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Abstract

This paper describes an online Japanese character
recognition system using advanced techniques of pattern
normalization and direction feature extraction. The nor-
malization of point coordinates and the decomposition of
direction elements are directly performed on online tra-
jectory, and therefore, are computationally efficient. We
compare one-dimensional and pseudo two-dimensional
(pseudo 2D) normalization methods, as well as direction
features from original pattern and from normalized pat-
tern. In experiments on the TUAT HANDS databases, the
pseudo 2D normalization methods yielded superior per-
formance, while direction features from original pattern
and from normalized pattern made little difference.

Keywords: Online character recognition; Trajectory-
based normalization; Pseudo 2D normalization; Direc-
tion feature extraction.

1. Introduction

Computer recognition of pen-input (online) handwrit-
ten characters is involved in various applications, like text
editing, online form filling, note taking, pen interface, and
so on. A great deal of research works have contributed to
online character recognition since the 1960s and many ef-
fective methods have been proposed [1]. The methods in-
clude dynamic time warping, stroke segment matching, at-
tributed graph matching, statistical feature matching, hid-
den Markov models (HMMs), artificial neural networks
(ANNs), etc.

This paper describes an online character recognition
system for handwritten Japanese characters and reports
our results using trajectory-based normalization and di-
rection feature extraction methods. As for all handwrit-
ing recognition problems, handwritten Japanese character
recognition is difficult due to the wide variability of writ-
ing styles and the confusion between similar characters.
Also, for Chinese and Japanese characters, the large num-
ber of characters (classes) poses a challenge in efficient
classification. The methods of online Chinese/Japanese

character recognition can be roughly divided into statisti-
cal methods and structural methods [2]. Whereas struc-
tural matching is more relevant to human learning and
perception, statistical methods are more computationally
efficient. Taking advantage of learning from samples, sta-
tistical methods can give higher recognition accuracies.

We adopt a statistical classification scheme, wherein
the recognition accuracy depends on the techniques of
pre-processing, feature extraction, and classifier design.
We use curve-fitting-based nonlinear normalization [3, 4]
and pseudo two-dimensional (pseudo 2D) normalization
methods [5], with slight modification to perform directly
on online pattern trajectory. The local stroke direction
of character pattern is decomposed into direction maps,
which are blurred and sub-sampled to obtain feature val-
ues. We compare the direction feature from original pat-
tern and that from normalized pattern. Feature extraction
from original pattern incorporating coordinate normaliza-
tion is also called normalization-cooperated feature ex-
traction (NCFE) [6].

Our approach has two original features. First, we suc-
cessfully applied curve-fitting-based nonlinear normaliza-
tion and pseudo 2D normalization to online character
recognition. Unlike the popular line density equalization
method [7] that calculates stroke density on 2D image (for
online recognition, the trajectory is mapped to a 2D im-
age, e.g., [6, 8]), the curve-fitting-based method can be
easily applied to online trajectory. Second, we apply the
NCFE method directly to online trajectory, unlike the pre-
vious work that used NCFE on 2D image converted from
trajectory [6]. Our normalization and feature extraction
methods are both efficient and effective.

We have evaluated the recognition system on the
TUAT HANDS databases (Kuchibue and Nakayosi) of
online handwritten Japanese characters [9] and have ob-
tained superior performance on the test set. The pseudo
2D normalization methods are shown to be superior to
one-dimensional methods. On the other hand, direction
features from original pattern and from normalized pat-
tern made little difference.



The rest of this paper is organized as follows. Section
2 gives an overview of the recognition system. Section
3 describes the trajectory pattern normalization methods
and Section 4 details direction feature extraction. Section
5 reports our experimental results and Section 6 provides
concluding remarks.

2. System Overview

The online Japanese character recognition system is
depicted diagrammatically in Fig. 1. It consists of two
pre-processing steps (trajectory smoothing and pattern
normalization), feature extraction, dimensionality reduc-
tion, and two classification stages (candidate selection and
fine classification). Pre-processing is to regulate the pat-
tern shape for reducing the within-class shape variation.
Both dimensionality reduction and candidate selection are
to accelerate classification.

Output
classes

Input
pattern

Fine classi-
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Candidate
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Dimension
reduction

Trajectory
smoothing

Pattern nor-
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Feature
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Figure 1. Diagram of online character recognition
system.

The input pattern trajectory, composed of the coordi-
nates of sampled pen-down points, is smoothed by simply
replacing the coordinates of each point with a weighted
average of the current point and two neighboring points.
We did not try sophisticated smoothing and trajectory re-
sampling operations. In normalization, the coordinates are
transformed such that the pattern size is standardized and
the shape is regulated. We adopt curve-fitting-based nor-
malization and pseudo 2D normalization methods, which
need not converting the trajectory into 2D image.

For feature extraction, the local histogram of stroke di-
rection (direction feature) has been proven very effective
in character recognition. We use the directional decompo-
sition technique of Kawamura et al. [10], which is partic-
ularly efficient for online trajectory. The stroke direction
is either the one in original pattern or that in normalized
pattern. We will compare both schemes.

We use the modified quadratic discriminant function
(MQDF2) of Kimura et al. [11] for fine classification on
candidate classes selected by a two-stage prototype classi-
fier. The prototype classifier uses the class means as proto-
types and the cluster centers of class means as group pro-
totypes. The input pattern (feature vector) is first assigned
to a number of nearest groups, and then compared with the
class prototypes contained in the selected groups to select

a number of candidate classes. Further acceleration and
as well, storage saving, are achieved by dimensionality
reduction with Fisher linear discriminant analysis (FDA)
[12].

We did not implement discriminatively trained dimen-
sionality reduction and classification methods [13] since
the aim of this work is to evaluate normalization and fea-
ture extraction methods.

3. Pattern Normalization

We briefly review the one-dimensional and pseudo
2D normalization methods and customize them to online
character patterns. All these methods utilize the centroid
information of original pattern.

3.1 Curve-fitting-based normalization

Curve-fitting-based normalization methods compute
the coordinate mapping functions ofx-axis andy-axis
based on the projections of image intensity. For online
patterns, the projections can be calculated directly from
the trajectory without converting to a 2D image.

Three curve-fitting-based normalization methods us-
ing quadratic coordinate functions, called bi-moment nor-
malization [3], centroid-boundary alignment (CBA), and
modified CBA (MCBA) [4], have been proposed for off-
line character recognition. The bi-moment method is an
extension of the moment normalization method, which
aligns the centroid of input image to the center of normal-
ized image and re-scales the image according to 2nd-order
moments:

x′ = W2

δx
(x − xc) + x′

c,

y′ = H2

δy
(y − yc) + y′

c.
(1)

where(xc, yc) is the centroid of input image, and(x′

c, y
′

c)

is the center of normalized image with pre-specified width
W2 and heightH2. δx and δy are the re-set width and
height of input image from 2nd-order central moments:
δx = 4

√
µ20, δy = 4

√
µ02.

Unlike the moment normalization that sets the bound-
aries of input image equally distant from the centroid,
the bi-moment method sets the four boundaries separately
from bi-sected 2nd-order moments:δ−x , δ+

x , δ−y , δ+
y . Then

quadratic functions are used to align(xc − δ−x , xc, xc +

δ+
x ) with (0, W2/2, W2) and(yc − δ−y , yc, yc + δ+

y ) with
(0, H2/2, H2):

x′ = W2u(x),
y′ = H2v(y),

(2)

whereu(x) andv(y) are quadratic functions with output
in [0,1].

The CBA method uses quadratic functions to align
the centroid and the physical boundaries (ends of
stroke projections), i.e., it aligns(xmin, xc, xmax) with
(0, W2/2, W2) and(ymin, yc, ymax) with (0, H2/2, H2).
It corrects the skewness of centroid but cannot correct the



imbalance of inner/outer density. The MCBA method ad-
justs the inner density by adding a sine function to the
quadratic function:

x′ = W2[u(x) + ηxsin(2πu(x))],
y′ = H2[v(y) + ηysin(2πv(y))].

(3)

The amplitudes of sine functions,ηx andηy, are estimated
from the centroids of half images partitioned by the global
centroid of input image [4].

To apply the above normalization methods to online
patterns, the only different thing is to calculate the pro-
jection functions of character trajectory, from which the
centroid and moments can be easily computed. To do
this, we imagine that the character trajectory is posed on
a grid. Each stroke (pen-down movement) of the trajec-
tory is viewed as a sequence of line segments in an imag-
inary image (each pixel corresponding to a unit cell in
the grid), each defined by a pair of consecutive sampled
points. The sampled points have continuous coordinates,
and the nodes of the grid have discrete coordinates. The
two projection functions (histogram functions with unit
intervals) are initiallypX(x) = 0 andpY (y) = 0. Then
for each line segment, its length is assigned to both pro-
jection functions. The length of line segment assigned to
an interval is the portion of length falling in the interval.
In Fig. 2, a line segment is projected onto two intervals
in x-axis and three intervals iny-axis, and its length is
assigned proportionally to these intervals.

Figure 2. Projection of a line segment to two axes.

3.2 Pseudo two-dimensional normalization

In pseudo 2D normalization [5], coordinate mapping
functions, x′(x, y) and y′(x, y), are obtained by lin-
early combining one-dimensional (1D) functions with the
weight depending on another dimension:

x′(x, y) =
∑

i w(i)(y)x′(i)(x),

y′(x, y) =
∑

i w(i)(x)y′(i)(y).
(4)

The 1D coordinate functions are obtained by applying 1D
normalization to the projection functions of partial im-
ages.

The character imagef(x, y) (for online trajectory, the
image is imaginary on a grid) can be reasonably parti-
tioned into three horizontal soft strips:

f (i)(x, y) = w(i)(y)f(x, y), i = 1, 2, 3, (5)

wherew(i)(y) are weight functions (assuming the bound-
aries ofy-axis are 0 andH1):

w(1)(y) = w0
yc−y

yc
, y < yc,

w(2)(y) = 1 − w(1)(y), y < yc,
w(2)(y) = 1 − w(3)(y), y ≥ yc,

w(3)(y) = w0
y−yc

H1−yc
, y ≥ yc,

(6)

where0 ≤ w0 ≤ 1. The projection functions of the three
strips onx-axis,p(i)

X (x), i = 1, 2, 3, are used to compute
three coordinate functions,x′(i)(x), using any of the 1D
normalization methods. The three 1D functions are then
combined into a 2D coordinate function:

x′(x, y) =

{

w(1)(y)x′(1)(x) + w(2)(y)x′(2)(x), y < yc,
w(3)(y)x′(3)(x) + w(2)(y)x′(2)(x), y ≥ yc.

(7)
Similarly, 1D coordinate functions,y′(i)(y), i = 1, 2, 3,
are computed from three vertical strips and combined into
the 2D coordinate functiony′(x, y).

Depending on the method of computing 1D coordi-
nate functions, we have variable pseudo 2D normalization
methods: pseudo 2D moment normalization (P2DMN),
pseudo 2D bi-moment normalization (P2DBMN), and
pseudo 2D MCBA (P2DCBA)1. To apply these methods
to online trajectory, the remaining task is to compute the
projection functions of three strips from the input trajec-
tory. Again, the trajectory is viewed as line segments in
an imaginary image. On computing the global centroid
(xc, yc) from the global projection functionspX(x) and
pY (y), the weight functionsw(i)(y) andw(i)(x) can be
obtained. Then, the line segments can be directly assigned
to the strip projection functions incorporating the weight
functions. Say, when a line segment is assigned to an in-
terval ofp(i)

X (x), the length falling in the interval is also
weighted byw(i)(y) depending on the vertical position of
the line segment.

The coordinate mapping functions, obtained by either
one-dimensional or pseudo 2D normalization methods,
are used to transform the coordinates of all sampled points
of character trajectory. The points with transformed coor-
dinates form the trajectory of normalized pattern.

Fig. 3 shows six online character patterns and their
normalized ones by eight methods: linear normalization
(linear boundary alignment), moment, bi-moment, CBA,
MCBA, P2DMN, P2DBMN, and P2DCBA. The weight
in (6) was set tow0 = 0.75. We can see that while pseudo
2D normalization methods can generate better normalized
shapes than 1D methods on Kanji characters, they yield
excessive deformation on characters of simple structures.

4. Feature Extraction

Direction feature extraction is performed in two steps:
directional decomposition and blurring. The local stroke

1We did not extend the CBA method to pseudo 2D, and instead refer
to the pseudo 2D extension of MCBA as P2DCBA.



Figure 3. Online pattern and normalized patterns by
eight methods (from left: original, linear, moment,
bi-moment, CBA, MCBA, P2DMN, P2DBMN, and
P2DCBA).

segments are assigned to a number of direction planes,
then each plane is blurred (low-pass filtered) and the sam-
pled values are taken as feature values. We use eight di-
rection planes, corresponding to eight chaincode direc-
tions (Fig. 4 (a)). Following the method of Kawamura
et al. [10], each line segment, defined by two consecutive
pen-down points, is decomposed into two components in
two neighboring chaincode directions (Fig. 4 (b)).

Figure 4. Eight chaincode directions (a) and the di-
rectional decomposition of a line segment (b).

The direction of the line segment depends on whether
the coordinates of the two end points are normalized
or not. The direction based on normalized coordinates
(normalized direction) is conventionally used. In the
case of nonlinear normalization or pseudo 2D normaliza-
tion, however, the normalized direction may be deformed
considerably. This can be alleviated by normalization-
cooperated feature extraction (NCFE) [6], in which the
local direction in original pattern is decomposed while the
transformed coordinates are used to shift the direction ele-
ments in direction planes. Unlike previous NCFE methods
performed on 2D images mapped from online patterns, we
decompose the line segments of input trajectory directly
into normalized direction planes. Further, our direction
planes have continuous pixel values (continuous NCFE
[14]), to account for the partial overlap of line segments
with pixels.

Figure 5. Input pattern and decomposition of original
direction (1st and 3rd rows), normalized pattern and
decomposition of normalized direction (2nd and 4th
rows).

Assume that the size of direction planes isW2 × H2

pixels, and each pixel is viewed as a square of unit area
in a grid. A line segment in the input pattern trajectory,
v = ((x1, y1), (x2, y2)), is mapped to another segment
in the normalized pattern by coordinate transformation:
v
′ = ((x′

1, y
′

1), (x
′

2, y
′

2)). The vectorv (original direc-
tion) orv′ (normalized direction) is decomposed into two
components as in Fig. 4 (b), with lengthsl1 (direction
1) andl2 (direction 2). The corresponding two direction
planes are given weightsw1 = l1/l andw2 = l2/l (l is the
length ofv or v′), respectively. The mapped line segment
v
′ overlaps with some pixels in two direction planes. In

the plane of direction 1, each pixel overlapping withv
′ is

given a value, which equals the overlapping length in the
unit area times the weightw1. Similarly, in the plane of
direction 2, each pixel overlapping withv′ is given a value
of overlapping length timesw2.

Fig. 5 shows the direction planes of two online patterns
by decomposition of original and normalized directions.
We can see that in stroke regions of large deformation,
the direction planes of original direction and normalized
direction show difference.

On directional decomposition, each direction plane is
blurred using a low-pass Gaussian filter. The pixel val-
ues are sampled uniformly, and according to the Sampling
Theorem, the Gaussian filter parameter (variance of spher-
ical Gaussian) was shown to be related to the sampling
interval [15]:

σx =

√
2tx
π

, (8)

wheretx is the sampling interval (reciprocal of sampling
frequency).

In coordinate normalization and direction feature ex-
traction, we set the size of normalized plane (and direc-
tion planes) to24 × 24 pixels. Since we directly assign
the line segments (of original direction or normalized di-
rection) to eight direction planes, and the direction planes
have continuous pixel values, a moderately small size of
direction plane does not sacrifice the recognition accuracy.
Each direction plane is then blurred and sub-sampled with
sampling interval 3. As result, we obtain 64 feature values



from each direction plane and the final dimensionality of
feature vector is 512. To improve the Gaussianity of fea-
ture distribution, each value is transformed by Box-Cox
transformation (also called variable transformation [12]).
We set the power of variable transformation to 0.5 without
attempt to optimize it.

5. Experimental Results

To evaluate the performance of the proposed methods,
we have experimented on the TUAT HANDS databases,
kuchibued-97-06 (kuchibued or Kuchibue in brief) and
nakayosit-98-09 (nakayosit or Nakayosi in brief), of on-
line handwritten Japanese characters [9]. The Kuchibue
database contains the handwritten samples of 120 writ-
ers, 11,962 patterns per writer covering 3,356 character
classes. Excluding the JIS level-2 Kanji characters, there
are 11,951 patterns for 3,345 classes (2,965 Kanji charac-
ters and 380 symbols) per writer. The Nakayosi database
contains the samples of 163 writers, 10,403 patterns cov-
ering 4,438 classes per writer, in which there are 9,309
patterns for the JIS level-1 Kanji characters and the 380
symbols (3,345 classes). As many previous works did
[2, 16], we experimented with 3,345 classes, and used
the samples of Nakayosi for training classifiers and the
samples of Kuchibue for testing. Therefore, there are to-
tally 9, 309 × 163 = 1, 517, 367 training samples and
11, 951× 120 = 1, 434, 120 test samples.

As well as recognizing 3,345 classes of Kanji and sym-
bols, we also carried out experiments of recognizing 2,965
JIS level-1 Kanji characters only. The Kuchibue database
and Nakayosi database contain 766,915 and 675,840 sam-
ples of JIS level-1 Kanji characters, respectively. Again,
the samples of Nakayosi database were used for training
and the samples of Kuchibue database for testing.

On pre-processing and feature extraction of each sam-
ple, the feature dimensionality is reduced to 160 by Fisher
linear discriminant analysis (FDA), whose parameters are
estimated on the feature vectors of training samples. On
the reduced vector, we select 100 candidate classes ac-
cording to the Euclidean distance to class means by two-
stage classification, where we used 200 group prototypes
(cluster centers of class means). On the candidate classes,
the modified quadratic discriminant function (MQDF2)
[11] is computed for fine classification:

g2(x, ωi) =
∑k

j=1
1

λij
[φT

ij(x − µi)]
2 + 1

δi
ri(x)

+
∑k

j=1 log λij + (d − k) log δi,
(9)

whereµi is the mean vector of classωi , λij (j = 1, . . . , k)
are the largest eigenvalues of the covariance matrix and
φij are the corresponding eigenvectors,k denotes the
number of principal axes andri(x) is the residual of sub-
space projection:ri(x) = ‖x − µi‖2 − ∑k

j=1[(x −
µi)

T φij ]
2. δi is set to a class-independent constant and

its value is optimized by holdout cross-validation on the
training data set. Specifically,δi was selected to maxi-
mize the classification accuracy on 1/5 of training sam-
ples on estimating class means, principal eigenvalues and
eigenvectors on the remaining 4/5 of training samples. We
usedk = 50 principal eigenvectors for each class.

Table 1 shows the test accuracies (correct rates on test
set) of 3,345-class recognition, and Table 2 shows the test
accuracies of 2,965-class Kanji recognition. We give the
accuracies of Euclidean distance (nearest class mean) as
well as MQDF2. We can see that for both class sets, all
the centroid-based normalization methods (moment, bi-
moment, CBA, MCBA, P2DMN, P2DBMN, P2DCBA)
yield higher accuracies than linear normalization.

Table 1. Test accuracies (%) of 3,345-class recogni-
tion.

3,345 Original direct. Normalized direct.
classes Euclid MQDF2 Euclid MQDF2
Linear 77.60 89.07 77.67 88.78

Moment 82.97 90.51 82.95 90.44
Bi-moment 82.69 90.57 82.78 90.53

CBA 82.08 90.17 81.94 90.07
MCBA 82.12 90.35 81.90 90.05
P2DMN 83.54 90.81 83.20 90.88

P2DBMN 83.97 90.94 83.53 90.89
P2DCBA 83.49 90.87 83.33 90.64

Table 2. Test accuracies (%) of 2,965-class Kanji
recognition.

2,965 Original direct. Normalized direct.
classes Euclid MQDF2 Euclid MQDF2
Linear 87.02 95.91 87.12 95.99

Moment 93.86 97.90 93.82 97.84
Bi-moment 93.77 97.85 93.76 97.82

CBA 92.97 97.53 93.01 97.57
MCBA 93.56 97.77 93.60 97.74
P2DMN 94.70 98.17 94.64 98.24

P2DBMN 94.74 98.18 94.71 98.22
P2DCBA 94.50 98.06 94.56 98.11

In both 3,345-class and Kanji recognition, the accu-
racies of centroid-based normalization methods can be
roughly divided into three grades:{CBA}, {moment,
bi-moment, MCBA}, {P2DMN, P2DBMN, P2DCBA}.
The methods in each of the three sets perform compara-
bly, though the accuracies of MCBA are slightly lower
than the moment and bi-moment methods and the accu-
racies of P2DCBA are slightly lower than P2DMN and
P2DBMN. The moment and bi-moment methods perform
comparably, and their pseudo 2D extensions yield best
performance. The difference of accuracy between one-



dimensional normalization methods and pseudo 2D meth-
ods is evident for both 3,345-class recognition and Kanji
recognition.

Despite that the decomposition of original direction
and that of normalized direction may give different fea-
ture values (Fig. 5), the experimental results show that
their recognition accuracies are comparable. We expect
that the two types of direction features are complementary
on some characters.

To compare with previous results [2], we found only
one work that has used all the samples of 3,345 classes
of Nakayosi in training and all the samples of Kuchibue
in testing. In this experimentation scheme, Kitadai and
Nakagawa reported a recognition rate 87.2% [16]. Thus,
our recognition rates of over 90.8% are superior.

We observed a big gap between the accuracies of
3,345-class recognition and Kanji recognition. This is be-
cause there are two many confusing characters among the
380 symbols and between symbols and Kanji characters.
Our results of either 3,345-class or Kanji recognition can
serve new benchmarks for evaluating future works.

6. Conclusion

We have implemented an online handwritten Japanese
character recognition system using efficient trajectory-
based normalization and direction feature extraction
methods. We compared one-dimensional and pseudo 2D
normalization methods, and direction features from orig-
inal pattern and from normalized pattern. Our recogni-
tion results are superior to previous ones. The pseudo 2D
normalization methods yield higher accuracies than one-
dimensional ones, whereas direction features from origi-
nal and normalized patterns perform comparably.

It is our future work to modify the pseudo 2D normal-
ization methods for better transforming patterns of simple
structures. On the other hand, the recognition accuracy
can be improved by better dimensionality reduction and
classification methods.
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