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Abstract: We present a method to determine the complex coupling parameter of a two-coupled-
modes system by directly measuring the coupled eigenmodes rather than their eigenvalues. This
method is useful because mode-mixing can be observed even if frequency shifts can not be
measured. It also allows to determine the complex coupling parameter, from which we conclude
that the observed coupling is mainly conservative. We observe mode-mixing in an optical
microcavity, where the modes couple primarily at the mirror surface, as confirmed by AFM
measurements. The presented method is general and can be applied to other systems to measure
mode coupling more accurately and to determine the nature of the coupling.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coupled harmonic oscillators occur in all fields of physics, including optics. The coupling between
harmonic oscillators or optical modes modifies the eigenmodes and shifts their eigenvalues. We
propose and demonstrate a method to directly observe the eigenmodes in an optical microcavity.
This is a sensitive method because it depends on the coupling amplitude instead of the coupling
power; it thus allows one to also measure mode-mixing when it can not be measured in frequency
shifts, for instance because the second coupled mode is too weak. The complex amplitude also
contains a phase, which reveals the nature of the coupling.

Optical microcavities are versatile and flexible tools to enhance the interaction between light
and matter [1,2]. This enhancement, which is proportional to the cavity finesse divided by the
mode area, can be controlled in an open microcavity [3–7]. An open microcavity consists of two
Distributed Bragg Reflectors (DBRs) with a tunable cavity length. The radius of curvature of the
DBR and the cavity length determine the mode size, and thereby the light-matter interaction.
Open microcavities can achieve similar Purcell factors as monolithic cavities [8,9].

Optical cavities support fundamental and higher-order transverse modes. At certain cavity
lengths, some modes become frequency degenerate and hence couple [10–14]. The coupling of
optical modes in analogous to two pendulums connected by a spring as depicted in Fig. 1. The
modes of the pendulums hybridize and their eigenfrequencies shift. Instead of measuring this
frequency shift, we directly look at the motion of the pendulums and determine the mode-mixing
amplitude from their positions. The detection of the optical eigenmodes is more subtle because
we measure intensities instead of electric fields.

In this paper, we report the direct observation of mode-mixing in far-field mode profiles and
from this determine the complex coupling parameter. This mode coupling is measured in a close
to ideal system with an (almost) rotational-symmetric cavity. The coupling is generated by a
mismatch between the mode profile and mirror shape [15] and by non-paraxial effects [16,17].
The two modes that couple are identified and described by a generic model of two coupled
harmonic oscillators. We find the nature of the coupling to be conservative.
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Fig. 1. Transmission spectrum around coupling of the fundamental and 8th transverse mode.
The insets show CCD images of the reshaped fundamental mode together with an averaged
cross-section through the center. The fundamental mode is coupled to the N=8 mode (insets
only show central part), which can be in phase (right) or anti-phase (left). The N = 8 mode
that couples has angular momentum l = 0 and radial mode number p = 4 (see below).

2. Results

Figure 1 shows a preview of our results in the form of power-normalized CCD images of two modes,
close to frequency degeneracy. These images show the center intensity is increased/decreased for
positive/negative coupling. A positive coupling reduces the effective mode area, theoretically up
to a factor 2. Mode coupling has been proposed as a means to increase the Purcell factor [18].

The planar and concave mirrors of the microcavity are provided by Oxford HighQ and have
a transmittance of 3.4(2) × 10−5 and 1.1(1) × 10−4 at the wavelength λ = 633 nm, close to the
central wavelength of the DBR. The concave structures were fabricated with a focused ion beam
[5] to produce craters with a radius R ≈ 24 µm and an indentation depth D ≈ 0.6 µm.

The mirrors are aligned to be parallel and almost in contact with each other. The mirror
distance is scanned over a total range of 15 µm using slip-stick motors and piezo stacks. A HeNe
laser (λ = 633 nm) is focused into the cavity with an f = 8 mm lens. The light transmitted
through the cavity is collected with another f = 8 mm lens to measure the transmission spectrum
and angular mode profiles.

Figure 1 shows the transmission spectrum with sharp high-finesse peaks at particular cavity
lengths. These lengths are determined by the resonance condition, given below. The fundamental
modes, indicated by N = 0 in Fig. 1, are also measured with a CCD camera. We use the angular
mode profiles of the fundamental modes to demonstrate the mode coupling.

The paraxial eigenmodes in a rotational-symmetric cavity are Laguerre-Gaussian modes ψpl,
labeled by their radial mode number p and azimuthal mode number l [19]. The transverse mode
number N = 2p + |l| and longitudinal mode number q determine the resonant cavity lengths L
via the resonance condition kL = qπ + (N + 1)χ, with wavevector k = 2π/λ. The Gouy phase
χ = sin−1(

√︁
(L + 2LD)/R), with modal penetration depth LD [20], quantifies the phase lag of the

modes with respect to a plane wave. The theoretically predicted opening angle of the fundamental
mode is θ0 = λ/(πw0), with mode waist w0 and Rayleigh range z0 = w2

0k/2 = R sin(2χ)/2.
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Figure 2(a) shows the measured transverse mode splitting as a function of cavity length. We
plot the difference in resonant cavity length ∆L between the fundamental (N = 0) and the Nth

order mode to find the Gouy phase using the relation ∆L/(λ/2) = N χ/π. A fit of the data from the
N = 1 − 5 modes yields a radius R = 23.8(2) µm and modal penetration depth LD = 0.03(2) µm.
The first visible longitudinal mode is q = 3 because the smallest cavity length is at least as
large as the indentation depth D = 0.64(3) µm. The higher-order transverse modes are easier to
observe in short than in long cavities, where they suffer from clipping loss. And the modes that
we do observe are typically the high ℓ modes, which experience less clipping loss. We could not
observe the more interesting ℓ = 0, p = N/2 modes around the frequency degenerate points to
demonstrate the expected avoided crossings with the fundamental (N = 0) mode (see below).

Figure 2(b) shows the opening angles θ0 of the fundamental modes. Each point in the graph
corresponds to a Gaussian fit of a CCD image. The mode profile is obtained by imaging the
far-field, rather than the near-field, and is hence less sensitive to imaging aberration.

The general trend of the Gaussian fits in Fig. 2(b) follows the theoretical prediction (green
curve), which is based on the parameters extracted from 2(a) and contains no fit parameters. The
measured opening angle, however, strongly deviates from theory around three cavity lengths,
indicated by black vertical lines in Figs. 2(ab). At these cavity lengths, the mode profile deviates
from a Gaussian and exhibits features of mode-mixing. This occurs when the even transverse
modes N = 8, 6, 4 cross the line ∆L/(λ/2) = 1 (see Fig. 2(a)) and hence become frequency
degenerate with the fundamental mode. The dominant mixing with even modes suggests a
rotational-symmetric coupling effect. The modest deviation at the point indicated by q = 25
also indicates some mixing with N = 5 modes, but this mixing is significantly smaller. Modest
deviations are also observed for points at the beginning, where the mode waist is somewhat
smaller. The effective radius of curvature is larger for these small modes, as confirmed by atomic
force microscopy (AFM) measurements (see Supplement 1).

Figure 3 explains how the mode mixing in Fig. 2(c) is quantified. Two angular mode profiles
are shown, which are observed at cavity lengths corresponding to q = 18 and q = 19. These
profiles show rings at larger angles, which indicates that a Gaussian fit with only the fundamental
mode ψ00 no longer suffices and a two-mode fit is required to determine the contribution of
the higher-order mode [14]. The l = 0 mode dominates the mixing, due to the rotational
symmetry of the cavity, such that N = 2p for the coupled modes. For the two-mode fit, we
use the amplitude profile ψ = (αψ00 + (−1)pβψp0), with a complex mixing ratio cp0 = β/α
and real-valued field-profiles ψ00 and ψp0. The phase lag between the fundamental and the
higher-order mode from the near-field to the far-field is incorporated in the factor (−1)p, such
that the amplitude of the coupling constant relates directly to the field profiles at the flat mirror.
If cp0 is positive and real-valued, the central part of the fields interfere constructively at the flat
mirror and destructively at the curved mirror.

We first fit with complex mixing ratios cp0. These fits shows that the real part of cp0 can be
accurately fitted and varies a lot around the frequency degenerate points, whereas the imaginary
part is far less accurate and more or less constant at a value between 0.2 and 0.3 (see Supplement
1). The latter value might seem significant, but the mode profile only changes with the square of
imaginary part, so only 5% of power is affected by this effect. From this observation, we conclude
that the mode-mixing is mainly determined by the real part of cp0. Next, we fit the intensity
profiles in Fig. 2(c) with a real-valued mixing-ratio cp0. The fit for the points q = 18 and 19 are
shown in Fig. 3. The two-mode fit |ψ00−c30ψ30 |

2 yields mixing ratios c30 = −0.72(5) and 0.17(1)
for modes q = 18 and 19, respectively. These values are close to the values Re(c30) = −0.58(6)
and 0.19(1) that we obtained for the full complex fits.

Figure 2(c) shows the mixing ratio cp0 for all cavity lengths. To obtain these data, we fit all
CCD images with two-mode fits rather than Gaussian fits. The theoretical opening angle θ0 from
Fig. 2(b) is used to describe the uncoupled modes. Three regions in Fig. 2(c) are identified in

https://doi.org/10.6084/m9.figshare.17129717
https://doi.org/10.6084/m9.figshare.17129717
https://doi.org/10.6084/m9.figshare.17129717


Research Article Vol. 30, No. 2 / 17 Jan 2022 / Optics Express 703

Fig. 2. (a) Transverse mode splitting versus mirror position for all visible transverse modes.
(b) The Gaussian opening angle θ0 of the fundamental mode obtained from CCD images.
The green line shows the theory for the uncoupled system. (c) Mode-mixing ratio cp0 of
modes p = 4, 3, and 2 into the fundamental mode. The light-blue points show the same data
points on a vertical scale that is 5× enlarged.

which the fundamental mode ψ00 couples either with ψ40, ψ30 or ψ20. Substantial mode-mixing is
observed around the frequency degenerate points. The mode-mixing with ψ40 (N = 8) shown in
Fig. 1 is slightly weaker than the mixing with ψ30 shown in Fig. 3. The mixing with ψ20 (N = 4)
around 11.3 µm shows signatures of more than 2 modes mixing in the CCD images (figure not
shown).

Coupled cavity modes behave like coupled harmonic oscillators (see Supplement 1). Two
modes, continuously excited by an input field through a mirror with transmission t, reach an

https://doi.org/10.6084/m9.figshare.17129717
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Fig. 3. Rotation-averaged intensity of angular mode profile for (a) q=18 and (b) q=19. The
dots show the experimental results from the 2D intensity profiles shown as insets. The
orange dashed curves show the uncoupled Gaussian shapes. The smooth green curves show
the fitted two-mode shapes with fit parameters (a) c30 = −0.72(5) and (b) c30 = 0.17(1)

equilibrium described by

⎛⎜⎝
i(φa − φ) + γa −Mab

−Mba i(φb − φ) + γb

⎞⎟⎠ ⎛⎜⎝
α

β

⎞⎟⎠c

= t ⎛⎜⎝
α

β

⎞⎟⎠in

(1)

where the parameters in the matrix are dimensionless and describe variations per roundtrip. The
roundtrip phase of a plane wave is given by φ = 2kL, and the roundtrip phase of the Nth transverse
eigenmode is φa/b = 2πq+ 2(N + 1)χ(L). Note that each uncoupled mode is resonant if φ = φa/b.
The roundtrip losses γa/b determine the finesse of the uncoupled modes via F = π/γ.

The two modes couple at the concave mirror, where a mismatch between the mirror shape and
the wavefront causes light to scatter from mode ψa into mode ψb and vice versa. This coupling
is quantified by a dimensionless coupling parameter Mab = ⟨ψa2ik∆zψb⟩. The mirror-mode
mismatch ∆z has two contributions. First, it contains the deviations of the mirror from a
paraboloid. Second, it contains non-paraxial effects, which cause the wavefront to deviate from a
paraboloid (see Supplement 1). The first contribution is dominant in our microcavities.

The coupled-harmonic-oscillator model is used to fit the data in Fig. 2(c). The solution
to Eq. (1) predicts a mixing ratio cab =

Mba
i∆ϕ+γab

for small enough coupling parameters (see
Supplement 1). In our measurement, the detuning ∆φ = φb − φa is typically much larger than
γab = γb − γa, so that the latter can safely be neglected. A fit of the observed mixing ratios
cp0(∆φ) in the three regions gives M40 = 0.018(3)i, M30 = 0.031(4)i and M20 = 0.029(2)i.

The coupled-mode model also predicts a shift in resonance frequencies, so one expects to see
avoided crossings around the frequency degenerate points in Fig. 2(a). We have not been able to

https://doi.org/10.6084/m9.figshare.17129717
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quantify this effect in a reliable manner for two reasons. First and most important, the finesse of
the higher-order mode drops rapidly due to clipping losses for larger cavity length towards and
beyond the frequency degenerate point. Furthermore, the input beam is matched better to the
fundamental mode than to higher-order modes. As a result, we could not directly observe the
higher-order ℓ = 0, N = 2p modes around the mode crossing and could only observe their mixing
effect on the fundamental mode.

All three values of Mp0 are purely imaginary with a positive imaginary part. This is
experimentally evidenced by the strong interference effects in Fig. 3, which correspond to
real-valued mixing ratios cab. The coupling must hence be due to a wavefront mismatch at the
curved mirror, and not due to clipping losses at the edges of the mirror. The positive sign for
all three couplings suggests that the wavefront mismatch dominantly occurs at the center of the
curved mirror (see Supplement 1).

To find the precise origin of the coupling, we have measured the shape of the concave mirror
with AFM imaging. We find a rotational-symmetric defect, which elevates the central part of the
concave mirror by 0.08(2) µm with respect to the ideal parabolic shape with radius of curvature
R = 23.8 µm (see Supplement 1). The coupling parameters Mp0 calculated from this mirror
height profile are M40 = 0.015i, M30 = 0.049i and M20 = 0.042i. The coupling M40 agrees
reasonably well with the optical data, but the AFM-based estimations of M30 and M20 are a
factor 1.4 larger than the optical measurements. This discrepancy can partially be assigned to a
non-paraxial correction, which reduces the calculated mode coupling for p = 2 by ∆M20 ≈ 0.004i,
and to optically transparent height defects on the micromirror which only shown up in AFM
measurements.

Measurements on different cavities have shown the same mode-coupling effects (see Supplement
1). The magnitude of the coupling is similar to that of the cavity presented here. Also the sign is
similar, which suggests that the effect that causes the coupling is similar. This shows that the
effect is general and occurs in different systems.

3. Conclusion

In summary, we have accurately measured the intensity profiles and opening angles of the
fundamental mode in a microcavity as a function of cavity length. The general trend is as
expected, but strong deviations were observed around three cavity lengths, where the fundamental
mode couples with different higher-order modes. The coupling is conservative and is attributed
to a mismatch between the mirror shape and the wavefront. The measured mode-mixing ratios
near the frequency-degenerate points are substantial. This can potentially reduce the mode area
and increase the Purcell factor, theoretically up to a factor 2 [18].

Rather than measuring an avoided crossing in the frequency spectrum, we observe the mode
coupling directly in the far-field mode profile. This is a sensitive and powerful method, which
directly yields the complex mixing ratio cab from which the complex coupling parameter Mab
is derived. We have not been able to measure frequency shifts or dips in finesse from mode
coupling. But we have been able to measure mode coupling in the far-field mode profiles, since
that effect scales linearly instead of quadratically with the coupling parameter. The amplitude
and phase of the coupling parameter provide information about the nature of the coupling.
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help with preparing the manuscript.
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