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Glossary  
Patients Where we refer to ‘patients’ one can also read individuals, participants or subjects. 

We use ‘patients’ to match our illustration using breast cancer data.  
Competing risks In the competing risks setting there are multiple event types that ‘compete’ for first 

occurrence. In the case study these are breast cancer recurrence and mortality 
before recurrence. 

Primary event We assume one event type is the primary event of interest. In the case study, the 
primary event is breast cancer recurrence. 

Prediction horizon  The specified duration of time over which predictions are made. In the case study 
we focus on 5-year risks.  

Cumulative incidence  The absolute risk of experiencing the primary event during the prediction horizon, 
taking into account that a patient who experiences a competing event will never 
experience the primary event.  

Primary event 
indicator 

A patient’s primary event status by the end of the prediction horizon: did the patient 
experience the primary event before or at that time-point? If so, the primary event 
indicator is 1. If the event indicator is 0, this may mean either that the patient has 
not experienced any event by the end of the prediction horizon or that the patient 
experienced a competing event by that time point. 

Censoring When the patient’s event status by the end of the prediction horizon is unknown, 
e.g. due to loss to follow up at an earlier time point.  

Observed outcome 
proportion  

This is the observed proportion of patients with the primary event. In a setting 
without censoring, this is the sum of the primary event indicators divided by the 
total number of patients. With censoring, the observed outcome proportions have 
to be estimated accounting for the incomplete observations. The observed 
outcome proportion represents the actual underlying cumulative incidence. 

Risk estimates (or 
estimated risks) 

These are the estimates of cumulative incidence from the developed prediction 
model. Typically, risks up to one or a few time-points are of particular interest. We 
want to evaluate the performance of these risk estimates for new patients. 

 



Stand first 
Thorough validation is pivotal for any prediction model before it is advocated for use in medical 

practice. For time-to-event outcomes such as breast cancer recurrence, death from other causes is a 

competing risk. Model performance measures must account for such competing events. In this paper, 

we present a comprehensive yet accessible overview of performance measures for this competing 

event setting, including the calculation and interpretation of statistical measures for calibration, 

discrimination, overall prediction error, and clinical utility by decision curve analysis. All methods are 

illustrated for patients with breast cancer, with publicly available data and R code.  

Key messages  

• Validation is a necessary step for prediction models before being used in clinical practice. 

• In the presence of competing risks, these other risks have to be accounted for at model 

validation. 

• We provide a comprehensive overview of performance measures for calibration, 

discrimination, overall prediction error and decision curve analysis that account for 

competing events. 

• Data and R code used for illustration of the measures is available from a GitHub page. 

https://github.com/survival-lumc/ValidationCompRisks


Introduction 
Prediction models are pivotal for counseling patients about their prognosis and for risk 

stratification.[1] Interest often lies in predicting a non-fatal adverse event over a certain time period, 

e.g. breast cancer recurrence within 5 years after diagnosis. As study populations of common diseases 

increasingly consist of elderly individuals with high degrees of multimorbidity, patients will experience 

other events that preclude the occurrence of the event of interest.[2] For example, a patient with a 

previous breast cancer who dies from a cardiovascular cause can no longer experience breast cancer 

recurrence. In these settings prediction models should target the cumulative incidence (or absolute 

risk[3]) of the adverse event, which is defined as the probability of the event of interest occurring by 

a particular time-point with no other competing event occurring earlier. In the breast cancer example, 

the 5-year cumulative incidence of recurrence is the risk of developing a recurrence within 5 years 

taking into account that patients who die within 5 years cannot develop recurrence anymore. Failing 

to account for competing events during model development leads to overestimation of the cumulative 

incidence.[4] The higher the risk of the competing event, the more pronounced the overestimation. 

Crucially, failing to account for competing events during validation leads to a distorted view on model 

performance, especially for calibration. This was recently revealed for an internationally 

recommended kidney failure prediction model, which systematically overestimated 5-year absolute 

risk of kidney failure in patients with advanced chronic kidney disease. The absolute overestimation 

by 10 percentage points on average and by 37 percentage points in the highest risk group could result 

in overtreatment of patients and therefore led to the conclusion that the model was unfit for use in 

this population. This was missed in previous validation efforts which ignored the competing event of 

death.[5,6] We present model performance obtained when ignoring the competing risk and when 

accounting for it side-by-side in Supplementary material 1. 

For predicting binary and time-to-event outcomes, useful guidance on how to perform model 

validation exists.[7-10] For time-to-event outcomes with competing risks, validation guidance is 

currently spread out over many technical papers which hampers the uptake of appropriate methods 

in medical research. We aim to provide an accessible overview of contemporary performance 

measures for time-to-event outcomes with competing risks. Our overview was made on behalf of the 

international STRengthening Analytical Thinking for Observational Studies (STRATOS) initiative 

(http://stratos-initiative.org), which aims to provide guidance documents for relevant topics in the 

design and analysis of observational studies for a non-specialist audience.[11] We focus on how to 

calculate and interpret performance measures with illustration using a breast cancer prediction 

model, including accompanying R code.  

 

https://urldefense.com/v3/__http:/stratos-initiative.org__;!!BZ50a36bapWJ!8HvwUEaBLz5pPhUiuAc14nxODdLeJWj8KX6MCSfPQNTRFZoIGuqOhZRqAw10Orn6$


Setting 
In this paper, we assume a prediction model has already been developed. It should have been reported 

such that it allows calculating the estimates of the cumulative incidence (or absolute risk of an event) 

at the time point(s) of interest for new patients (Supplementary material 2). Our aim is to validate this 

model in an external dataset while accounting for competing events. Our focus is on external 

validation studies. The same performance measures could also be used during internal validation 

when combined with techniques such as bootstrapping or cross-validation.[12] Typically, interest is in 

the evaluation of the prediction of the primary event occurring by a single specific time-point. If 

multiple time-points are of interest clinically, we may assess performance at each of these time-points 

or over a time range until the last time-point of interest. 

Breast cancer case study 
For illustration, we consider a simple competing risks prediction model for the cumulative incidence 

of breast cancer recurrence within 5 years after diagnosis developed on the FOCUS cohort, a Dutch 

cohort of consecutive breast cancer patients aged 65 years and older. We used cause-specific Cox 

proportional hazards regression modeling with the following four predictors: age at diagnosis, tumor 

size, nodal status, and hormone receptor status (Supplementary material 2 and Table 1).  

Table 1 Hazard ratios for the developed prediction model 

   

Predictor 
at breast cancer diagnosis 

Cause-specific hazards models 

Recurrence 
Other cause 

mortality 
 cHR (95%CI) cHR (95% CI) 

Age, years (80 vs 69) 1.18 (0.90-1.55) 3.41 (2.76-4.24) 

Size, cm (3.0 vs 1.4) 1.49 (1.25-1.78) 1.46 (1.26-1.70) 

Nodal status (positive vs negative) 1.66 (1.18-2.35) 1.20 (0.91-1.60) 

HR status (ER-/PR- vs ER and/or PR+) 1.90 (1.31-2.78) 1.27 (0.90-1.80) 

5 year baseline cumulative incidence  0.14 0.18 

Abbreviations: cHR: cause specific hazard ratio; CI: confidence interval; HR: hormone receptor; 
ER: estrogen receptor status; PR: progesterone receptor status. For representation purposes, 
the cHR for the continuous predictors (age and size) are listed for the 75th versus the 25th 

percentile. Baseline cumulative incidence is presented at the overall mean of the linear 
predictor in the model. To estimate the 5-year cumulative incidence of recurrence for a new 
patient, first for each event the patient’s predictor values are multiplied by the cause-specific 
(log) hazard ratios and combined with the cause-specific baseline hazards. Secondly, the 
resulting cause specific hazards for both events are combined over time up to and including 5 
years (Supplementary materials 2 and 4).    

 

We assess the performance of this model in patient data from the Netherlands Cancer Registry 

(NCR), which is a different dataset to that used for model development. We selected patients aged 

70 years or older diagnosed with breast cancer between 2003 and 2009 in the Netherlands who 

received primary breast surgery, and received no previous neoadjuvant treatment. We used a 

random subset of 1000 patients from the registry as with this selection we were allowed to share 



the individual patient data open access. Among these 1,000 patients, 103 recurrences and 187 non-

recurrence deaths occurred within 5 year follow up (cumulative incidence curve in Supplementary 

Figure 1).  

Performance measures for risk prediction models and accounting 

for competing risks  
We discuss performance measures for the following four validation aspects: calibration, 

discrimination, overall prediction error and decision curve analysis. We give the results of these 

performance measures in our breast cancer case study. Corresponding R functions are in Table 2, and 

technical descriptions in Supplementary material 4. 

Calibration 
Calibration refers to the agreement between observed outcome proportions and risk estimates from 

the prediction model. For example, in the breast cancer cohort, the model predicted a 14% absolute 

risk of breast cancer recurrence by 5 years on average. This implies that, if the model is well calibrated 

on average, we expect to observe a recurrence event in approximately 14% of the patients in the 

validation set within 5 years. Ideally calibration is not only adequate on average (‘calibration in the 

large’), but across the entire range of predictions.  

Calibration plot 

Calibration plots offer a detailed view on calibration by comparing observed and predicted outcomes 

among patients with the same estimated risk. The observed outcome proportions and estimated risks 

by a particular time-point of interest are plotted against each other, with deviations from the diagonal 

signalling miscalibration. A common approach is one where individuals are divided into approximately 

equally sized groups based on their risk estimates - for example in tenths of risk defined between 

deciles. Then, for each group, the observed outcome proportion is plotted against the estimated risk. 

The main challenge is how to incorporate censored data and competing events into the calculation of 

the observed outcome proportion. When using the grouping approach, the observed outcome 

proportion can be estimated using the Aalen-Johansen estimator (Supplementary material 4).[13-15] 

However, as the grouping approach has been criticized for arbitrariness of the categorization and 

potential loss of information, it is recommended to include a smoothed curve in the calibration 

plot.[16] One approach of obtaining a smooth curve is using pseudo-observations. These pseudo-

observations replace the primary event indicators, which gives a proxy ‘observed’ event indicator for 

all patients, even those that were censored observations (Box 1).[17] After this transformation into 

pseudo-observations, a smooth curve can be obtained using a non-parametric smoother of the  

observed outcome proportions (from the validation data) versus estimated risks (from the 

model).[18,19] An alternative approach was recently proposed where the smoothed curve is obtained 

as predictions from a flexible regression model (Box 1).[20,21] Both for the pseudo-observations 

approach and for the flexible regression approach, the calibration curve will depend on the chosen 

strength of the smoothing, i.e. the span for the first approach and the degree of flexibility (e.g. number 

of knots when using splines) in the second approach. Advice on these choices can be found 

elsewhere.[18,21] The smoothed curve should only be plotted over the range of observed risks and 

not extrapolated beyond.  



The calibration plot for the breast cancer model shows that the predicted 5-year cumulative incidence 

of breast cancer recurrence is too high at the lower range of the estimated risks in the validation 

cohort (Figure 1, estimated using the pseudo-observations approach). The calibration curve using the 

flexible regression approach showed similar overestimation (available from our GitHub page). 

 

Figure 1 Calibration plot visualizing the estimates of cumulative incidence of breast cancer 

recurrence against the outcome proportions observed in the validation set. The 45 degree reference 

line indicates perfect calibration. The smooth curve including confidence interval was estimated 

using a linear loess smoother on the pseudo-observations with span of 0.33.[18,19] The open dots 

along the x-axis indicate the distribution of risk estimates. 

 

 

  



Table 2 Overview of performance measures with suggested R packages that offer implementation for competing risk outcomes 

Aspect Performance measure Interpretation R package (function) 

Calibration calibration plot  
How close is each estimated risk (or risk group) to the observed outcome proportion?  

riskRegression 
(plotCalibration) 

 O/E ratio 
How close is the estimated 
risk to the overall observed 
outcome proportion?  

Calibration in the large (‘mean calibration’): ratio of average 
estimated risk to overall observed outcome proportion 

available from our GitHub  
 calibration intercept Intercept (on the log cumulative-hazard scale) of the regression of 

observed outcomes with estimated risks as offset 

 calibration slope Are estimated risks too 
extreme (far apart) or too 
modest (homogeneous)? 

Slope (on the log cumulative-hazard scale) of the regression of 
observed outcomes on estimated risks 

    
Discrimination c-index  How well does the model separate those who experience the primary event earlier than others? pec (cindex) 

 C/D AUCt Cumulative/dynamic area under the receiving operator characteristic curve. How well does the 
model separate those who will and who will not experience the primary event by a certain time-
point? 

timeROC (timeROC) 

 C/D AUCt curve C/D AUCt calculated for each time-point up to the time-point of interest available from our GitHub 

    
Prediction 

error 
Brier score How close are estimated 

risks to the observed 
primary event indicators? 

Average squared difference between estimated risks and primary 
event indicators riskRegression (Score) 

 scaled Brier score Percentage reduction in Brier score compared to a null model 
    

Decision curve 
analysis 

Net Benefit  
 

What is the net result from 
correctly and falsely 
classified high risk 
patients? 

Weighted difference between correctly and falsely classified 
patients,  for a certain risk threshold 

available from our GitHub 
 Decision curve Curve of Net Benefit over a plausible range of risk thresholds 



 

 

Numerical summaries of calibration 

A simple way to summarize overall calibration (or calibration-in-the-large) by a particular time-point, 

is a ratio of observed and expected outcomes (O/E ratio). An O/E of 1 indicates perfect calibration-

in-the-large, an O/E < 1 indicates that on average the model predictions are too high, and an O/E > 1 

Box 1: Techniques for estimating performance measures from competing risks data 

in the presence of censoring.  

 

Pseudo-observations 

• A pseudo-observation is used as a proxy measure of the primary event indicator of each 

patient.  

• The pseudo-observations are calculated as the weighted difference between the 

cumulative incidence estimate at the prediction horizon based on all patients and the same 

quantity estimated leaving that patient out.  

• The advantage of pseudo-observations is that censored patients for who the primary event 

indicator is unknown, will have a pseudo-observation and can contribute to the calculation 

of the observed outcome proportion in a straightforward way.  

Smoothing using a flexible regression model 

• The primary event is regressed on (a complementary log-log transformation of) the risk 

estimates, employing restricted cubic splines to allow a non-linear relationship. The shape 

and degree of smoothing is chosen by specifying the number and location of knots. Austin 

et al. propose to use a Fine and Gray model in this step.[20,21] 

• Observed outcome proportions are estimated using the flexible regression model for all 

patients, including patients with a censored event status.  

Inverse probability of censoring weighting (IPCW) 

• The intention with IPCW is to create a hypothetical population that would have been 

observed had no censoring occurred.  

• This can be achieved by up-weighting patients who are similar to censored patients but 

remain in the study longer. In other words, observations that were not likely to remain in 

follow-up are up-weighted.  

• The weights are estimated from a survival model with censoring as the outcome.  

• Observations are then weighted inversely to their probability of not being censored.  



indicates that on average the model predictions are too low. In the presence of competing events, 

the O/E ratio can be calculated as the ratio of the observed outcome proportion by the prediction 

horizon (estimated by the Aalen-Johansen estimator[13]) and the average risk estimated by the 

prediction model under evaluation. We refer to Supplementary material 3 for an overview of 

alternative ways to summarize overall calibration.  

A further way to numerically summarize the calibration plot of predictions by a particular time-point 

is by calculating the calibration intercept and calibration slope. For competing risks data, these can 

be estimated using pseudo-observations, similar to those proposed for ordinary survival.[19] We 

provide details in Supplementary material 3. If on average the risk estimates equal the observed 

outcome proportions, the calibration intercept will be zero. The calibration slope equals one if the 

strength of the predictors match the observed strength in the validation set. The calibration 

intercept and slope can potentially be used for recalibration of existing models to fit better in new 

populations.[22,23]  

Returning to the breast cancer validation cohort where we focus on the cumulative incidence of 

recurrence up to 5 years, we observe a somewhat too high estimated risk on average with an O/E ratio 

of 0.81 [95% CI 0.62 to 0.99].  The calibration intercept was estimated at -0.15 confirming the 

overestimation. For example, for an estimated risk of 14%, the observed outcome proportion was 1-

0.86^(exp(-0.15))=12%. The calibration slope was 1.22 [95% CI 0.84 to 1.60], which would indicate 

slightly too homogeneous predictions but the wide confidence interval precludes any firm conclusions.  

Table 3 Estimated values (95% confidence interval) of the performance measures in the external 

breast cancer data. O/E ratio: ratio of observed and expected outcomes, C/D AUCt: 

cumulative/dynamic area under the receiving operator characteristic curve 

Calibration 
O/E ratio 0.81 (0.62 to 0.99) 
Calibration intercept -0.15 (-0.36 to 0.05) 
Calibration slope 1.22 (0.84 to 1.60) 

   

Discrimination 
c-index up to 5 years 0.71 (0.67 to 0.76) 
C/D AUCt at 5 years 0.71 (0.66 to 0.77) 

   

Prediction error 
Brier score 0.09 (0.04 to 0.13) 
Scaled Brier score 5.7% (1.6% to 8.2%) 

   
Decision curve analysis Net Benefit at 20% threshold 0.014 

 

Discrimination: C-index and area under the ROC curve 
As well as being well calibrated, useful prediction models should assign higher risk estimates to 

patients who will experience the primary event earlier than others. This is their discriminative ability. 

A commonly used performance measure for assessing discrimination over a certain time range is the 

c-index, also known as concordance index. The c-index assesses the ordering of predictions for all 

patient pairs where at least one has the event within the prediction horizon and the other is not 

censored earlier than that event.[24] The c-index is the proportion of these examinable pairs for 

which the patient with the highest estimated risk is observed to experience the event sooner than 



the other patient. Other versions of the c-index have been proposed that are less dependent of the 

study specific censoring mechanism.[25,26] The c-index ranges from 0.5 (no discriminating ability) to 

1.0 (perfect ability to discriminate between patients with different outcomes).  

In the competing risks setting, two definitions of comparison pairs have been considered 

(Supplementary material 4).[27] When the target is evaluating cumulative incidence, we propose to 

compare pairs where one individual has the primary event within the prediction horizon and the 

other either has the primary event later or experiences a competing event. Such a pair is considered 

concordant when the first individual has the higher estimated risk. In the presence of censoring, 

inverse probability of censoring weighting (IPCW) methods can be applied for estimating the c-index 

(Box 1).[28,27]  

If interest is not in the full range of observed follow up but only in the ability of a model to predict 

the event occurring by a single time-point of interest (e.g. the 5-year recurrence risk), the 

cumulative/dynamic area under the receiving operator characteristic curve (or AUCt) can serve as a 

measure of discrimination.[29] The calculation of AUCt is similar to the c-index except that patient 

pairs are only compared if one has a recurrence by 5 years and the other has a recurrence later than 

5 years or experiences the competing event (non-recurrence mortality).[ 30-32] The ordering of two 

patients having a recurrence after e.g. 2 years and after 3 years will not be in included in this 

calculation. The AUCt can be calculated for multiple time-points and shown in a curve.  

In the breast cancer data, the c-index calculated for the time range till 5 years of follow up was 0.71 

[95% CI 0.66 to 0.76] and the AUC5 year was 0.72 [95% CI 0.66 to 0.77]. The AUCt showed a slightly 

decreasing trend over time with wide confidence intervals (Supplementary Figure 2).  

Overall prediction error 
Overall model performance entails the overall ability of the model to predict whether a patient does 

or does not experience the primary event by a particular time point, combining both the calibration 

and the discrimination of a model. The Brier score summarizes the squared difference between the 

event indicators and the risk estimates.[33-35] For the competing risks setting, the Brier score is the 

average squared difference between the primary event indicator at the end of the prediction 

horizon and the absolute risk estimates by that time-point.[36,18] Weighting techniques or pseudo-

observations can account for censoring (Box 1).[36, 37]  

The Brier score can range from 0, for a perfect model, to 0.25, for a non-informative model in a 

dataset with an overall 50% event occurrence. When the overall outcome risk is lower, the 

maximum score for a non-informative model is lower, which complicates interpretation. Therefore, 

a scaled version of the Brier score has been proposed: 1-(model Brier score / null model Brier 

score).[34, 38-40] The null model (without covariates) is a model that estimates the risk equally for 

all individuals and can in the setting of competing events be estimated by the Aalen-Johansen 

estimator.[13] The scaled Brier score can be interpreted as an R-squared type of measure, 

representing the amount of prediction error in a null model that is explained by the prediction 

model. It has a ‘higher is better’ interpretation with 100% corresponding to a perfect model, 0% a 

useless model and <0% a harmful model in the sense that the predictions are further away from the 

observed data compared to the null model estimating the average risk for each patient.  



In the breast cancer validation cohort, the Brier score (lower is better) was 0.09 [95% CI 0.04 to 

0.13]. The scaled Brier score (higher is better) showed 5.7% [95% CI 1.6% to 8.2%] explained 

variation, which we consider fairly low. 

Decision curve analysis 
Discrimination, calibration and overall prediction error as described above are important when 

validating a prediction model but do not tell us whether the model would do more good than harm if 

used in clinical practice.[41,42] To use a risk model for making decisions, we have to choose a risk 

threshold. Patients with a risk exceeding the threshold are selected for additional clinical 

interventions. Using the risk model in this way leads to justified interventions (interventions in 

patients who would develop recurrence) and unnecessary interventions (interventions in patients 

who would not develop recurrence). The Net Benefit statistic is based on the proportion of justified 

interventions minus the proportion of unnecessary interventions (Box 2). However, it assigns a 

weight to the proportion of unnecessary interventions. This weight is related to the chosen 

threshold: the lower the threshold, the more we value justified interventions and the more we 

accept unnecessary interventions. The choice of the threshold depends on the (perceived) benefits 

and harms of the intervention. For example, a highly effective intervention with few side effects 

suggests using a low threshold. Different clinicians and patients may prefer different thresholds. 

Therefore, Net Benefit can be calculated for a range of reasonable thresholds, resulting in a decision 

curve.[41,43] The decision curve of a model is commonly compared to a reference scenario in which 

all patients receive the intervention (‘treat all’) and another scenario in which no intervention is 

given (‘treat none’).  

 

Box 2: Net Benefit for competing risks data 

• Suppose a physician finds it reasonable that, to treat one patient who would otherwise 

develop a recurrence within 5 years, (e.g. with adjuvant systemic therapy), at most four 

patients are treated unnecessarily. This means at least 20% of treatments should be 

justified implying a risk threshold of 20%..  

• The benefit of a prediction model is defined as the proportion of patients that are 

correctly classified as high risk. In presence of competing events, this proportion can be 

calculated as the cumulative incidence of recurrence among patients with estimated risk 

at or above 20%, multiplied by the proportion out of all patients with risk at or above 

20%.  

• The harm from using the model is defined as the proportion of patients who are 

incorrectly classified as high risk. With competing events, this is calculated as one minus 

the cumulative incidence among patients with estimated risk exceeding 20% multiplied 

by the probability of exceeding that threshold (Supplementary material 4).[43]   

• The Net Benefit is the benefit minus the harm, in which the harm is assigned a weight. 

This weight is determined by the risk threshold. Here we find it reasonable that at least 

20% (1 in 5) treatments is justified implying that the harm of an unnecessary treatment 

is considered four times smaller than the benefit of a justified treatment. The weight is 

therefore 1/4.[41,44,45]  



The decision curve in Figure 2 shows the Net Benefit for predicting recurrence within 5 years in the 

validation data. With a risk threshold of 20% (Box 2), the Net Benefit was 0.014 (Table 2). This net 

result of 14 out of 1000 patients is made up out of 34 patients whom the prediction model points out 

correctly as they would develop recurrence if untreated (benefit) versus 81 patients whom the model 

points out incorrectly and are overtreated (harm). Given the weight of 1/4 implied by the risk 

threshold (Box 2), this leads to the net result of 34-81/4=14 net more benefiting patients when 

applying the prediction model to 1000 patients.  

A Net Benefit greater than zero and exceeding that of the reference scenarios suggests that the 

prediction model can add value to clinical decision making. The decision whether or not to implement 

a model in practice will be further based on practical considerations such as costs and ease with which 

the information needed in the model can be obtained. In our breast cancer illustration, all four 

variables are readily available, but in other cases covariate information can be expensive or invasive 

to obtain. Preferably a formal impact trial is performed to obtain definite evidence on the clinical 

utility of using a prediction model for clinical decision making.[46] 

 

Figure 2 Decision curve for validation of the prediction model developed for estimation of the 

absolute risk of breast cancer recurrence. The solid black line refers to a scenario where the 

predictions from the model are compared to the threshold probabilities to decide who receives the 

intervention. The solid gray line refers to a scenario where all patients receive the intervention. The 

dashed line refers to a scenario where no patients receive the intervention. 



Concluding remarks 
We provided an overview of performance measures for a comprehensive assessment of the 

performance of a competing risks prediction model. This typically requires specialist techniques to 

address censored data such as reweighing the observations or using pseudo-observations. 

Contemporary, free software facilitates all of the described approaches. The methods can be used for 

validating any developed time-to-event prediction model, as long as reporting enables calculation of 

absolute risk estimates for new patients at the time-point(s) of interest.  

We recognize that other performance measures are available that have not been described in this 

overview, which may be important under specific circumstances. For example, methods have been 

proposed for evaluating estimated absolute risks for several or all competing events at the same 

time.[47,48] Also, with exception of the c-index and AUCt curve we limited our descriptions to 

evaluating absolute risk predictions by a single specific time-point, since this is relevant for most 

clinical prediction problems. Several of the performance measures that we described can be extended 

to evaluating predictions by multiple time points or over the entire range of follow-up. Furthermore, 

we note that large sample sizes are often required for a reliable assessment of performance.[49-51] 

The discussed performance measures relate to the full risk distribution (calibration, discrimination, 

overall performance) and to a decision-analytic perspective (potential impact to obtain better patient 

outcomes, or clinical utility). These measures are in line with the TRIPOD guidelines, which form a key 

framework for reporting of prediction models, including the increasingly common competing risks 

prediction models.[52] 

  



Footnotes 
Contributors: All authors provided a substantial contribution to the design and interpretation of the 

paper and revised drafts. ES initiated the project. NvG wrote the initial draft and is the guarantor for 

the study. DG analysed the breast cancer data. EB drafted the technical descriptions in Supplementary 

material 4. DG and EB are main authors of the GitHub page. The corresponding author had full access 

to all the data in the study and had final responsibility for the decision to submit for publication. The 

corresponding author attests that all listed authors meet authorship criteria and that no others 

meeting the criteria have been omitted. 

Funding:  

The research of MPP is supported by the Slovenian Research Agency (grant P3-0154, ”Methodology 

for data analysis in medical sciences”). 

 

Supplementary material 1: Ignoring competing events 

Supplementary material 2: Details on model development 

Supplementary material 3: Details on calibration measures 

Supplementary material 4: Technical description of the performance measures (separate 

pdf file) 

Supplementary material 5: Supplementary Table and Figures 

Dataset and R code (GitHub page) 

 

 

 



References 

1. Moons KGM, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, 

and how? BMJ 2009;338:b375. doi:10.1136/bmj.b375 

2. Koller MT, Raatz H, Steyerberg EW, et al. Competing risks and the clinical community: 

irrelevance or ignorance? Statist Med 2012;31:1089–97. doi:10.1002/sim.4384 

3. Pfeiffer RM, Gail MH. Absolute risk: methods and applications in clinical management and 

public health. First issued in paperback. Boca Raton: CRC Press 2020. 

4. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state 

models. Statistics in Medicine 2007;26:2389–430. doi:10.1002/sim.2712 

5. Ramspek LR, Teece L, Snell KIE et al. Lessons learnt when accounting for competing events in 

the external validation of time-to-event prognostic models. Int J of Epidemiology 2021. 

https://doi.org/10.1093/ije/dyab256 

6. Ramspek CL, Evans M, Wanner C, et al. Kidney Failure Prediction Models: A Comprehensive 

External Validation Study in Patients with Advanced CKD. JASN 2021;32:1174–86. 

doi:10.1681/ASN.2020071077 

7. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, 

and updating. Second edition. Cham, Switzerland: : Springer 2019. 

8. Royston P, Altman DG. External validation of a Cox prognostic model: principles and 

methods. BMC Medical Research Methodology 2013;13:33. doi:10.1186/1471-2288-13-33 

9. Riley RD, Windt D van der, Croft P, et al. Prognosis research in healthcare: concepts, 

methods, and impact. 2019. 

https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5891544 

(accessed 20 Apr 2021). 

10. McLernon DJ, Giardiello D, van Calster B, Wynants L, van Geloven N, van Smeden M, 

Therneau T, Steyerberg EW. Assessing performance in prediction models with survival 

outcomes: practical guidance. In preparation. 

11. Sauerbrei W, Abrahamowicz M, Altman DG, et al. STRengthening Analytical Thinking for 

Observational Studies: the STRATOS initiative. Statist Med 2014;33:5413–32. 

doi:10.1002/sim.6265 

12. Steyerberg EW, Harrell FE. Prediction models need appropriate internal, internal-external, 

and external validation. J Clin Epidemiol 2016;69:245–7. doi:10.1016/j.jclinepi.2015.04.005 

13. Aalen OO, Johansen S. An Empirical Transition Matrix for Non-Homogeneous Markov Chains 

Based on Censored Observations. Scandinavian Journal of Statistics 1978;5:141–

50.https://www.jstor.org/stable/4615704 (accessed 24 Nov 2020). 

14. Kattan MW, Giri D, Panageas KS, et al. A tool for predicting breast carcinoma mortality in 

women who do not receive adjuvant therapy. Cancer 2004;101:2509–15. 

doi:10.1002/cncr.20635 

15. Wolbers M, Koller MT, Witteman JCM, et al. Prognostic Models With Competing Risks: 

Methods and Application to Coronary Risk Prediction. Epidemiology 2009;20:555–61. 

doi:10.1097/EDE.0b013e3181a39056 

16. Harrell FE. Regression modeling strategies: with applications to linear models, logistic and 

ordinal regression, and survival analysis. Second edition. Cham Heidelberg New York: : 

Springer 2015. 

17. Andersen PK, Perme MP. Pseudo-observations in survival analysis: Statistical Methods in 

Medical Research 2010;19(1):71-99. doi: 10.1177/0962280209105020.  

https://doi.org/10.1093/ije/dyab256


18. Gerds TA, Andersen PK, Kattan MW. Calibration plots for risk prediction models in the 

presence of competing risks. Statistics in Medicine 2014;33:3191–203. 

doi:https://doi.org/10.1002/sim.6152 

19. Royston P. Tools for Checking Calibration of a Cox Model in External Validation: Approach 

Based on Individual Event Probabilities. The Stata Journal 2014;14:738–55. 

doi:10.1177/1536867X1401400403 

20. Austin PC, Harrell FE, Klaveren D van. Graphical calibration curves and the integrated 

calibration index (ICI) for survival models. Statistics in Medicine 2020;39:2714–42. 

doi:https://doi.org/10.1002/sim.8570 

21. Austin PC, Putter H, Giardiello D, et al. Graphical calibration curves and the integrated 

calibration index (ICI) for competing risk models. Diagnostic and Prognostic Research 

2022;6:2. doi:10.1186/s41512-021-00114-6  

22. Van Houwelingen HC, Thorogood J. Construction, validation and updating of a prognostic 

model for kidney graft survival. Stat Med 1995;14:1999–2008. doi:10.1002/sim.4780141806 

23. Steyerberg EW, Borsboom GJJM, van Houwelingen HC, et al. Validation and updating of 

predictive logistic regression models: a study on sample size and shrinkage. Statist Med 

2004;23:2567–86. doi:10.1002/sim.1844 

24. Harrell FE. Evaluating the Yield of Medical Tests. JAMA 1982;247:2543. 

doi:10.1001/jama.1982.03320430047030 

25. Uno H, Cai T, Pencina MJ, et al. On the C-statistics for evaluating overall adequacy of risk 

prediction procedures with censored survival data. Statist Med 2011;30:1105–17. 

doi:10.1002/sim.4154 

26. Gerds TA, Kattan MW, Schumacher M, et al. Estimating a time-dependent concordance 

index for survival prediction models with covariate dependent censoring. Statist Med 

2013;32:2173–84. doi:10.1002/sim.5681 

27. Wolbers M, Blanche P, Koller MT, et al. Concordance for prognostic models with competing 

risks. Biostatistics 2014;15:526–39. doi:10.1093/biostatistics/kxt059 

28. Robins JM, Rotnitzky A. Recovery of Information and Adjustment for Dependent Censoring 

Using Surrogate Markers. In: Jewell NP, Dietz K, Farewell VT, eds. AIDS Epidemiology: 

Methodological Issues. Boston, MA: : Birkhäuser 1992. 297–331. doi:10.1007/978-1-4757-

1229-2_14  

29. Blanche P, Kattan MW, Gerds TA. The c-index is not proper for the evaluation of $t$-year 

predicted risks. Biostatistics 2019;20:347–57. doi:10.1093/biostatistics/kxy006 

30. Saha P, Heagerty PJ. Time-Dependent Predictive Accuracy in the Presence of Competing 

Risks. Biometrics 2010;66:999–1011. doi:10.1111/j.1541-0420.2009.01375.x 

31. Zheng Y, Cai T, Jin Y, et al. Evaluating Prognostic Accuracy of Biomarkers under Competing 

Risk. Biometrics 2012;68:388–96. doi:10.1111/j.1541-0420.2011.01671.x 

32. Blanche P, Dartigues J-F, Jacqmin-Gadda H. Estimating and comparing time-dependent areas 

under receiver operating characteristic curves for censored event times with competing 

risks. Statist Med 2013;32:5381–97. doi:10.1002/sim.5958 

33. Brier GW. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY. Mon Wea 

Rev 1950;78:1–3. doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 

34. Graf E, Schmoor C, Sauerbrei W, et al. Assessment and comparison of prognostic 

classification schemes for survival data. Statistics in Medicine 1999;18:2529–45. 



doi:https://doi.org/10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-

SIM274>3.0.CO;2-5 

35. Gerds TA, Schumacher M. Consistent Estimation of the Expected Brier Score in General 

Survival Models with Right-Censored Event Times. Biometrical Journal 2006;48:1029–40. 

doi:https://doi.org/10.1002/bimj.200610301 

36. Schoop R, Beyersmann J, Schumacher M, et al. Quantifying the predictive accuracy of time-

to-event models in the presence of competing risks. Biom J 2011;53:88–112. 

doi:10.1002/bimj.201000073 

37. Cortese G, Gerds TA, Andersen PK. Comparing predictions among competing risks models 

with time-dependent covariates. Statistics in Medicine 2013;32:3089–101. 

doi:https://doi.org/10.1002/sim.5773 

38. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the Performance of Prediction Models: 

A Framework for Traditional and Novel Measures. Epidemiology 2010;21:128–38. 

doi:10.1097/EDE.0b013e3181c30fb2 

39. van Houwelingen H, Putter H. Dynamic Prediction in Clinical Survival Analysis. 0 ed. CRC 

Press 2011. doi:10.1201/b11311 

40. Kattan MW, Gerds TA. The index of prediction accuracy: an intuitive measure useful for 

evaluating risk prediction models. Diagn Progn Res 2018;2:7. doi:10.1186/s41512-018-0029-

2 

41. Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction 

models. Med Decis Making 2006;26:565–74. doi:10.1177/0272989X06295361 

42. Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of 

prediction models, molecular markers, and diagnostic tests. BMJ 2016;:i6. 

doi:10.1136/bmj.i6 

43. Vickers AJ, Cronin AM, Elkin EB, et al. Extensions to decision curve analysis, a novel method 

for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform 

Decis Mak 2008;8:53. doi:10.1186/1472-6947-8-53 

44. Kerr KF, Brown MD, Zhu K, et al. Assessing the Clinical Impact of Risk Prediction Models With 

Decision Curves: Guidance for Correct Interpretation and Appropriate Use. JCO 

2016;34:2534–40. doi:10.1200/JCO.2015.65.5654 

45. Pauker SG, Kassirer JP. The Threshold Approach to Clinical Decision Making. N Engl J Med 

1980;302:1109–17. doi:10.1056/NEJM198005153022003 

46. Steyerberg EW, Moons KGM, van der Windt DA, et al. Prognosis Research Strategy 

(PROGRESS) 3: prognostic model research. PLoS Med 2013;10:e1001381. 

doi:10.1371/journal.pmed.1001381 

47. Van Hoorde K, Van Huffel S, Timmerman D,  Bourne T, Van Calster B. A spline-based tool to 

assess and visualize the calibration of multiclass risk predictions. Journal of Biomedical 

Informatics 2015;54:283–93. doi:10.1016/j.jbi.2014.12.016 

48. Ding M, Ning J, Li R. Evaluation of competing risks prediction models using polytomous 

discrimination index. Canadian Journal of Statistics; early view doi:10.1002/cjs.11583 

49. Vergouwe Y, Steyerberg EW, Eijkemans MJC, et al. Substantial effective sample sizes were 

required for external validation studies of predictive logistic regression models. J Clin 

Epidemiol 2005;58:475–83. doi:10.1016/j.jclinepi.2004.06.017  



50. Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation 

of a multivariable prognostic model: a resampling study. Stat Med 2016;35:214–26. 

doi:10.1002/sim.6787   

51. Pavlou M, Qu C, Omar RZ, et al. Estimation of required sample size for external validation of 

risk models for binary outcomes. Stat Methods Med Res 2021;30:2187–206. 

doi:10.1177/09622802211007522 

52. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 

2015;350:g7594. doi:10.1136/bmj.g7594 

 

  



Supplementary material 1 - Ignoring competing risks during model validation 

The following results are adapted from Tables 1 and 2 and Figures 3 and 4 published in a study by 

Ramspek et al., with permission [w1]. 

 

 

 

 

Figure 1 

Calibration plots for external validation of the 2- and 5-year Kidney Failure Risk Equation (KFRE). The 

external validation was performed ignoring competing risks (red points and line) and by using a 

competing-risks approach (green points and line).  

 

  



Table 1 

Calibration and discrimination results for external validation of the 2- and 5-year KFRE, in the entire 

validation cohort (n = 13 489). The external validation was performed in two manners, first by 

ignoring the competing risk of death by censoring these patients and using Kaplan–Meier estimates 

and second by validating the models whilst taking account of competing risks in the performance 

measures. 

 

KFRE 2-year model 

 

KFRE 5-year model 

 

 

Ignoring 

competing 

events by 

censoring 

Taking 

competing 

events into 

account 

Ignoring 

competing 

events by 

censoring 

Taking 

competing 

events into 

account 

Average 

predicted risk  

17%  17%  41%  41%  

Average 

observed 

probability  

(95% CI)  

18%  

(17%–19%)  

16%  

(15%–17%)  

41%  

(40%–42%)  

31%  

(30%–32%)  

O/E ratio  

(95% CI)  

1.06  

(1.02–1.10)  

0.94  

(0.91–0.98)  

1.00  

(0.98–1.02)  

0.76  

(0.74–0.78)  

C-index 

 (95% CI)  

0.840  

(0.831–0.849)  

0.834  

(0.825–0.843)  

0.829  

(0.821–0.837)  

0.814  

(0.806–0.822)  

KFRE, Kidney Failure Risk Equation; O/E, observed/expected; CI, confidence interval. 

  



Figure 2 

Calibration plots for external validation of the 2- and 5-year Kidney Failure Risk Equation (KFRE) in a 

subset of older patients. The external validation was performed ignoring competing risks (red points 

and line) and by using a competing-risks approach (green points and line). The competing-risks 

approach represents the model performance for the absolute kidney-failure risk in a setting in which 

patients may die.  

In panel (b) the patients with 10% highest risk have an estimated probability of 0.89. when ignoring 

competing events, the observed outcome probability is 0.81, whereas when accounting for 

competing events the observed outcome probability is only 0.52 (29 percentage points lower).  

  



Table 2 

Calibration and discrimination results for external validation of the 2- and 5-year KFRE, in a subset of 

patients aged ≥70 years (n = 8654). The external validation was performed in two manners, first by 

ignoring the competing risk of death by censoring these patients and using Kaplan–Meier estimates 

and second by validating the models whilst taking account of competing risks in all performance 

measures. 

 

KFRE 2-year model 

 

KFRE 5-year model 

 

 

Ignoring 

competing 

events by 

censoring 

Taking 

competing 

events into 

account 

Ignoring 

competing 

events by 

censoring 

Taking 

competing 

events into 

account 

Average 

predicted risk  

13%  13%  34%  34%  

Average 

observed 

probability 

(95% CI)  

11%  

(11%–12%)  

10%  

(9%–10%)  

28%  

(27%–29%)  

19%  

(18%–20%)  

O/E ratio (95% 

CI)  

0.91  

(0.86–0.96)  

0.78  

(0.73–0.83)  

0.84  

(0.81–0.87)  

0.57  

(0.54–0.59)  

C-index (95% 

CI)  

0.826  

(0.810–0.841)  

0.813  

(0.797–0.828)  

0.817  

(0.803–0.830)  

0.791  

(0.778–0.805)  

KFRE, Kidney Failure Risk Equation; O/E, observed/expected; CI, confidence interval. 

 

 

 

 

w1 Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing events in the 

external validation of time-to-event prognostic models. International Journal of Epidemiology 

2021;:dyab256. doi:10.1093/ije/dyab256 

   



Supplementary material 2 Details on the development of the prediction model 

 

Cause specific versus sub-distribution approach 

Analysis methods for predicting absolute risks in competing risks data typically use either the cause-

specific hazards for all events (CSH approach) or the sub-distribution hazard of the primary event 

(SDH approach). In short, in the CSH approach separate regression models are developed for each 

event, censoring patients who experience the other events. By combining the separate models, the 

absolute risk of the primary event can be calculated.[w1] In the SDH approach, a single regression 

model is developed that directly relates to the absolute risk of the primary event.[w2,w3] More 

details on both approaches can be found in Supplementary material 4.  

Although most published competing risks prediction models used the SDH approach (in particular 

the Fine and Gray model), the CSH approach has two important advantages. Firstly, when calculating 

absolute risks for multiple competing events, the sum of these risks should remain below one. With 

the CSH approach this is guaranteed, whereas in the Fine and Gray model it is not.[w4] Secondly, in 

the CSH approach the hazard ratios are well interpretable as they link to a single event instead of to 

a combination of events.[w5,w6] This can be useful for understanding a model’s behavior and allows 

including causal thinking into model development which in turn may lead to models that generalize 

more easily.[w7,w8] Subdistribution (SD) hazard ratios from a Fine and Gray model may be 

interpreted as directly reflecting the association with absolute risks at the price of a proportionality 

assumption of such hazard ratios that is difficult to motivate from a biological viewpoint. For 

instance, a variable may appear protective for the event of interest based on a SD hazard ratio below 

one, whereas actually it could just as well be a risk factor for the event of interest if the variable is a 

strong risk factor for a competing event at the same time.  

In contrast to the SDH approach, a practical disadvantage of the CSH approach is that calculating 

absolute risk estimates for new patients cannot be done by hand with a simple formula. It requires 

access to the cause-specific baseline hazard functions over time up to and including the time point of 

interest, the cause-specific hazard ratios for each event and the reference levels of the covariates 

they refer to. As individual patient predictions are typically made through electronic tools (webforms 

or apps), no issues are foreseen when using such models in clinical practice. For scientific validation 

of prediction models, the model information is preferably shared in full to facilitate calculating 

predictions for many new patients in one go. We provide R code for sharing and using model 

information when using the CSH approach without having to share raw data at our GitHub page. For 

the SDH approach, calculating the absolute risks for new patients requires the estimated baseline 

absolute cumulative risk at the prediction horizon, the sub-distribution hazard ratios for the primary 

event and the reference levels of the covariates that they refer to.  

The prediction model we use for illustration of performance measures in the manuscript was 

developed using the CSH approach. The discussed validation methods are equally applicable to other 

competing risks models such as the SDH approach, (flexible) parametric models and random survival 

forests, as long as the models provide sufficient information to calculate the estimated absolute risks 

for new patients.  

https://github.com/survival-lumc/ValidationCompRisks/blob/main/sharing_CSC_model.R


Development data 

We developed the prediction model on the FOCUS cohort.[w9] In this retrospective cohort, all 

consecutive patients aged 65 years or older with breast cancer diagnosed in the South-West region 

of the Netherlands in the years 1997-2004 were included. The registry contains information on 

patient-characteristics including tumor characteristics, treatment and disease recurrence. Follow-up 

data on patient survival (maximal 5 years) was obtained by linkage with the municipal population 

registries.  We applied the following inclusion criteria (same inclusion criteria that were used in the 

validation cohort): patients with primary breast cancer who received primary breast surgery, and 

received no previous neoadjuvant treatment. We used a random subset of 1000 patients to allow 

Open Access data sharing. Out of these 1000 patients in the development set, 135 developed breast 

cancer recurrence and 204 had a non-recurrence death within the five years follow up (cumulative 

incidence curve in Supplementary Figure 1). Except for the higher age inclusion criterion in the 

validation cohort, patients were rather similar on the listed characteristics in the development and 

validation cohorts (Supplementary Table 1). 

Model development 

Using the CSH approach, we combined the two Cox proportional hazards models for recurrence and 

death. In both models, we used age, tumor size, nodal status, and hormone receptor status as 

predictors. We assessed the proportionality assumptions of the models visually and with tests based 

on Schoenfeld residuals, and did not observe strong deviations. We assessed the linearity of the 

effects of age and tumor size by comparing model fit (Akaike’s Information Criterion) using linear 

covariate effects and using restricted cubic splines. Linear effects showed adequate fit. Larger tumor 

size, positive nodal status and negative hormone receptor status were strong predictors of breast 

cancer recurrence (Supplementary Table 2). Age was strongly related to non-recurrence mortality.  

Fine and Gray model 

For completeness we repeated our illustration with a model developed using the SDH approach. 

Code for development and validation of such a model is available from out GitHub page. In the SDH 

approach, we used a Fine and Gray sub-distribution hazards model following the same steps as in 

the CSH approach. Validation results were highly similar to those of the CSH approach presented in 

the main manuscript. 

w1 Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. 

Statistics in Medicine 2007;26:2389–430. doi:10.1002/sim.2712 

w2 Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. 

Journal of the American Statistical Association 1999;94:496–509. doi:10.2307/2670170 

w3 Gerds TA, Scheike TH, Andersen PK. Absolute risk regression for competing risks: interpretation, 

link functions, and prediction. Statistics in Medicine 2012;31:3921–30. doi:10.1002/sim.5459 

w4 Austin PC, Steyerberg EW, Putter H. Fine-Gray subdistribution hazard models to simultaneously 

estimate the absolute risk of different event types: Cumulative total failure probability may exceed 

1. Statistics in Medicine 2021;40:4200–12. doi:10.1002/sim.9023 

w5 Lau B, Cole SR, Gange SJ. Competing Risk Regression Models for Epidemiologic Data. American 

Journal of Epidemiology 2009;170:244–56. doi:10.1093/aje/kwp107 



w6 Koller MT, Raatz H, Steyerberg EW, et al. Competing risks and the clinical community: irrelevance 

or ignorance? Statist Med 2012;31:1089–97. doi:10.1002/sim.4384 

w7 Piccininni M, Konigorski S, Rohmann JL, et al. Directed acyclic graphs and causal thinking in 

clinical risk prediction modeling. BMC Med Res Methodol 2020;20:179. doi:10.1186/s12874-020-

01058-z 

w8 van Geloven N, Swanson SA, Ramspek CL, et al. Prediction meets causal inference: the role of 

treatment in clinical prediction models. Eur J Epidemiol 2020;35:619–30. doi:10.1007/s10654-020-

00636-1 

w9 de Glas NA, Kiderlen M, Bastiaannet E, et al. Postoperative complications and survival of elderly 

breast cancer patients: a FOCUS study analysis. Breast Cancer Res Treat 2013;138:561–9. 

doi:10.1007/s10549-013-2462-9 

  



Supplementary material 3 Details on calibration measures 

 

Alternative numerical summaries of overall calibration (calibration-in-the-large) 

In the main paper we present the O/E ratio to summarize overall calibration into a single number. An 

alternative way to summarize overall calibration is by calculating the average distance between the 

calibration curve and the diagonal (i.e., the line that would indicate perfect calibration). When the 

distance is averaged on the squared scale, this leads to what has been referred to as the ‘mean 

squared bias’.[w1,w2] When reported, we recommend using the root mean squared bias to facilitate 

interpretation. To calculate the distance between the calibration curve and diagonal, we need the 

(smoothed) estimate of the observed outcome proportion for each patient’s estimated risk. As for 

the calibration curve, these smoothed outcome proportions can be estimated using pseudo-

observations[w1] or by using a flexible regression model[w3,w4] and will depend on the chosen 

degree of smoothing (Box 1). The difference with the definition of the Brier score discussed in the 

main of the paper is that we here compare the predictions to observed outcome proportions, and 

not to individual (zero or one) primary event indicators as is the case with the Brier score. 

Recently, averaging the distance on the absolute scale was proposed, leading to a measure called 

the integrated calibration index (ICI).[w3,w4] Both the root mean squared bias and the ICI indicate 

how far off target the risk estimates are on average. We prefer averaging on the squared scale as 

previous literature has pointed out that absolute distance measures in the survival setting may lack a 

desired statistical property called ‘propriety’, meaning that a perfect model that provides the true 

underlying risks does not necessarily score best.[w5] In line with earlier work, we propose also 

reporting the median (E50) and 90th percentile (E90) of the absolute differences along with ICI 

and/or root mean squared bias.[w6]  

Results from the breast cancer validation cohort are presented in the table below. The root mean 

squared bias and ICI show that on average the model was 3 percentage points off target, with 90% 

of observations staying within 5 percentage points error.  

Table Estimated values of the additional measures for overall calibration in the external breast 

cancer data 

Root mean squared bias 0.035 
ICI 0.031 
E50 0.030 
E90 0.052 
Emax 0.159 

 



Calibration intercept and calibration slope for competing risks data 

A pseudo-observation is used as a proxy measure of the primary event indicator at the time-point of 

interest for each patient (did the patient experience the primary event before or at the prediction 

horizon or not). The pseudo-observations are calculated as the weighted difference between the 

cumulative incidence estimate at the prediction horizon based on all patients and the same quantity 

estimated leaving that patient out. These are so-called ‘jackknife’ pseudo-observations. Note that 

these individual pseudo-observations can have unintuitive values beyond the 0-1 range and may 

even be negative. The important property of pseudo-observations that is employed when they are 

used for assessment of calibration is that on average they give an unbiased estimate of the observed 

cumulative incidence.[w7, w2]. Similar to the setting of ordinal time-to-event outcomes, to calculate 

calibration intercept and slope, the pseudo-observations can be regressed using a generalized linear 

model with (a complementary log-log transformation of) the risk estimates as an offset, meaning 

that the regression coefficient of the risk estimates is constrained to one.[w8] The estimated 

intercept from this model is the calibration intercept and indicates how much the risk estimates are 

over- or underestimating on average. A negative calibration intercept indicates that the risk 

estimates are on average too high and a positive intercept indicates that the risk estimates are on 

average too low. The calibration slope can be estimated by adding (on top of the offset described 

above) the same (complementary log-log transformed) risk estimates as a covariate to the 

generalized linear model. The estimated regression coefficient for this covariate indicates how much 

the calibration slope deviates from one. A calibration slope between 0 and 1 indicates too extreme 

predictions of the model, i.e. for patients with low risks the estimated risks are too low and for 

patients with high risk the estimated risks are too high. A calibration slope >1 indicates predictions 

do not show enough variation.  A calibration slope <0 would imply that predictions are in the wrong 

direction. 

The calculations can be extended from risk up to one particular time-point to a calibration intercept 

and slope that are based on a range of time points spanning the follow-up period.[w8] 

Alternatively, if focus is not on a single time point but on the full range of observed follow up, a 

calibration intercept and slope could be estimated by a procedure using Poisson regression.[w9, 

w10] 
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Supplementary material 5 - Supplementary Tables and Figures 
 

Supplementary Table 1 Patient characteristics 

 
Development 

cohort 

(N=1000) 

Validation 

cohort 

(N=1000) 

Age at diagnosis (years)   

Median [Min, Max] 74 [65, 95] 76.0 [70, 96] 

Size of first tumour (cm)   

Median [Q1,Q3] 2.00 [1.40, 3.00] 1.80 [1.20, 2.60] 

Nodal status (positive 

versus negative)   

Positive  358 (36%) 312 (31%) 

Hormone Receptor 

status (ER+ and/or PR+ 

versus ER-/PR-) 
  

ER+ and/or PR+ 822 (82%) 857 (86%) 

Abbreviations: ER: estrogen receptor status; PR: progesterone receptor 

status. Q1,Q3: first and third quartile, Min: minimum, Max: maximum 

 

  



Supplementary Figure legends 

    

 

Supplementary Figure 1 Cumulative incidence curves for breast cancer recurrence with death 

before recurrence as competing risk in the development (left) and validation (right) set. Dashed bars 

indicate 95% confidence intervals. 

  



 

 

Supplementary Figure 2 Curve of the cumulative/dynamic time dependent area under the 

receiving operator characteristic curve (AUCt) in the validation cohort. Time in years. 

 

 

 

 

 

 

 

 

 


