); see Thomas and Barr (1977) in the framework
of the classical approach to lumpability. Finally, the number of free parameters is

N (N − 1)− (N − J) (J − 1) = J (J − 1) +N (N − J) .

It is interesting to illustrate with this example the alternative point of view which puts
the focus on the nested character of the three lumped processes for a given partition Ã of
A. The number of free parameters of the lumped process

{
S̃t,Xt

}
is N (N − 1) subject to

(N − J) (J − 1) constraints (row sum criterion). In the case of the two-state-dependent lumped
process, (N − J) (N − J) constraints corresponding to the column ratio criterion (3.7) are added,
and in the case of the state-dependent lumped process, (N − 1) (N − J) constraints correspond-
ing to the column ratio criterion (3.5). In the example, to the constraints

p10 = p20, p11 + p12 = p21 + p22,
the constraint

p11
p12 = p21

p22
is added in the case of the two-state-dependent lumped process, and the constraints

p01
p02 = p11

p12 = p21
p22

are added in the case of the state-dependent lumped process. It should be noted that the row
sum criterion (3.6) and the column ratio criteria (3.5) or (3.7) are non-redundant in the sense
that they do not generate double constraints. The number of free parameters of the lumped
process

{
S̃t,Xt

}
is thus
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N (N − 1)− (N − J) (J − 1)−



(N − 1) (N − J) state-dependent,
(N − J) (N − J) two-state-dependent,

output-state-dependent.

In the case of an original first-order Markov chain, one way to relate the three types of
lumped processes is by considering their respective conditional independence graphs presented
in Figure 1. A complementary perspective is given by comparing their respective numbers of
free parameters as a function of the number of states J for a fixed number of outputs N

ϕN (J) = J (J − 1) +N − J state-dependent,
φN (J) = J (J − 1) + J (N − J) = J (N − 1) two-state-dependent,
ψN (J) = J (J − 1) +N (N − J) output-state-dependent.

These three functions are represented in Figure 2 forN = 11. It can be seen that both ϕN (J)
and φN (J) are strictly increasing functions from ϕN (1) = φN (1) = N − 1 (zero-order Markov
chain) to ϕN (N) = φN (N) = N (N − 1) (first-order Markov chain). The behaviour of ψN (J)
is very different since ψN (J) = ψN (N − J + 1) and ψN (1) = ψN (N) = N (N − 1) (first-order
Markov chain). The case J = 1 can be interpreted as an N -state first-order Markov chain built
on the successive random variables Xt while the case J = N can be interpreted as an N -state
first-order Markov chain built on the successive random variables S̃t (this behaviour is naturally
expressed in the conditional independence graph in Figure 1c). In the case where N is odd, the
function ψN (J) reaches its minimum for J = (N + 1) /2 where ψN (J) = (N − 1) (3N + 1) /4.
The maximum gain in number of free parameters, which is (N − 1)2 /4, seems rather limited.
Moreover, the symmetric shape of ψN (J) appears to be counterintuitive regarding the concept
of lumpability where a strictly increasing function such as ϕN (J) or φN (J) is expected. Hence,
for output-state-dependent lumped processes, a recommendation would be to evaluate only
partitions Ã of A such that J ≥ N/2.

Since in the case of first-order Markov chains, memories coincide with states, models built
by lumping states on the basis of the row equality criterion can be seen as variable-order Markov
chains (Weinberger et al., 1995; Ron et al., 1996; Bühlmann andWyner, 1999). Hence, the (two)-
state-dependent lumped process

{
S̃t,Xt

}
is partly a first-order Markov chain (with J (J − 1)

free parameters corresponding to the first-order part) and partly a zero-order Markov chain (with
(N − J) free parameters for the state-dependent lumped process and J (N − J) free parameters
for the two-state-dependent lumped process corresponding to the zero-order part); this is also
a direct consequence of (3.1). The specificity of state-dependent lumped processes lies in the
reversibility property which is described in the proposition below.
Proposition 2.
If the original Markov chain {St} can be reparameterized as a state-dependent lumped process
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{
S̃t,Xt

}
with respect to the partition Ã of A, then the reversed chain (obtained by reversing

the direction of time) can be reparameterized as a state-dependent lumped process with respect
to the same partition Ã of A.

Proof : The transition probabilities (pmn; m,n = 0, . . . , N − 1) of the original Markov chain
satisfy the row equality criterion

pmn = pm′n, m 	= m′;m,m′ ∈ Ã (i) ;n ∈ Ã (j) ,
and the column ratio criterion

pnm
pnm′

= bi(m)
bi(m′) , n ∈ Ã (j) ;m 	= m′;m,m′ ∈ Ã (i) .

Since the process is stationary, we have
pnm
pnm′

= πm
πm′

,
where πm, πm′ are the stationary probabilities for the states m and m′.

The stationary reversed Markov chain is uniquely determined by the transition probability
matrix Q = (qmn; m,n = 0, . . . , N − 1) with (Feller, 1968; Kulkarni,1995)

qmn = pnmπn
πm .

The column ratio criterion can be rewritten as
pnmπn
πm = pnm′πn

πm′
.

Hence qmn = qm′n.
The row equality criterion can be rewritten as

pmn
πn = pm′n

πn .
Hence, qnm

qnm′
= πm
πm′

. �

4 Model selection methods
In the following, the model selection methods which are direct transpositions of the methods used
for the determination of the order of a Markov chain will be presented for state-dependent lumped
processes, the cases of two-state-dependent and output-state-dependent lumped processes being
outlined at the end of this Section. Let us denote H0 the hypothesis that {St} can be repara-
meterized as a state-dependent lumped process

{
S̃t,Xt

}
with respect to the partition Ã of A.

Note that H0 is contained in the larger hypothesis H1 corresponding to the fact that {St} is a
first-order Markov chain. A procedure for testing such hypotheses can be based on a χ2 or a
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likelihood ratio test. Let fmn denote the observed frequency of pairs of outputs in which output
m is followed by output n. For the corresponding marginal frequencies, we use the customary
dot notation

fm· = ∑
n
fmn, f·n = ∑

m
fmn.

A similar definition applies to fij, fi· and f·j at the state level. We have the obvious following
relationships for each state j

f·j = ∑
n∈Ã(j)

f·n.

One simple way for testing a lumpability hypothesis is to calculate the expected frequencies
of different pairs of successive outputs, assuming a given partition of the original state space,
and to compare these expected frequencies with the observed frequencies fmn. By a direct
transposition of Billingsley (1961), the χ2 statistic

∑
m,n

(
fmn − fm· b̂j (n) p̂ij

)2

fm· b̂j (n) p̂ij , m ∈ Ã (i) ;n ∈ Ã (j) , (4.1)

where p̂ij and b̂j (n) are the estimates of p̃ij and bj (n) respectively

p̂ij = fij
fi· , b̂j (n) = f·n

f·j ,

has asymptotically a χ2 distribution withN (N − 1)−{J (J − 1) +N − J} = (N − J) (N + J − 2)
degrees of freedom. These degrees of freedom are maximal for J = 1 which corresponds to the
classical χ2 test with (N − 1)2 degrees of freedom for testing the zero-order hypothesis (purely
random sequence) within the first-order hypothesis (Billingsley, 1961). The zero-order Markov
chain can be seen as a state-dependent lumped process with a single state.

Likelihood ratio tests can also be used to test lumpability hypotheses. The likelihood of the
output sequence xτ−10 which uniquely determines the state sequence s̃τ−10 is given by

P
(
X0 = x0, S̃0 = s̃0, . . . ,Xτ−1 = xτ−1, S̃τ−1 = s̃τ−1; P̃ , B

)
= π̃s̃0bs̃0 (x0)

τ−1∏
t=1

p̃s̃t−1s̃tbs̃t (xt)
= π̃s̃0bs̃0 (x0)L

(
P̃ , B

)
.

where π̃s̃0 is the stationary probability of state s̃0. The likelihoods under the two models, the
original one and the lumped one, are essentially
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L (P ) = ∏
m,n

pfmnmn ,

L
(
P̃ , B

)
= ∏

i,j
p̃fijij

{∏
j

∏
n∈Ã(j)

bj (n)f·n
}
.

We must compute the maxima of the log-likelihoods under the two models. We already
know that p̂mn = fmn/fm·, p̂ij = fij/fi· and b̂j (n) = f·n/f·j. The log-likelihood of the output
sequence xτ−10 for the estimated parameters P̂ , B̂ is given by

logL
(
P̂ , B̂

)
= ∑

i,j
fij log fijfi· +

∑
j

∑
n∈Ã(j)

f·n log f·nf·j . (4.2)

The log-likelihood ratio statistic for testing H0 is

2
{∑

m,n
fmn log fmn

fm·
−
(∑

i,j
fij log fijfi· +

∑
j

∑
n∈Ã(j)

f·n log f·nf·j
)}

= 2∑
m,n

fmn log fmn/fm·
(fij/fi·) (f·n/f·j) m ∈ Ã (i) ;n ∈ Ã (j)

= 2∑
m,n

fmn log fmn
fm· p̂ij b̂j (n) , (4.3)

which asymptotically has a χ2 distribution with N (N − 1) − {J (J − 1) +N − J} degrees of
freedom.

The χ2 (4.1) and the log-likelihood ratio (4.3) statistics are related under the null hypothesis
by the well-known asymptotic equivalence

∑
m,n

(
fmn − fm· b̂j (n) p̂ij

)2

fm· b̂j (n) p̂ij ≃ 2∑
m,n

fmn log fmn
fm· p̂ij b̂j (n) , m ∈ Ã (i) ;n ∈ Ã (j) .

If different lumpability hypotheses are to be evaluated, a first possibility is to apply a col-
lection of either χ2 or likelihood ratio tests. But, this approach is not recommended since there
are no formal rules that rigorously define how the various P-values might be used to select a
final model; see Akaike (1974), Kass and Raftery (1995) and Burnham and Anderson (2002).
Moreover, the fact that χ2 or likelihood ratio tests exist only for nested models may be too
restrictive. Hence, hypothesis testing should only be used as a simple test in the case where a
single lumpability hypothesis is considered. Another possibility is to use penalized log-likelihood
criteria such as Akaike’s Information Criterion (AIC) (Akaike, 1974; Burnham and Anderson,
2002) or Bayesian Information Criterion (BIC) (Schwarz, 1978; Katz, 1981; Kass and Raftery,
1995; Csiszár and Shields, 2000) to evaluate lumpability hypotheses. A substantial advantage of
penalized log-likelihood criteria over hypothesis testing is that they are also valid for nonnested
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models (Kass and Raftery, 1995; Burnham and Anderson, 2002). For example, in the BIC case,
the maximum log-likelihood for the first-order Markov chain {St} is penalized by a function of
both the number of free parameters and the sample size τ

2∑
m,n

fmn log fmn
fm·

−N (N − 1) log τ . (4.4)

The maximum log-likelihood for the state-dependent lumped process
{
S̃t,Xt

}
given by (4.2) is

similarly penalized

2
(∑

i,j
fij log fijfi· +

∑
j

∑
n∈Ã(j)

f·n log f·nf·j
)

− {J (J − 1) +N − J} log τ . (4.5)

The BIC favors the model which gives the maximum penalized log-likelihood between (4.4)
and (4.5). The above procedure can be directly extended to multiple, either nested or nonnested,
lumpability hypotheses (corresponding in this latter case to different nonnested partitions of A).

The model selection methods presented above can be directly transposed to two-state-
dependent lumped processes by remarking that the estimate of bij (n) is given by

b̂ij (n) =
∑

u∈Ã(i) fun∑
u∈Ã(i),v∈Ã(j) fuv

=
∑

u∈Ã(i) fun
fij ,

and that the log-likelihood of the output sequence xτ−10 for the estimated parameters P̂ , B̂ is
given by

logL
(
P̂ , B̂

)
= ∑

i,j
fij log fijfi· +

∑
i,j

∑
n∈Ã(j)

( ∑
u∈Ã(i)

fun
)
log

∑
u∈Ã(i) fun
fij .

The model selection methods presented above can also be directly transposed to output-
state-dependent lumped processes. For instance, the χ2 statistic

∑
m,n

(
fmn − fm· b̂m,j (n) p̂ij

)2

fm· b̂m,j (n) p̂ij , m ∈ Ã (i) ;n ∈ Ã (j) ,

where p̂ij and b̂m,j (n) are the estimates of p̃ij and bm,j (n) respectively

p̂ij = fij
fi· , b̂m,j (n) = fmn∑

v∈Ã(j) fmv
,

has asymptotically a χ2 distribution withN (N − 1)−{J (J − 1) +N (N − J)} = (N − J) (J − 1)
degrees of freedom (rather than N2 − {J (J − 1) +N (N − J)} proposed by Thomas and Barr
(1977)). These degrees of freedom are maximal for J = (N + 1) /2 (see Section 3).
It can be noted that
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p̂ij b̂m,j (n) =
(∑

u∈Ã(i),v∈Ã(j) fuv∑
u∈Ã(i) fu·

)
fmn∑

v∈Ã(j) fmv

is the maximum likelihood estimator of pmn under the constraints (2.1) proposed by Thomas
and Barr (1977). In fact, the test proposed by Thomas and Barr is the χ2 test for testing an
output-state-dependent lumpability hypothesis within the general first-order hypothesis.

Using the log-likelihood of the output sequence xτ−10 for the estimated parameters P̂ , B̂ given
by

logL
(
P̂ , B̂

)
= ∑

i,j
fij log fijfi· +

∑
m
∑
j

∑
n∈Ã(j)

fmn log fmn∑
v∈Ã(j) fmv

,

the likelihood ratio test or the penalized log-likelihood criteria (AIC or BIC) can directly be
derived.

5 Lumped processes based on high-order Markov chains
The construction of lumped processes based on first-order Markov chains can be transposed to
higher-order Markov chains. For instance, if the original process {St} is a stationary second-
order Markov chain with transition probability matrix P = (pkmn; k,m, n = 0, . . . , N − 1), the
corresponding lumped process

{
S̃t,Xt

}
is constructed from a stationary second-order Markov

chain with transition probability matrix P̃ = (p̃hij; h, i, j = 0, . . . , J − 1) while the definition of
the observation probabilities remains unchanged with respect to the first-order case; see (3.2),
(3.3) and (3.4). In what follows, we assume that the transition probabilities pkmn (respectively
p̃hij) are arranged as a N2×N (respectively J2×J) matrix with all rows, each row corresponding
to a given memory, summing to one. The conditional independence assumptions within the
lumped processes

{
S̃t,Xt

}
can be translated into directed acyclic graphs which are directly

deduced from the graphs in Figure 1 by adding arcs from vertices S̃t−2 pointing towards vertices
S̃t. High-order Markov chains can be seen as first-order Markov chains defined on an enlarged
state space corresponding to the possible memories. Hence, first-order Markov chain statistical
theory applies to higher-order Markov chains (Billingsley, 1961; Guttorp 1995) and the model
selection methods presented in Section 4 for lumped processes based on first-order Markov chains
can directly be transposed to lumped processes based on higher-order Markov chains. We can
now outline the main steps in the derivation of the transposition of the results presented in
Section 3 for first-order Markov chains.

Proposition 3.
State-dependent lumped process: The output transition probabilities pkmn = P (Xt = n| Xt−1 =
m, Xt−2 = k) satisfy the two following criteria:
(i) row equality criterion
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pkmn = bj(n)p̃hij = pk′m′n, k 	= k′ or m 	= m′; k, k′ ∈ Ã (h) ;m,m′ ∈ Ã (i) ;n ∈ Ã (j) ,

(ii) column ratio criterion
pkmn
pkmn′

= bj(n)p̃hij
bj(n′)p̃hij = bj(n)

bj(n′) , k ∈ Ã (h) ;m ∈ Ã (i) ;n 	= n′;n, n′ ∈ Ã (j) . (5.1)

Hence pkmn/pkmn′ do not depend on both k and m.
Two-state-dependent lumped process: The output transition probabilities pkmn = P (Xt = n|
Xt−1 = m, Xt−2 = k) satisfy the two following criteria:
(i) row equality criterion

pkmn = bij(n)p̃hij = pk′m′n, k 	= k′ or m 	= m′; k, k′ ∈ Ã (h) ;m,m′ ∈ Ã (i) ;n ∈ Ã (j) ,

(ii) column ratio criterion

pkmn
pkmn′

= bij(n)p̃hij
bij(n′)p̃hij = bij(n)

bij(n′) , k ∈ Ã (h) ;m ∈ Ã (i) ;n 	= n′;n, n′ ∈ Ã (j) . (5.2)

Hence pkmn/pkmn′ do not depend on both k and m for a fixed i. We have therefore sub-
column ratio criteria that correspond to each possible preceding state i.
Output-state-dependent lumped process: The output transition probabilities pkmn = P (Xt = n|
Xt−1 = m, Xt−2 = k) satisfy the two following criteria:
(i) row sum criterion

∑
n∈Ã(j)

pkmn = p̃hij = ∑
n∈Ã(j)

pk′m′n, k 	= k′ or m 	= m′; k, k′ ∈ Ã (h) ;m,m′ ∈ Ã (i) , (5.3)

(ii) column ratio criterion

pkmn
pkmn′

= bm,j(n)p̃hij
bm,j(n′)p̃hij = bm,j(n)

bm,j(n′) , k ∈ Ã (h) ;m ∈ Ã (i) ;n 	= n′;n, n′ ∈ Ã (j) . (5.4)

Hence pkmn/pkmn′ do not depend on k. In fact, we have sub-column ratio criteria that
correspond to each possible preceding output m.

Corollary 1. The output transition probabilities pkmn = P (Xt = n| Xt−1 = m, Xt−2 = k) of
an output-state-dependent lumped process satisfy the following row equality criterion

19



pkmn = bm,j(n)p̃hij = pk′mn, k 	= k′; k, k′ ∈ Ã (h) ;m ∈ Ã (i) ;n ∈ Ã (j) .

Proof. Suppose that n ∈ Ã (j) ,

∑
v∈Ã(j)

pkmv = pkmn
(
1 +

∑
v �=n,v∈Ã(j) bm,j(v)

bm,j(n)
)

= pkmn
bm,j(n) .

Applying the row sum criterion (5.3) for a fixed m completes the proof. �

Theorem 2.
(i) The original second-order Markov chain {St} can be reparameterized as a state-dependent
lumped process

{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the transition

probabilities satisfy the row equality criterion and the column ratio criterion defined in (5.1).
(ii) The original second-order Markov chain {St} can be reparameterized as a two-state-dependent
lumped process

{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the transition prob-

abilities satisfy the row equality criterion and the column ratio criterion defined in (5.2).
(iii) The original second-order Markov chain {St} can be reparameterized as an output-state-
dependent lumped process

{
S̃t,Xt

}
with respect to the partition Ã of A if and only if the

transition probabilities satisfy the the row sum criterion and the column ratio criterion defined
in (5.4).

Consider now lumped processes based on rth-order Markov chains and assume that the
transition probabilities of the original rth-order Markov chain {St} (respectively the rth-order
Markov chain

{
S̃t
}
) are arranged as a Nr × N (respectively Jr × J) matrix with all rows,

each row corresponding to a given memory, summing to one. Another way of generalization to
high-order Markov chains consists of linking the observation probabilities to the order of both
the state process

{
S̃t
}
and the original Markov chain {St} instead of leaving them fixed and

independent of the order. Recall that to preserve the rth-order Markovian property within the
lumped process

{
S̃t,Xt

}
, the output variable Xt cannot depend directly on (state or output)

variables delayed from more than r time steps. More precisely, the number of free parameters of
the (r + 1)-state-dependent lumped process and the r-output-state-dependent lumped process
are then

Jr (J − 1) + Jr (N − J) = Jr (N − 1) (r + 1) -state-dependent,
Jr (J − 1) +Nr (N − J) r-output-state-dependent.

The corresponding conditional independence graphs in the case of second-order Markov chains
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are shown in Figure 3. For rth-order Markov chains with r > 2, it is possible to define many
classes of lumped processes intermediate between the lumped processes where the observation
probabilities are defined as for lumped processes based on first-order Markov chains (see Section
3) and lumped processes with linked observation probabilities as discussed above.

For an original rth-order Markov chain {St}, the number of constraints on the Nr (N − 1)
independent transition probabilities is
row sum criterion:
(Nr − Jr) (J − 1) .
row equality criteria:
(Nr − Jr) (N − 1) k-state-dependent lumped process (1 ≤ k ≤ r + 1),
Nk (Nr−k − Jr−k) (N − 1) k-output-state-dependent lumped process (1 ≤ k ≤ r).
column ratio criteria:(Nr − Jk−1) (N − J) k-state-dependent lumped process (1 ≤ k ≤ r + 1),(Nr −Nk) (N − J) k-output-state-dependent lumped process (1 ≤ k ≤ r),
double constraints resulting from the row equality and column ratio criteria:
(Nr − Jr) (N − J) k-state-dependent lumped process (1 ≤ k ≤ r + 1).

The row sum criterion constitutes a base condition for lumpability and defines the maxi-
mum number of free parameters of a lumped process for a fixed order and a given partition of
the original state space (or the minimum gain in number of free parameters with reference to
an original rth-order Markov chain). With reference to this r-output-state-dependent lumped
process, many more parsimonious lumped processes can be defined. The combination of the row
sum criterion and the appropriate column ratio criterion constitutes a general way for stating
conditions of reparameterization of an original high-order Markov chain. In the case of no direct
dependencies between outputs (k-state-dependent lumped processes with 1 ≤ k ≤ r + 1), the
combination of the row equality criterion with the appropriate column ratio criterion (which are
partly redundant) constitutes a more intuitive way for stating conditions of reparameterization.
In the case of direct dependencies between outputs (k-output-state-dependent lumped processes
with 1 ≤ k ≤ r), the row equality criterion is simply a byproduct of the row sum criterion and
the appropriate column ratio criterion (see Corollary 1) and cannot be used in conjunction with
solely this column ratio criterion to define conditions of reparameterization.

6 Application to DNA sequence analysis
Our objective here is to assess the relevance of lumped processes that incorporate knowledge
relative to nucleotide grouping for the exploratory analysis of DNA sequences.

A deoxyribonucleic acid (DNA) molecule consists of two complementary sequences of nu-
cleotides that twist to form a double helix. Each sequence is composed of four nucleotides
consisting of a deoxyribose sugar, a phosphate group and a purine or pyrimidine base. Purine
bases are adenine (A) and guanine (G); pyrimidine bases are cytosine (C) and thymine (T). The
nucleotides are linked together by a backbone of alternating sugar and phosphate groups with
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the 5’ carbon of one sugar linked to the 3’ carbon of the next, giving the sequence an orienta-
tion. The two single strands of a DNA molecule are connected by hydrogen bonding between
complementary bases. Guanine pairs specifically with cytosine, forming three hydrogen bonds,
and adenine pairs with thymine forming two hydrogen bonds. Hence, it may be useful to take
into account some grouping of states relative either to the purine-pyrimidine (A/G, C/T), to
the strong-weak hydrogen bonding (G/C, A/T) or to the keto-amino (T/G, A/C) classification
in the analysis of DNA sequences.

Raftery and Tavaré (1994) were the first to test lumpability hypotheses in DNA sequences.
For analysing mouse gene introns, they adopted the following procedure. In a first stage, they
applied the Thomas and Barr (1977) method, based on a first-order Markov chain assumption,
to test if some states may be lumped. If the lumpability hypothesis was not rejected, they
compared in the coarser state space (for instance the three-state space {A/G, C, T}), different
models corresponding to different high-order dependency hypotheses (more precisely, different
mixture transition distribution models, a kind of parametric high-order Markov chains relying
on an analogy with autoregressive models). A shortcoming of their approach is that the two
stages of analysis are decoupled and that the first stage relies necessarily on a first-order Markov
chain assumption. Hence, their approach suffers from a lack of a single statistical model that
represents both lumpability and high-order dependencies.

In the remainder of this section, we analyse two different groups of DNA sequences namely
(i) intronic sequences and (ii) gene untranslated regions (5’ and 3’ UTRs). Although both types
of sequences are part of genes encoding proteins, they do not by themselves code for protein
segments. The introns correspond to the RNA fragments that are excised from the nascent RNA
to produce the final messenger RNA. The 3’ UTR is the terminal part of the messenger RNA
situated downstream of the stop codon (end of the protein coding sequence). Numerous studies
have shown that 3’ UTR sequences play crucial roles in post-transcriptional regulation of gene
expression. These sequences can be recognized by protein complexes that control the stability
(Mitchell and Tollervey, 2001), the subcellular localization (Jansen, 2001) or the translation
(Macdonald, 2001) of the mRNA molecule. On the opposite, intronic sequences generally do
not contain regulatory sequence motifs (except in the vicinity of the 5’ and 3’ ends).

It should be noted that lumped processes corresponding to different partitions (including
at least {A/G, C, T}, {A, C/T, G} and {A/T, C, G}), different lumpability properties and
different Markov chain orders were systematically compared while only the most relevant results
are reported in the remainder of this section.

6.1 Human introns
The sample comprises 29 intronic sequences of cumulated length 18084. These 29 introns belong
to four contiguous human genes (introns 3 to 11 of gene TAP1, introns 1 to 10 of gene TAP2,
introns 1 to 5 of gene LMP7, introns 1 to 5 of gene DOB; accession number X66401) located in
regions of medium G+C content (45 %).

The estimated transition probability matrix for the original four-state space (Table 2) shows
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clearly that the two rows corresponding to the purines A and G are close while the corresponding
columns are very different (because of the rare C→G transition with p̂CG = 0.05). This suggests
lumping A and G into a single state A/G that denotes purines. The estimated transition proba-
bility matrix for the state space {A/G, C, T} is given in Table 3. As expected, for this three-state
space, the BIC favors the two-state-dependent lumped process corresponding to the row equality
criterion alone while the column ratio criterion eliminates the state-dependent lumped process
(Table 4). The rules of thumb of Jeffreys (1961, Appendix B; see also Kass and Raftery (1995))
suggest that a difference of BIC of at least 2 log 100 = 9.2 is needed to deem the model with
the higher BIC substantially better. The BIC analysis confirms that the output-state-dependent
lumped process corresponding to the row sum criterion is overparameterized since for each n
(either A or G), b̂A,A/G (n) ≃ b̂G,A/G (n); see Table 5.

For second-order Markov chains, the estimated transition probability matrix for the original
four-state space is given in Table 6 while the estimated transition probability matrix for the state
space {A/G, C, T} is given in Table 7. It should be noted that for the original four-state space,
the BIC favors the first-order Markov chain while in the case of the grouping of the purines A
and G, the BIC favors the two-state-dependent lumped process based on a second-order Markov
chain (Table 4). This means in particular that rows A A, G A, A G, G G | C A, C G | T A,
T G | A C, G C | A T, G T respectively tend to be close together (and closer than rows • A
| • C | • G | • T respectively); the groups of rows are separated by ‘|’. The BIC favors the
two-state-dependent lumped process irrespective of Markov chain order (Table 4).

If the DNA strand is read in the opposite 3’ to 5’ direction, the rare C→G transitions
are replaced by rare G→C transitions. Hence, G cannot be grouped with other states. In this
case, the estimated transition probability matrix for the original four-state space (Table 8)
shows clearly that the two rows corresponding to the pyrimidines C and T are close while the
corresponding columns are very different. As expected, for this three-state space, the BIC favors
the two-state-dependent lumped process irrespective of Markov chain order (Table 9) while the
output-state-dependent lumped process is overparameterized; see the observation probabilities
in Table 10. It should be noted that for the original four-state space, the BIC favors the first-
order Markov chain while in the case of the grouping of the pyrimidines C and T, the BIC favors
the two-state-dependent lumped process based on a second-order Markov chain (Table 9).

6.2 3’ UTR sequences
The sample comprises 18 human UTR sequences of length ranging from 1.1 to 3.8 kb and
of cumulated length 37084, retrieved from UTRdb (Pesole et al., 2002) (accession numbers:
3HSA016017, 3HSA016060, 3HSA016075, 3HSA020009, 3HSA016076, 3HSA012593, 3HSA000005,
3HSA020017, 3HSA016077, 3HSA011748, 3HSA000007, 3HSA011753, 3HSA012606, 3HSA014832,
3HSA012609, 3HSA020024, 3HSA020025, 3HSA016120).

Both in the conventional 5’ to 3’ direction and in the opposite 3’ to 5’ direction, the BIC
favors the output-state-dependent lumped process based on a second-order Markov chain for
the partition {A/T, C, G}; see Tables 11 to 14. The analysis enables to highlight a reversible
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grouping of A and T. It should be noted that reversibility can only be stated formally for
state-dependent lumped processes based on first-order Markov chains.

7 Concluding remarks
On the basis of the mouse gene introns (of T-cell receptor α/δ-locus and αA-crystallin gene)
studied by Raftery and Tavaré (1994), the grouping of the purines A and G can be identified
in the conventional 5’ to 3’ direction and the grouping of the pyrimidines C and T can be
identified in the opposite 3’ to 5’ direction (modeled in all the cases by two-state-dependent
lumped processes based on first-order Markov chains corresponding to the row equality criterion
alone); the result are not reported.

For the intronic sequences, the grouping of the purines A and G in the conventional 5’ to
3’ direction entails, on the complementary strand, the grouping of the pyrimidines C and T in
the 3’ to 5’ direction, and conversely, the grouping of the pyrimidines C and T in the opposite
3’ to 5’ direction entails, on the complementary strand, the grouping of the purines A and G in
the 5’ to 3’ direction. For the 3’ UTR sequences, the grouping of A and T in the conventional
5’ to 3’ direction entails, on the complementary strand, the grouping of A and T in the 3’ to 5’
direction, and conversely, the grouping of A and T in the opposite 3’ to 5’ direction entails, on
the complementary strand, the grouping of A and T in the 5’ to 3’ direction. The aggregations
found in the conventional 5’ to 3’ direction and in the opposite 3’ to 5’ direction are therefore
conserved in the complementary strand both for intronic and 3’ UTR sequences.

The different possible groupings were evaluated on several human introns. The symmetry
property of the two complementary strands is systematically verified on these supplementary
examples. The most frequently selected lumped processes are two-state-dependent lumped
processes for the grouping of the purines A and G in the conventional 5’ to 3’ direction (and the
grouping of the pyrimidines C and T in the opposite 3’ to 5’ direction). The different possible
groupings were also evaluated on the individual 3’ UTR sequences (length between 1 kb and
4 kb) analysed all together in Section 6.2. In addition to the grouping of A and T (in both
directions), the grouping of the purines A and G in the conventional 5’ to 3’ direction and the
grouping of the pyrimidines C and T in the opposite 3’ to 5’ direction are in most cases possible
(results not reported). Since the grouping of A and T is always possible for 3’ UTR sequences
and almost never possible for intronic sequences, this grouping could be tested as a discriminant
rule between intronic and 3’ UTR sequences. The interpretation of the groupings identified in
intronic and 3’ UTR sequences in terms of biological processes is an open question. It is known
that UTRs contain sequence motifs involved in the regulation of mRNA stability, transport and
translation (Mitchell and Tollervey, 2001; Jansen, 2001; Macdonald, 2001). Intronic sequences
rarely contain such regulatory sequence motifs. It is thus likely that lumped processes have been
able to reveal statistical differences related to these UTR- or intron-specific sequence properties.

The main interest of the proposed approach to lumpability is that different processes cor-
responding to different lumpability hypotheses and possibly to different high-order dependency
hypotheses may be compared by usual measures such as BIC since they are all defined on the
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same original state space. Lumped processes and variable-order Markov chains are two com-
plementary ways for defining structurally rich classes of statistical models with reference to
(high-order) Markov chains. Hence, lumped processes based on variable-order Markov chains
may provide a general framework for the analysis of local dependencies in stationary sequences.
Lumped processes based on variable-order Markov chains that provide a more refined modelling
of local dependencies compared to simple fixed-order Markov chains may be useful as input of
methods for comparing different types of biological sequences (e.g. introns such as discussed in
Hall et al. (1998)) or as a basis for sophisticated methods for analysing words in sequences such
as reviewed in Reinert et al. (2000).

The definition of lumped processes from (possibly high-order) Markov chains is similar to the
definition of variable-order Markov chains in the sense that new classes of parsimonious models
are defined on the basis of lumping mechanisms (of states, of memories). Hence, minimal
parameterizations of specific classes of Markov chains are in this way derived and global model
selection methods such as BIC apply equally well to these structurally richer families of models
as to fixed-order Markov chains. In this more general framework, new difficulties may appear
due to the potentially very large number of candidate models to be compared.

Interesting perspectives will be to apply the proposed approach to many other DNA se-
quences and to test if lumped processes can serve as a predictive tool for the annotation of
intronic and UTR sequences.
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Table 1. Number of of free parameters of four-state Markov chains as a function of their order.

r 0 1 2 3 4 5 6 7
No. of free param 3 12 48 192 768 3072 12288 49152

Table 2. Human introns (5’ to 3’): estimated transition probability matrix for a first-order
Markov chain.

A C G T
A 0.25 0.19 0.28 0.28
C 0.29 0.29 0.05 0.37
G 0.26 0.19 0.29 0.26
T 0.17 0.25 0.25 0.33

Table 3. Human introns (5’ to 3’): estimated transition probability matrix for the first-order
Markov chain defined on the state space {A/G, C, T}.

A/G C T
A/G 0.54 0.19 0.27

C 0.34 0.29 0.37
T 0.42 0.25 0.33

Table 4. Human introns (5’ to 3’): BIC analysis (cumulated sequence length: 18084).

No. of free param 2 logL BIC
state space {A, C, G, T}

first-order Markov chain 12 -48321 -48438.6
second-order Markov chain 48 -47985.9 -48456.4

state space {A/G, C, T} - first-order Markov chain
state-dependent lumped process 7 -49187.6 -49256.3

two-state-dependent lumped process 9 -48323.9 -48412.1
output-state-dependent lumped process 10 -48323.9 -48421.9
state space {A/G, C, T} - second-order Markov chain

state-dependent lumped process 19 -48960.2 -49146.4
two-state-dependent lumped process 21 -48096.4 -48302.2

output-state-dependent lumped process 22 -48096.4 -48312
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Table 5. Human introns (5’ to 3’): estimated observation probabilities.

A G
two-state-dependent lumped process

A/G → A/G 0.48 0.52
C → A/G 0.86 0.14
T → A/G 0.41 0.59

output-state-dependent lumped process
A → A/G 0.48 0.52
C → A/G 0.86 0.14
G → A/G 0.48 0.52
T → A/G 0.41 0.59

Table 6. Human introns (5’ to 3’): estimated transition probability matrix for a second-order
Markov chain.

A C G T
A A 0.32 0.17 0.25 0.26
C A 0.19 0.21 0.28 0.32
G A 0.28 0.17 0.34 0.21
T A 0.23 0.22 0.23 0.32
A C 0.37 0.26 0.05 0.32
C C 0.27 0.29 0.05 0.39
G C 0.3 0.29 0.08 0.33
T C 0.25 0.31 0.03 0.41
A G 0.31 0.17 0.29 0.23
C G 0.21 0.26 0.28 0.25
G G 0.27 0.2 0.29 0.24
T G 0.23 0.19 0.28 0.3
A T 0.2 0.22 0.26 0.32
C T 0.14 0.29 0.26 0.31
G T 0.2 0.22 0.32 0.26
T T 0.17 0.26 0.19 0.38

Table 7. Human introns (5’ to 3’): estimated transition probability matrix for a second-order
Markov chain defined on the state space {A/G, C, T}.

A/G C T
A/G A/G 0.58 0.18 0.24
C A/G 0.48 0.21 0.31
T A/G 0.49 0.2 0.31
A/G C 0.4 0.28 0.32
C C 0.32 0.29 0.39
T C 0.28 0.31 0.41
A/G T 0.49 0.22 0.29
C T 0.4 0.29 0.31
T T 0.36 0.26 0.38
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Table 8. Human introns (3’ to 5’): estimated transition probability matrix for a first-order
Markov chain.

A C G T
A 0.26 0.28 0.24 0.22
C 0.19 0.29 0.18 0.34
G 0.31 0.05 0.28 0.36
T 0.21 0.28 0.18 0.33

Table 9. Human introns (3’ to 5’): BIC analysis (cumulated sequence length: 18084).

No. of free param 2 logL BIC
state space {A, C, G, T}

first-order Markov chain 12 -48321 -48438.6
second-order Markov chain 48 -47978.6 -48449.2

state space {A, C/T, G} - first-order Markov chain
state-dependent lumped process 7 -49189.6 -49258.2

two-state-dependent lumped process 9 -48328.4 -48416.6
output-state-dependent lumped process 10 -48328.4 -48426.4
state space {A, C/T, G} - second-order Markov chain

state-dependent lumped process 19 -48930.8 -49117.1
two-state-dependent lumped process 21 -48069.7 -48275.5

output-state-dependent lumped process 22 -48069.7 -48285.3

Table 10. Human introns (3’ to 5’): estimated observation probabilities.

C T
two-state-dependent lumped process

A → C/T 0.56 0.44
C/T → C/T 0.46 0.54

G → C/T 0.13 0.87
output-state-dependent lumped process

A → C/T 0.56 0.44
C → C/T 0.46 0.54
G → C/T 0.13 0.87
T → C/T 0.46 0.54
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Table 11. 3’ UTR sequences (5’ to 3’): BIC analysis (cumulated sequence length: 37084).

No. of free param 2 logL BIC
state space {A, C, G, T}

first-order Markov chain 12 -99844.5 -99970.8
second-order Markov chain 48 -99103.6 -99608.6

state space {A/T, C, G} - first-order Markov chain
output-state-dependent lumped process 10 -99860.8 -99966
state space {A/T, C, G} - second-order Markov chain
output-state-dependent lumped process 22 -99347.1 -99578.6

Table 12. 3’ UTR sequences (5’ to 3’): estimated observation probabilities for an output-state-
dependent lumped process.

A T
A → A/T 0.54 0.46
C → A/T 0.47 0.53
G → A/T 0.5 0.5
T → A/T 0.38 0.62

Table 13. 3’ UTR sequences (3’ to 5’): BIC analysis (cumulated sequence length: 37084).

No. of free param 2 logL BIC
state space {A, C, G, T}

first-order Markov chain 12 -99843.9 -99970.2
second-order Markov chain 48 -99101.5 -99606.5

state space {A/T, C, G} - first-order Markov chain
output-state-dependent lumped process 10 -99873.8 -99979
state space {A/T, C, G} - second-order Markov chain
output-state-dependent lumped process 22 -99359.3 -99590.8

Table 14. 3’ UTR sequences (3’ to 5’): estimated observation probabilities for an output-state-
dependent lumped process.

A T
A → A/T 0.57 0.43
C → A/T 0.45 0.55
G → A/T 0.46 0.54
T → A/T 0.41 0.59
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Figure 1. Conditional independence graphs of lumped processes constructed from first-order
Markov chains.
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Figure 2. Number of free parameters as a function of the number of states J for N = 11: (a)
ϕN (J) (state-dependent lumped process), (b) φN (J) (two-state-dependent lumped process),

(c) ψN (J) (output-state-dependent lumped process).
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(a) Three-state-dependent lumped process

(b) Two-output-state-dependent lumped process
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Figure 3. Conditional independence graphs of lumped processes constructed from second-order
Markov chains.
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