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Abstract

Object detection can be posted as those classification

tasks where the rare positive patterns are to be distin-

guished from the enormous negative patterns. To avoid the

danger of missing positive patterns, more attention should

be payed on them. Therefore there should be different re-

quirements for False Reject Rate (FRR) and False Accept

Rate (FAR) , and learning a classifier should use an asym-

metric factor to balance between FRR and FAR. In this pa-

per, a normalized asymmetric classification error is pro-

posed for the task of rejecting negative patterns. Minimizing

it not only controls the ratio of FRR and FAR, but more im-

portantly limits the upper-bound of FRR. The latter charac-

teristic is advantageous for those tasks where there is a re-

quirement for low FRR. Based on this normalized asymmet-

ric classification error, we develop an asymmetric AdaBoost

algorithm with variable asymmetric factor and apply it to

the learning of cascade classifiers for face detection. Ex-

periments demonstrate that the proposed method achieves

less complex classifiers and better performance than some

previous AdaBoost methods.

1 Introduction

Boosting [13] is one of the most successful recent tech-
niques in machine learning and pattern classification. Its
underlying idea is combining simple rules to form an en-
semble so that the performance of the final ensemble is im-
proved. Kearns and Valiant [9] proved the astonishing fact
that simple rules, each performing only slightly better than
random guess, can be combined to form an arbitrarily pre-
cise ensemble. Schapire [18] was the first to provide a prov-
ably effective (polynomial time) Boosting algorithm, then
Freund and Schapire proposed AdaBoost [5, 4] which is the
first step towards more practical Boosting algorithms. It is
often referred to as Discrete AdaBoost for the adoption of
Boolean weak classifiers. Many extensions of AdaBoost

have been made in the past few years. Real AdaBoost [19]
adopts confidence-rated weak classifiers to lower the upper-
bounds of the classification error. Friedman et al. proposed
LogitBoost [6] from the Logistic loss function and Gentle
AdaBoost from the adaptive Newton descending. Other ex-
tensions can be found in [16, 17, 12, 15].

Boosting strategies have been successfully used in vari-
ous real-world applications [14, 1, 20, 2]. Perhaps the most
impressive application is face detection by Viola and Jones
[23], where a cascade of successively more complex classi-
fiers are learned based on simple Harr-like features. During
detection, only those sub-windows which are not rejected
by the preceding classifier are processed by the following
classifier. If any classifier rejects the sub-window, no fur-
ther processing is performed. This cascade structure makes
the detection speed extremely high at 15 frames per second
for 384 × 288 images, while achieving high detection rate.
Li et al. [10] applied a pyramid cascade structure for multi-
view face detection with high performance. Huang et al.

[8] contrived a nested cascade structure for multi-view face
detection and pose estimation. They reported the highest
detection speed about 30ms to process a 320 × 240 image.
In these face detection applications, classifiers are learned
according to minimizing classification error, but the thresh-
olds are tuned to get very low FRR and moderate FAR for
effectively rejecting non-face patterns. Since the final goal
deviates from minimizing classification error, the features
selected by AdaBoost are not optimal for detection tasks.

To cope with the detection problem, Viola and Jones
[22] introduced an asymmetric classification error: false re-
jects cost k times more than false accepts. They applied an
asymmetric pre-weighting technique to the initial distribu-
tion of the samples, but unfortunately the initial asymmetric
weights are immediately absorbed by the first weak classi-
fier because the AdaBoost process is too greedy. Ma and
Ding [11] applied cost-sensitive learning technique [21, 3]
to face detection, where there is also an asymmetric pre-
weighting to the initial distribution, with a modified weight
updating rule to avoid the weight absorb phenomenon. This
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modified weight updating rule pays more attention on posi-
tive samples, no matter what they are correctly classified or
not, but it needs careful choice of asymmetric factors: they
are unknown in advance and very application dependent,
and need extensive trails for the best performance. For ex-
ample, for the harder classification problem in the last few
layers of the detector cascade, the asymmetric factors are
often set close to 1.

In order to overcome these problems, we propose using
variable asymmetric factor to adapt the requirement for spe-
cific applications and automatically obtain the best perfor-
mance. In this paper, we define another asymmetric classi-
fication error which is equivalent to Viola and Jones’s, but
has more distinctive meanings. Minimizing this asymmetric
error not only controls the ratio of FRR and FAR, but also
limits the upper-bound of FRR. Based on this definition, we
develop an asymmetric AdaBoost algorithm suitable for the
task of rejecting negative samples. Features are selected ac-
cording to minimizing the asymmetric error with variable
asymmetric factor, and linearly combined into strong clas-
sifiers to achieve very low FRR and moderate FAR.

The rest of the paper is organized as follows: Section 2
introduces the asymmetric AdaBoost including definition,
algorithm, and cascade structure of face detector. Section
3 and 4 give the experiment results and conclusions respec-
tively. Convergence of the asymmetric AdaBoost algorithm
is proved in the Appendix.

2 Asymmetric AdaBoost

2.1 Normalized Asymmetric Classifica-
tion Error

For convention, assume training data are {(xi, yi) : i =
1, . . . , N} where xi are the samples with labels yi = 1
or −1. For object detection tasks, the aim is to detect oc-
currences of a specific target (positives) from clutter back-
ground (negatives), where the probability of the former is
substantially smaller than that of the latter. In this case,
learning a classifier should use an asymmetric classification
error criterion to balance between FRR and FAR [7], i.e.,
FRR costs more than FAR:

ε = aFRR + bFAR (1)

where a ≥ b > 0. In order to compare the performance
under different choices of a and b, ε should be normalized,
e.g., ε = (aFRR + bFAR)/(a + b) according to our intu-
ition, but we will adopt the following normalization defini-
tion as explained in Eq. (19) in the Appendix

ε =
aFRR + bFAR√

ab
(2)

It can be easily checked that ε is invariant under the sub-
stitution a′ = a/(a + b) and b′ = b/(a + b). The opti-
mal classifier is achieved by finding the minimum of the
above asymmetric error in (2), suppose it is ε0 and the cor-
responding optimal FRR and FAR are FRR0 and FAR0.
Suppose the probabilities of positives and negatives are re-
spectively P (1) and P (−1), we could tune the threshold
of the classifier and get FRR = 0, FAR = P (−1), then
ε =

√
b/aP (−1). This shows

ε0 ≤
√

b/aP (−1) (3)

From the definition (2),

ε0 =
aFRR0 + bFAR0√

ab
≥

√
a/bFRR0 (4)

we can get

FRR0 ≤ b

a
P (−1) (5)

Eq. (5) shows that minimizing the asymmetric error can
also control the upper bound of the optimal FRR. This
characteristic is advantageous for object detection tasks
where there is a requirement for low FRR.

Viola and Jones’s asymmetric error [22] requires FRR
cost k times more than FAR, i.e., ε = FRR

√
k +

FAR/
√

k, which is a special case of our definition (2).
It can be elegantly incorporated into the exponential up-
per bound of AdaBoost as eyiln

√
k, results in pre-weighting

over the initial distribution. But this approach is not effec-
tive because the initial asymmetric weights are immediately
balanced and absorbed by the first weak classifier. An alter-
native is applying the asymmetric multiplier e

1

M
yiln

√
k in

each round for a total M round precess. Ma and Ding [11]
also applied a pre-weighting technique to the initial distri-
bution, 2c

c+1 for positives and 2
c+2 for negatives with c > 1.

In order to avoid the weight absorb phenomenon, they mod-
ified the weight updating rule [3] to pay more attention on
positives, whether they are correctly classified or not. An-
other problem is the choice of asymmetric factor k and c:
they are very application dependent and need extensive tri-
als for the best performance. In order to overcome these
problems, we propose using variable asymmetric factor to
adapt the requirement for specific applications and automat-
ically obtain the best performance.

2.2 Asymmetric AdaBoost Algorithm

Instead of changing the distribution by directly assign-
ing unequal weights for positive and negative samples as
in [22], we assign different values a and −b for pos-
itives and negatives samples. This can also indirectly
changing the weights through exponential e−ah(xi)α =

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



e(1−a)h(xi)αe−yih(xi)α for yi = 1 or ebh(xi)α =
e−(1−b)h(xi)αe−yih(xi)α for yi = −1, while it is easy for
theoretical analysis. Because the normalized asymmetric
classification error in definition (2) is invariant under the
substitution a′ = a/(a + b) and b′ = b/(a + b), we will
assume b = 1 − a later in this paper, and develop an asym-
metric AdaBoost algorithm as shown in Figure 1.

Algorithm: Asymmetric AdaBoost
Input: N labelled samples (x1, y1), . . . , (xN , yN) where

yi ∈ {a,−b} for positive and negative samples.
Weak classifier set {h}. a ≥ b > 0, a + b = 1.

Initialize: w1
i = 1

2n
, 1

2m
for yi = a,−b respectively, where

n and m are the number of positive and negative
samples respectively.

For t = 1, . . . , T :

1. Normalize the weights, wt
i ←

wt

i∑
N

k=1
wt

i

2. For each classifier h, compute the
normalized margin γ = 1

a

∑N

i=1
wt

iyih(xi),
tune a to maximize |γ|

3. Choose the classifier ht, with the maximal |γt|,
and corresponding at

4. Compute the coefficient αt = 1
2at

ln 1+γt

1−γt

5. Update the weights, wt+1
i = wt

ie
−yih(xi)αt ,

for yi = at,−bt

Output: The final strong classifier is:

H(x) =

{
1

∑T

t=1
ht(xi)αt ≥ ln 1−a

a

−1 otherwise

Figure 1. Asymmetric AdaBoost Algorithm.

The following theorem justifies the convergence of the
asymmetric AdaBoost algorithm.

Theorem 1 Using the notation of Figure 1, assume each ht

has range [−1, +1], then the normalized asymmetric clas-

sification error of H on training set is upper bounded by

C

T∏
t=1

√
1 − γ2

t (6)

Assume each ht has range {−1, +1}, then the normalized

asymmetric classification error of H on training set is upper

bounded by

C

T∏
t=1

2(
√

AtBt +
√

CtDt) (7)

where C is a constant.

Explanation of γt, At, Bt, Ct, Dt and details of the
proofs are in the Appendix. As shown in the Appendix,
the asymmetric AdaBoost is a generalization of AdaBoost,
and the later is the special case of the former in case of
a = b = at = bt = 1

2 .

2.3 Cascade Face Detector

Our face detector follows the same flowchart as in [23].
The input image is resized by a scaling factor s iteratively
and scanned by a 24 × 24 rectangular sub-window with a
search step Δ. Four types of Harr-like features are extracted
from the sub-window as shown in Figure 2, and form a fea-
ture set of 45,396. The feature value is defined as the dif-
ference of the sum of the pixels in the white rectangle and
the sum of the pixels in the gray rectangle. Weak classifiers
are defined by thresholding the feature values. Strong clas-
sifiers are trained by our asymmetric AdaBoost algorithm
to achieve very low FRR and moderate FAR. The succes-
sive strong classifiers form the final cascade face detector
as shown in Figure 3. Only those sub-windows which pass
through the former layer are fed into the next layer. A sub-
window passing through all layers is accepted as a face pat-
tern, while it is rejected at any layer results in immediate
discard and needs no further process. This mechanism re-
sults in very high detection speed. At last, the overlapping
face patterns detected in the image will be merged for the
final result.

Figure 2. Four types of Harr-like features

Figure 3. The cascade structure of face de-
tector. A series of T strong classifiers (SC)
are applied to each sub-window.

3 Experiments

A total of 1,650 frontal face samples are collected from
various source. Three images are generated from each sam-
ple by randomly rotated between [−10◦, +10◦], shifted be-
tween [−2, +2] pixels, and scaled between [0.8, 1.2]. Then
these images are vertically mirrored and form a training set
of 9,900 face samples. 9,900 non-face samples are ran-
domly extracted from 18,042 images containing no faces.
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All the samples are resized to 24 × 24 gray-scale images
and normalized by their variances to reduce the influence of
illumination.

For the training of cascade face detector by asymmetric
AdaBoost algorithm, we set a = 0.9, 1

2 ≤ at ≤ a in all
layers. We use weak classifier ht ∈ {−1, +1} to speed up
the optimization process of at in step 2 in Figure 1. This
can be done by directly computing the optimal parameters
and bounds through Eq. (28), so the asymmetric factor at

are selected adaptively. As a result, there are 17 layers and
total 2,174 features, achieving a detection rate of 98.3% and
false accept rate of 1.5×10−6 on the training set. By setting
the scaling factor s = 1.2 and search step Δ = 1, our face
detector can scan a 320×240 image within 40 ms on PIV2.0
PC.

The MIT+CMU test set is used for evaluating the perfor-
mance, which consists of 130 images containing 507 frontal
faces. Some detection results are shown in Figure 4. By
tuning the threshold of the final layer, the ROC curve of our
detector is shown in Figure 5. For comparison, Table 1 lists
the detection rates for various numbers of false positives for
our detector as well as Viola’s [23, 22] and Ma’s [11] pub-
lished previously, but we will not compare to those state-of-
art results [8] where Real or Gentle AdaBoost is used. From
Table 1, it can be seen that our detector performs better that
other AdaBoost-based methods. The main reason is that
in the learning process, we not only consider the require-
ment of asymmetric weights for positives and negatives, but
also automatically selected the most appropriate asymmet-
ric factor at for each weak classifier. Besides, our detector
has few features compared to Viola’s 32 layers with 4,297
features and Ma’s 20 layer with about 3,000 features.

4 Conclusions

For object detection, disease diagnosis and many other
applications, there are asymmetric costs for false positives
and false negatives. Common classifier designing methods
will not get satisfied results in these cases. Such type of
asymmetric classification problem can be efficiently solved
by minimizing asymmetric classification error and cascade
structure of classifiers. According to minimizing the asym-
metric classification error, classifiers in each layer achieve
very low FRR and moderate FAR, while moderate FAR
could be used to immediately reject part of negatives. With
the cascade structure, the whole cascade will get low FRR
and extremely low FAR, while achieving high precision and
speed. In this paper, we propose a normalized asymmetric
classification error, which can compare the performances
under different choices of asymmetric factors. Minimizing
it not only controls the ratio of FRR and FAR, but more im-
portantly limits the upper-bound of FRR. The latter charac-
teristic is coincide with the requirement for detection tasks

Figure 4. Some detection results on
MIT+CMU test set.

where there is a need on such low upper-bound. Based
on this normalized asymmetric classification error, we de-
velop an asymmetric AdaBoost algorithm and apply it to the
learning of cascade classifiers for face detection. This algo-
rithm can adaptively choose the asymmetric factor for best
performance in real applications. Comparative experiments
demonstrate that the proposed method achieves less com-
plex classifiers and better performance than previous sym-
metric and asymmetric AdaBoost methods.
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Appendix

Proofs of Theorem 1:
Let yt

i = at,−bt for positive and negative samples, com-
bining the weight normalizing step in Figure 1, the weight
updating step can be expressed as

wt+1
i =

wt
ie

−yt

i
ht(xi)αt

Zt
(8)

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



False positives 10 31 50 65 78 95 110 167
Our method 90.5% 91.9% 93.1% 93.9% 94.1% 94.5% 94.7% 95.3%

Ma-Ding 90.1% 91.3% 92.5% 93.1% 93.3% 93.5% - 94.1%
Viola-Jones(Asym) - 88.5% 91.5% 91.9% 92.1% 92.9% 93.1% 93.8%

Viola-Jones 78.3% 85.2% 88.8% 89.8% 90.1% 90.8% 91.1% 91.8%

Table 1. Detection rates for various numbers of false positives on the MIT+CMU test set.
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Figure 5. Detection rate versus false posi-
tives of our detector on MIT+CMU test set.

where Zt =
∑N

i=1 wt
ie

−yt

i
ht(xi)αt . By induction, we have

N∑
i=1

w1
i e−

∑
T

t=1
yt

i
ht(xi)αt =

T∏
t=1

Zt (9)

We can assume αt always no less that 0, or we can use −ht

instead. For positive samples yt
i = at ≥ 1

2 (because at ≥
bt)

−
T∑

t=1

atht(xi)αt = −
T∑

t=1

at[ht(xi) − 1]αt −
T∑

t=1

atαt

≥ −
T∑

t=1

1

2
[ht(xi) − 1]αt −

T∑
t=1

atαt

= −
T∑

t=1

1

2
ht(xi)αt +

T∑
t=1

(
1

2
− at)αt (10)

For negative samples yt
i = −bt ≥ − 1

2

T∑
t=1

btht(xi)αt =

T∑
t=1

bt[ht(xi) − 1]αt +

T∑
t=1

btαt

≥
T∑

t=1

1

2
[ht(xi) − 1]αt +

T∑
t=1

btαt

=

T∑
t=1

1

2
ht(xi)αt +

T∑
t=1

(
1

2
− at)αt (11)

Suppose the final strong classifier is

H(x) =

{
1

∑T
t=1 ht(xi)αt ≥ K

−1
∑T

t=1 ht(xi)αt < K
(12)

Then for falsely rejected samples,

e−
∑

T

t=1
atht(xi)αt > e−

1

2
K+

∑
T

t=1
( 1

2
−at)αt (13)

Since it is independent of individual samples, we can as-
sume

e−
1

2
K+

∑
T

t=1
( 1

2
−at)αt = aZ (14)

For false accepted samples,

e
∑

T

t=1
btht(xi)αt ≥ e

1

2
K+

∑
T

t=1
( 1

2
−at)αt = (1 − a)Z (15)

From Eq. (14) and (15), we can get

K = ln
1 − a

a
(16)

Z =
e
∑

T

t=1
( 1

2
−at)αt√

a(1 − a)
(17)

So
N∑

i=1

w1
i e−

∑
T

t=1
yt

i
ht(xi)αt ≥ Z[aFRR + (1 − a)FAR]

= e
∑

T

t=1
( 1

2
−at)αt

[aFRR + (1 − a)FAR]√
a(1 − a)

(18)

In order to compare the performance under different choices
of a, we define the normalized asymmetric classification er-
ror as

ε =
aFRR + (1 − a)FAR√

a(1 − a)
(19)

For ht ∈ [−1, +1],

Zt =
∑N

i=1 wt
ie

−yt

i
ht(xi)αt

≤ ∑N
i=1 wt

i [e
−atαt

at+yt

i
ht(xi)

2at
+ eatαt

at−yt

i
ht(xi)

2at
]

=
∑N

i=1 wt
i [e

−atαt
1+yt

i
ht(xi)/at

2 + eatαt
1−yt

i
ht(xi)/at

2 ]
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(20)

Let

γt =

∑N
i=1 wt

iy
t
iht(xi)

at
(21)

be the normalized margin, we have

Zt ≤ e−atαt
1 + γt

2
+ eatαt

1 − γt

2
(22)

Minimizing the right hand side, we get

Zt ≤
√

1 − γ2
t (23)

αt =
1

2at
ln

1 + γt

1 − γt
(24)

So the training error

ε ≤ e
∑

T

t=1
(at− 1

2
)αt

T∏
t=1

√
1 − γ2

t (25)

Since the weak classifiers selected become more and more
trivial in the training process in practice, αt will tend to 0,

so e
∑

T

t=1
(at− 1

2
)αt will be bounded by a constant C, so

ε ≤ C

T∏
t=1

√
1 − γ2

t (26)

When a = b = at = bt = 1
2 , it can be seen that the asym-

metric AdaBoost is really the ordinary AdaBoost.
For ht ∈ {−1, +1}, the upper bound can be further in-

vestigated

Zt =
∑N

i=1 wt
ie

−yt

i
ht(xi)αt

= Ate
−atαt + Bte

atαt + Cte
btαt + Dte

−btαt
(27)

where At = P (yt
i = at, ht(xi) = 1), Bt = P (yt

i =
at, ht(xi) = −1), Ct = P (yt

i = −bt, ht(xi) = 1) and
Dt = P (yt

i = −bt, ht(xi) = −1). Minimizing the right
hand side of equation (27), we have

Zt ≤ 2(
√

AtBt +
√

CtDt)

αt = 1
2 ln AtDt

BtCt

at = ln At/Bt

2αt

(28)

So the training error

ε ≤ C

T∏
t=1

2(
√

AtBt +
√

CtDt) (29)

The upper bound of Zt of AdaBoost in [5] is
2
√

(At + Dt)(Bt + Ct). Since 2(
√

AtBt +
√

CtDt) ≤
2
√

(At + Dt)(Bt + Ct), the asymmetric AdaBoost can get
smaller training error bound.
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[16] G. Rätsch and M. K. Warmuth. Marginal Boosting.
[17] G. Rätsch, M. K. Warmuth, S. Mika, T. Onoda, S. Lemm,

and K. R. Müller. Barrier Boosting. pages 170–179, 2000.
[18] R. E. Schapire. The strength of weak learnability. Machine

Learning, 5:197–227, 1990.
[19] R. E. Schapire and Y. Singer. Improved Boosting algo-

rithms using confidence-rated predictions. Machine Learn-
ing, 37:297–336, 1999.

[20] H. Schwenk and Y. Bengio. Boosting neural networks. Neu-
ral Computation, 12:1869–1887, 2000.

[21] K. M. Ting and Z. Zheng. Boosting trees for cost-sensitive
classifications.

[22] P. Viola and M. Jones. Fast and robust classification using
asymmetric Adaboost and a detector cascade. Neural Infor-
mation Processing Systems, pages 1311–1318, 2001.

[23] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. pages 1063–6919, 2001.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


