
Multi-point acquisition function for constraint parallel efficient multi-
objective optimization
Winter, R. de; Stein, B. van; Bäck, T.H.W.; Fieldsend, E.J.

Citation
Winter, R. de, Stein, B. van, & Bäck, T. H. W. (2022). Multi-point acquisition function for
constraint parallel efficient multi-objective optimization. Gecco '22: Proceedings Of The
Genetic And Evolutionary Computation Conference, 511-519. doi:10.1145/3512290.3528696

Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3443860

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3443860

Multi-Point Acquisition Function for Constraint Parallel Efficient
Multi-Objective Optimization

Roy de Winter

r.de.winter@liacs.leidenuniv.nl

Leiden Institute of Advanced

Computer Science

Leiden, The Netherlands

Bas van Stein

b.van.stein@liacs.leidenuniv.nl

Leiden Institute of Advanced

Computer Science

Leiden, The Netherlands

Thomas Bäck

t.h.w.baeck@liacs.leidenuniv.nl

Leiden Institute of Advanced

Computer Science

Leiden, The Netherlands

ABSTRACT
Bayesian optimization is often used to optimize expensive black

box optimization problems with long simulation times. Typically

Bayesian optimization algorithms propose one solution per itera-

tion. The downside of this strategy is the sub-optimal use of avail-

able computing power. To efficiently use the available computing

power (or a number of licenses etc.) we introduce a multi-point

acquisition function for parallel efficient multi-objective optimiza-

tion algorithms. The multi-point acquisition function is based on

the hypervolume contribution of multiple solutions simultaneously,

leading to well spread solutions along the Pareto frontier. By com-

bining this acquisition function with a constraint handling tech-

nique, multiple feasible solutions can be proposed and evaluated

in parallel every iteration. The hypervolume and feasibility of the

solutions can easily be estimated by using multiple cheap radial

basis functions as surrogates with different configurations. The

acquisition function can be used with different population sizes and

even for one shot optimization. The strength and generalizability

of the new acquisition function is demonstrated by optimizing a

set of black box constraint multi-objective problem instances. The

experiments show a huge time saving factor by using our novel

multi-point acquisition function, while only marginally worsening

the hypervolume after the same number of function evaluations.

KEYWORDS
Parallel Computing, Bayesian Optimization, Multi-Objective Opti-

mization, Constraint Optimization, Radial Basis Functions

ACM Reference Format:
Roy de Winter, Bas van Stein, and Thomas Bäck. 2022. Multi-Point Ac-

quisition Function for Constraint Parallel Efficient Multi-Objective Op-

timization. In Proceedings of The Genetic and Evolutionary Computation
Conference 2022 (GECCO ’22). ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3512290.3528696

GECCO ’22, July 9–13, 2022, Boston, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528696

1 INTRODUCTION
Often engineering goes hand in hand with optimization by using

expensive simulations. According to [23], solving expensive opti-

mization problems faster, three things can be done: (1) problem

approximation and substitution, (2) algorithm design enhancement,

(3) parallel and distributed computation. In this paper, we demon-

strate how a variety of these techniques are combined in one algo-

rithm. Besides the proposed improvements, in this paper we also

assume that the evaluation of one solution, of the problem at hand,

is computationally expensive, making the computational cost of

the algorithm negligible.

Bayesian optimization (BO) or Efficient Global Optimization

(EGO) [22] is a common solution for expensive black-box opti-

mization problems. EGO approximates the fitness and constraint

functions by using meta models or surrogates. In each iteration,

EGO finds a new promising solution by optimizing an inexpensive

function using the response surface of the meta models. These so

called inexpensive functions which are used to find the optimum on

the meta models in each iteration are better known as acquisition

function or infill criterion. After selection of a promising solution,

and the evaluation of this candidate solution, the meta models are

updated with the new results. Over time, different acquisition func-

tions have been published for different meta modelling techniques

and for different purposes e.g; for single objective optimization [22],

with an emphasis on exploration/exploitation [33], for constraint

optimization [3], for parallel optimization [18], multi-objective op-

timization [29] and for constraint multi-objective optimization [12].

However, not much attention has been spend on an acquisition

function that can both handle constraints, multiple objectives, and

propose multiple solutions for evaluation in parallel in an efficient

manner.

For many real-world problems, candidate solutions can be eval-

uated in parallel using large computer clusters and multiple simu-

lations. To make use of these resources, the optimization algorithm

needs to be able to propose multiple candidate solutions in each

iteration. Evaluating multiple solutions in parallel can reduce the

total wall clock time significantly. Following the example of Li et

al. [18], the total evaluation time, also referred to as the total cost

of solving a computationally challenging optimization problem can

be formulated as follows: 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 = 𝑂 (𝐶) · 𝑂 (𝑁). Here 𝑂 (𝐶)
is the average cost of the expensive evaluation, and 𝑂 (𝑁) the av-
erage number of iterations of the optimization algorithm until a

satisfactory solution is found. If two expensive evaluations can be

run in parallel the cost can already be cut in half in terms of wall

clock time (𝑝 = 2), i.e., 𝑇𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡 =
𝑂 (𝐶) ·𝑂 (𝑁)

𝑝 . Obviously, when

511

 This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3512290.3528696
https://doi.org/10.1145/3512290.3528696
https://doi.org/10.1145/3512290.3528696
https://creativecommons.org/licenses/by/4.0/

GECCO ’22, July 9–13, 2022, Boston, USA R. de Winter, et al.

𝑝 solutions are proposed per iteration, the total cost can also be

reduced by a factor 𝑝 . The downside of proposing multiple solutions

simultaneously is that the new batch of 𝑝 solutions is selected based

on the meta models trained on 𝑝 − 1 less samples as opposed to the

sequential optimization procedure (where 𝑝 = 1). This means that

using parallel evaluations, potentially results in additional required

function evaluations compared to a sequential optimization run

with a single solution per iteration.

The scientific contribution of this paper is a new acquisition func-

tion which incorporates problem approximation and substitution,

algorithm design enhancement and parallel and distributed comput-

ing techniques. This acquisition function is introduced and used in

the SAMO-COBRA algorithm [11] to demonstrate the effectiveness

of proposing multiple solutions simultaneously. This makes the

parallel SAMO-COBRA algorithm capable of doing multi-objective

optimization while dealing with constraints and doing batch or

one-shot optimization. The results of the algorithm indicate that

the missed information per iteration can also be beneficial since it

also provides a mean of exploration.

The paper is organized as follows, in Section 2 the related work

is discussed. In Section 3 the mathematical problem definition is

presented in more detail. In Section 4 the new acquisition function

is introduced and explained. In Section 5 different algorithm config-

uration and variants are discussed. In Section 6 various experiments

are described. In Section 7 the results are presented and discussed.

Finally in Section 8 the final conclusions are drawn.

2 RELATEDWORKS
Originally, evolutionary algorithms, genetic algorithms, particle

swarm optimization are population based [2]. The evaluation of

these populations can naturally be parallelized. However, evolu-

tionary algorithms typically require a lot of function evaluations

because they move in small steps before they converge to the global

optimum. In case the objective and/or the constraint functions are

expensive to evaluate, the functions are typically mimicked with

a meta model or cheap surrogate. The surrogate is then used to

search promising solutions which can be evaluated. These surrogate

assisted optimization algorithms on the other hand typically do

not use acquisition functions which can propose multiple solutions

simultaneously. Allowing the surrogate assisted algorithms to only

propose one solution per iteration, leads to longer running times

and ineffective use of available resources.

2.1 Parallel Single Objective Optimization
According to a survey on parallel single objective optimization [18],

the three most obvious techniques for parallelization are; multi-

start local searches (if derivatives of the objective function are avail-

able), multiple parallel optimization runs (optionally in different

sub-regions), and as described above with a population of designs.

Other parallelization techniques often tend to combine different

acquisition functions with different hyper-parameters to balance

exploration and exploitation. Wang et al. [39] for example proposed

a single objective multi-point acquisition function for Bayesian

optimization. This acquisition function is based on the moment-

generating function where the expected improvement is raised

to the power 𝑡 . For different values of 𝑡 , the moment-generating

function will therefore result in different proposed solutions with

different trade offs between exploration and exploitation.

Other techniques used to select 𝑝 different solutions simultane-

ously are, for example, the following: Assuming a found solution is

correct, optimize the acquisition function again until 𝑝 solutions are

found [16], also known as the knowledge or Kriging believer. It is

also possible to use different surrogates (or weighted combinations

of surrogates) fitted on the same data and optimize these different

surrogate models [20].

2.2 Parallel Multi-Objective Optimization
Besides the algorithm described in this paper, several surrogate as-

sisted multi-objective algorithms are already proposed where multi-

ple points are proposed per iteration e.g. MIP-EGO [36],MMBO [38],

MOPLS-N [1]. The downside is that they all lack a constraint han-

dling mechanism and fail to propose solutions on the constraint

boundaries.

Important to keep in mind when doing multi-objective optimiza-

tion is that as described in our earlier related work [11], multi-

objective optimization algorithms are due to the problem charac-

teristics, already forced to explore more, compared to single ob-

jective optimization algorithms. This way exploration is naturally

inherited in multi-objective optimization algorithms. In our earlier

relatedwork [11], it is numerically shown that for constrainedmulti-

objective problems the purely exploiting infill criterion named Pre-

dicted HyperVolume (PHV) lead to better Pareto frontier approxi-

mations compared to the more exploring infill criterion S-Metric

Selection criteria [30].

Mixed-Integer Parallel Efficient Global Optimization (MIP-EGO)

[36] for example is designed to automatically optimize the configu-

ration of artificial neural networks. MIP-EGO uses multiple random

forests as surrogates and different infill criteria are optimized to

propose different solutions simultaneously.

Wada andHino proposedMMBO [38], a Bayesianmulti-objective

multi-point optimization algorithm together with a gradient ap-

proximation of the acquisition function. This algorithm proposes

multiple points simultaneously every iteration based on multi-point

expected hypervolume improvement. This algorithm uses the ex-

pected hypervolume improvement as infill criteria and therefore

uses the uncertainty quantification of the solutions to balance ex-

ploration and exploitation.

Akhtar and Schoemaker proposed MOPLS-N [1], a Multi Ob-

jective Population-based Parallel Local Surrogate-Assisted Search.

MOPLS-N uses Radial Basis Functions (RBF) as surrogates, uses

parallel local candidate search from the parent population centers,

and uses boxed hypervolume improvement to judge one candidate

solution in a box around one center.

2.3 Constrained Parallel Multi-objective
Optimization

Additionally, as also mentioned in the survey [18], there is still

a lack of well-performing adaptive sampling algorithms for con-

strained optimization. Constraint optimization is traditionally done

by making use of penalty functions [18]. Tuning these penalty func-

tions demand a lot of function evaluations [3]. To save function

512

Multi-Point Acquisition Function for Constraint Parallel Efficient Multi-Objective Optimization GECCO ’22, July 9–13, 2022, Boston, USA

evaluations during the optimization process, just like for the ob-

jective functions, surrogates can be used to model the constraint

functions.

One multi-objective optimization algorithm is found with both

a constraint handling mechanism and a multi-point infill criteria.

Wauters et al. [40] proposed the Generalized Asynchronous Multi-

objective Expected Improvement infill criteria (GAMOEI). GAMOEI

allows multiple points to be selected for evaluation asynchronously

while balancing exploration and exploitation in an adaptive manner.

The expected improvement infill criteria depends on the regular

multi-objective expected improvement raised to a higher power.

Constraints are dealt with by multiplying the probability of feasi-

bility with the expected improvement. In their experiments, this

resulted in undesirable points far away from the Pareto frontier

with little to no points on the constraint boundaries.

2.4 One Shot Optimization
One shot optimization [5, 6] or global surrogate modeling can be

characterized by surrogate assisted optimization algorithms where

a surrogate is fitted only once with training data of an initial sample.

After the surrogate is fitted, an optimal solution (or set of optimal

solutions) is found on the surrogate, the obtained solutions are

evaluated and the algorithm terminates. This means that in con-

trast to other surrogate assisted optimization algorithms there is no

evaluation budget for adaptive sampling. One shot optimization is

very popular and a classical approach in the maritime [34], automo-

tive [35], aerospace [27] and other engineering domains. As already

stated in the introduction, a lot of potentially available information

for the last evaluation is missing when using this approach as all

new solutions should be found based on the first initial samples. A

benefit of one shot optimization is that when a lot of computational

resources are available they can easily be exploited.

3 PROBLEM DEFINITION
This section is organized as follows, first the constrained multi-

objective problem is defined. Secondly, the single point acquisition

is described and mathematically formulated.

3.1 Constrained Multi-Objective Problem
A Constrained multi-objective problem can be defined as follows:

minimize: 𝑓 : Ω → R𝑘 , 𝑓 (x) = (𝑓1 (x), . . . , 𝑓𝑘 (x))⊤

subject to: 𝑔𝑖 (x) ≤ 0 ∀𝑖 ∈ {1, . . . ,𝑚}

x ∈ Ω ⊂ R𝑑 .

In this formulation, Ω is the decision space, x is a solution in the

decision space, 𝑘 is the number of objectives functions, 𝑓𝑖 is the

𝑖𝑡ℎ objective function,𝑚 is the number of constraints, 𝑔 𝑗 is the 𝑗𝑡ℎ

constraint function, and 𝑑 is the number of decision variables.

To determine if a solution x is a good solution, the solution should
be evaluated by all constraint and objective functions. For expensive

engineering problems it is often not feasible to evaluate all possible

solutions in a brute force manner to find the optimal solutions and

the trade-offs between the objectives. To avoid the evaluation of

solutions which are not interesting during the optimization process,

the real objectives and constraint functions are replaced with cheap

surrogates.

The surrogates considered in this research are a weighted com-

bination of Radial Basis Functions (RBFs) with a second order poly-

nomial tail [7, 24, 31]. For each objective and for each constraint, a

unique and independent RBF surrogate is fitted. The RBF surrogate

for the 𝑖𝑡ℎ objective is denoted by 𝑓 ′
𝑖
, the RBF surrogate for the 𝑗𝑡ℎ

constraint is denoted by 𝑔′
𝑗
. The 𝑘 RBF surrogates for the objectives

functions together are denoted by f ′, the𝑚 RBF surrogates for the

constraints are denoted by g′. In the optimization process, the RBFs

are refitted every time a new solution is evaluated on the real objec-

tive and constraint function. This way, the RBFs are always based

on all the available information from all the evaluated solutions.

Given the RBF surrogates, the constraint and objective values can

be predicted for each candidate solution. With the RBF prediction

for the constraints, it can be predicted for any solution whether it is

feasible or how much the solution violates the constraints. With the

prediction for the objectives, it can be predicted how good a solu-

tion scores in every objective. The choice of selecting a solution to

be evaluated on the real objective and constraint functions is based

on the acquisition function. Finding a new solution is therefore

based on optimizing an acquisition function.

3.2 Single-Point Acquisition Function
The acquisition function score for a solution x is dependent on the

RBF surrogates of the objectives. With the predicted objective val-

ues, it can be predicted how good the solution is in each objective.

Whether a solution x𝐴 is preferred above an alternative solution

x𝐵 is dependent on the constraint violation and the acquisition

function score. A successful acquisition function from our earlier

work for constrained multi-objective problems is the PHV infill cri-

teria [11]. The PHV infill criteria (denoted by Pℎ𝑣) returns the size

of the space that is dominated by a solution between the solution

on the Pareto frontier and a predefined reference point. The PHV

infill criteria only returns the size of the dominated space of the

new solution if this space is not already dominated by solutions

which are evaluated before. In the case of two objectives, the space

a solution dominates is equal to the size of a surface that is domi-

nated. In the case of three objectives, the space is a volume that is

dominated. For more objectives the space becomes a hypervolume.

A visual representation of two dimensions is given in Figure 1.

With the RBF surrogates for the objectives (f ′) and for the con-

straints (g′), and the PHV infill criteria (Pℎ𝑣), any solution (x) can
be judged on feasibility and desirability for all objectives. The sin-

gle point acquisition function optimization problem can now be

mathematically defined as follows:

x∗ ∈ argmax

x∈Ω⊂R𝑑
Pℎ𝑣 (f ′(x))

subject to g′(x) ≤ 0

4 MULTI-POINT ACQUISITION FUNCTION
Besides judging the solution quality of one solution at a time with

the PHV infill criteria, the PHV infill criteria can also be used to

evaluate multiple solutions simultaneously. For this to happen, first

the optimization problem should be redefined such that multiple

solutions can be judged on solution quality. Multiple solutions can

513

GECCO ’22, July 9–13, 2022, Boston, USA R. de Winter, et al.

0.0 0.2 0.4 0.6 0.8 1.0
Objective 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
2

F1

F2

(Hyper)Volume contribution plot

Reference Point
Non Dominant Solutions
Solution F1
Solution F2
Additional HV Score 1
Additional HV Score 2
Current HV

Figure 1: Visual representation of hypervolume contribu-
tion of two solutions. The hypervolume contribution of so-
lution F1 is equal to 0.2 · 0.4 = 0.08, the hypervolume contri-
bution of solution F2 is equal to 0.1 · 0.1 = 0.01. This makes
solution F1 more desirable compared to solution F2.

be represented in one vector by simply concatenating the different

solution vectors. Suppose one solution still contains 𝑑 decision

variables, then 𝑝 solutions together can be formulated as a vector of

𝑑 ·𝑝 real values R𝑝 ·𝑑 . In this formulation the first 𝑑 values represent

the first solution, where the last 𝑑 values in this vector represents

the 𝑝𝑡ℎ solution.

Given the 𝑝 solutions x𝑖 , and the cheap RBF surrogate for each

objective, also 𝑝 predictions can be made for each objective. Since

there are 𝑝 solutions and 𝑘 objectives, the RBF predictions can be

combined in a vector as follows:

A =

(
𝑓 ′
1
(x1), . . . , 𝑓 ′𝑘 (x1), . . . , 𝑓

′
1
(x𝑝), . . . , 𝑓 ′𝑘 (x𝑝)

)
Here the vector A has a length of 𝑝 ·𝑘 . The 𝑝 solutions with the cor-

responding 𝑝 · 𝑘 predictions for the 𝑘 objectives can, after this step,

be split into 𝑝 solutions with 𝑘 objective values. These 𝑝 solutions

can then be mapped to the objective space so that their combined

performance in terms of hypervolume contribution can be judged.

The judging of how good the combined 𝑝 solutions are can again

be computed with the PHV infill criteria resulting in a Multi-Point

Acquisition Function (MPℎ𝑣). The hypervolume contribution of a

set of solutions can be computed with the individual hypervolume

contribution of each solution minus the overlap. Because this multi-

point acquisition function evaluates 𝑝 solutions simultaneously, it

will automatically prefer a set of solutions with diverse objective

scores above a set of similar solutions with similar objective scores.

This is the case because, a set with diverse solutions with little over-

lapping hypervolume will dominate more objective space compared

to a set of solutions with very similar scores with a lot of overlap-

ping hypervolume. Note that after these steps are taken, a set of 𝑝

solutions are mapped into 𝑝 ·𝑘 objective predictions, and this is then

translated with the multi-point acquisition function into a single

real value which represents the hypervolume contribution of the 𝑝

solutions. Predicting 𝑝 solutions simultaneously does not increase

the total number of RBF surrogates, only the RBF surrogates are

now used 𝑝 times when evaluating 𝑝 new solutions simultaneously.

A visual representation of the multi-point acquisition function is

given in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
Objective 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
2

Solution F1 Set 1

Solution F2 Set 1

Solution F2 Set 2
Solution F1 Set 2

(Hyper)Volume contribution plot

Reference Point
Non Dominant Solutions
Solution F1 Set 1
Solution F2 Set 1
Solution F1 Set 2
Solution F2 Set 2
Additional HV Score of Set 1
Additional HV Score of Set 2
Current HV

Figure 2: Visual representation of hypervolume contribu-
tions of two sets containing two solutions each. The hyper-
volume contribution of set 1 is equal to 2(0.6 · 0.2) − (0.2 ·
0.2) = 0.2. The hypervolume contribution of set 2 is equal to
2(0.35 · 0.4) − (0.35 · 0.35) = 0.1575. So although the individ-
ual hypervolume contributions of the solutions of set 2 are
higher compared to the individual hypervolume contribu-
tions of the solutions in set 1, the hypervolume contribution
of set 2 is smaller compared to the hypervolume contribution
of set 1. This makes set 1 more desirable compared to set 2.

A similar formulation and strategy is used for the constraints.

Because multiple solutions are now to be dealt with, also all the 𝑝

solutions should be judged on feasibility simultaneously. Each solu-

tion has𝑚 constraints, leading to 𝑝 ·𝑚 constraint values to consider.

With the RBF surrogates (g) representing the𝑚 constraints, each

RBF surrogate (𝑔 𝑗) can be used 𝑝 times to predict the constraint

values for the 𝑝 solutions. This results in one long constraint vector

of length 𝑝 ·𝑚, the first𝑚 constraint values represent the𝑚 con-

straint values for the first solution, the last𝑚 constraint predictions

represent the constraints for the 𝑝𝑡ℎ solution.

With this new formulation for 𝑝 solutions simultaneously, the

multi-point acquisition optimization problem can be mathemati-

cally represented in the following way:

(x∗
1
, . . . , x∗𝑝) ∈ argmax

x𝑖 ∈Ω⊂R𝑑
MPℎ𝑣 (f ′(x1), . . . , f ′(x𝑝))

subject to g′(x𝑖) ≤ 0

4.1 Optimization of Acquisition Function
For the optimization of the multi-point acquisition function, any

optimizer capable of optimizing one objective and dealing with

multiple constraints can be chosen. In this work, the COBYLA (Con-

strained Optimization BY Linear Approximations) algorithm [32]

is selected for this task. COBYLA linearly approximates the acqui-

sition function and each constraint separately and then optimizes

the linear approximations in a trust region. By iteratively, refitting

the linear approximations and adjusting the trust region, COBYLA

converges to a solution which can not be further improved. By

letting COBYLA start from a random generated vector of length

𝑝 · 𝑑 representing 𝑝 solutions, COBYLA iteratively also optimizes

these 𝑝 solutions. Important to remember is that COBYLA does

not use the real objective and constraint functions but the RBFs of

the constraint and the RBFs of the objectives to optimize the the

acquisition function.

514

Multi-Point Acquisition Function for Constraint Parallel Efficient Multi-Objective Optimization GECCO ’22, July 9–13, 2022, Boston, USA

Since COBYLA can get stuck in local optima [26], it is wise to

start COBYLA from more then one random generated vector. Ex-

periments showed that the optimization problem characteristics

like the number of decision variables 𝑑 , the number of constraints

𝑚, the number of objectives 𝑘 , and the number of solutions to

be optimized in parallel 𝑝 , all have influence on if COBYLA can

converge to good solutions. The experiments showed that more

random starting points, and larger evaluation budget for COBYLA

lead to better results. However, more starting points and larger

evaluation budgets for COBYLA also lead to a higher computa-

tional costs. Therefore, as a rule of thumb, it is recommended to let

COBYLA converge from 2(𝑑+𝑚+𝑘) solutions when using the single
point acquisition function, let COBYLA converge from 4(𝑑 +𝑚 +𝑘)
when using the multi-point acquisition function, and when doing

one shot optimization, let COBYLA converge from 8(𝑑 +𝑚 + 𝑘)
solutions. A similar rule is created for the evaluation budget of

COBYLA, the budget for when using the single point acquisition

function is 50(𝑑 +𝑚 + 𝑘), when using multi-point acquisition func-

tion 100(𝑑 +𝑚 + 𝑘), and when doing one shot optimization the

evaluation budget for COBYLA is 200(𝑑 +𝑚 + 𝑘). After COBYLA
has converged from the starting points, the solution set with the

highest acquisition score is selected to be evaluated on the real ob-

jectives and constraint functions. If COBYLA can not find a feasible

solution, the solution set with the smallest cumulative constraint vi-

olation is selected and evaluated on the real objective and constraint

functions.

5 ALGORITHM CONFIGURATION
With the RBFs, acquisition function, and the constraint handling

technique, two algorithms are configured. One algorithm proposes

and evaluates a predefined number of solutions simultaneously

so that the computer infrastructure and available licences can be

optimally used. The other algorithm is configured for one shot

optimization for when a cluster of computers is available and sim-

ulation licenses are not an issue. Before the algorithm variants

are explained in more detail, the RBF configurations and scaling

techniques are explained.

5.1 RBF Hyper-Parameter Settings
RBFs are in contrary to Kriging or Gaussian process regression

models cheap to train. This allows us to fit a lot of different RBFs

with different hyper-parameters. Hyper-parameters considered in

this work are the type of RBF kernel (Cubic, Gaussian, Multiquadric,

Inverse Multiquadric, Thin Plate Spline), and transformation strate-

gies of the input data (Scale, Plog, and Standardize). More details

about the RBF hyperparameters can be found in [11].

The selection of the optimal hyper-parameter settings is not

straightforward, in the first iteration the surrogate models have

exactly enough training points for a first RBF to be fitted, and after

a surrogate is fitted, the RBFs exactly interpolate all the solutions

that are used for training. For this reason, only after evaluation of

a real objective or constraint function which has not yet been used

for fitting the RBF, the approximation error can be computed. These

approximation errors can be determined every time a new solution

is evaluated on all the constraints. These approximation errors are

stored as historic approximation errors for every RBF configuration.

The optimal RBF configurations are selected based on the historic

approximation errors of the last two sets of evaluated solutions and

the historic approximation errors of the Pareto efficient solutions.

The historic approximation errors of the Pareto efficient solutions

are selected so that the vicinity of the Pareto efficient solutions are

well fitted. The historic approximation errors of the last two sets

are selected so that the RBF configuration does not get stuck in a

local optimum configuration.

5.2 Parallel Optimization
The SAMO-COBRA algorithm, a constrained multi-objective opti-

mization algorithm is configured such that the multi-point acqui-

sition function is used instead of the original acquisition function

which proposes one solution per iteration. The algorithm starts by

evaluating an as small as possible initial Halton sample [19], if the

batch size for the acquisition function is larger then 𝑑 + 1, the batch
size is chosen as initial saple size. The initial sample size is cho-

sen small so that there is more evaluation budget left for adaptive

sampling steps which in the end will lead to better results. Then

the first RBFs are trained, an RBF configuration and transformation

strategy is selected so that in the first iteration a predefined number

of solutions can be proposed. The set of solutions is then evaluated

by the real objective and constraint functions. After each iteration

the RBFs with different hyper-parameters are updated, the best

RBF configuration is selected based on the historic approximation

errors, and the multi-point acquisition function is optimized again.

This continues until the evaluation budget is exhausted and the

Pareto front is found.

5.3 One Shot Optimization
The one shot optimization algorithm is configured such that the

initial sample is of a size equal to half the evaluation budget. After

the initial Halton sample is evaluated, the RBFs with the different

configurations are fitted and the best configurations are selected.

Selection of the best input transformation and RBF kernel can in

this case not be done based on historic approximation error. Nor can

the best configuration be selected based on the RBFs trained with

all the input data. Instead 10-fold cross validation is used to select

the RBF kernel and transformation strategy. Selecting the optimal

RBF configuration based on 10 fold cross validation requires some

computation time, however spending half of the evaluation budget

based on wrongly estimated solutions is for obvious reasons much

more expensive. After selection of the optimal RBF configurations

the multi-point acquisition function is optimized. The multi-point

acquisition function is optimized such that in one run all solutions

for the other half of the evaluation budget can be found. Finally the

predicted optimal solutions are evaluated with the real objectives

and constraint functions and the algorithm terminates.

6 EXPERIMENTS
To test the performance of the algorithm and acquisition function,

several experiments are conducted. In the experiments, different

batch sizes are tested for the multi-point acquisition function: 1

(original), 2, 3, 4, 5, 6, 10 and 20. Bigger batch sizes are not con-

sidered because then it becomes too similar compared to one shot

optimization. The test functions from Table 1 are selected for the

515

GECCO ’22, July 9–13, 2022, Boston, USA R. de Winter, et al.

Table 1: Test function with citation, the reference point used
by optimization algorithm, the Nadir point approximation,
𝑘 is number of objectives, 𝑑 number of decision variables,𝑚
number of constraints, and 𝑃 (%) the percentage of feasible
solutions after 1 million random samples.

Function Reference point Nadir point 𝑘 𝑑 𝑚 𝑃 (%)

BNH [8] (140, 50) (136.00, 49.24) 2 2 2 96.92

CEXP [13] (1, 9) (1.00, 9.00) 2 2 2 57.14

SRN [14] (301, 72) (222.97, 2.60) 2 2 2 16.18

TNK [14] (2, 2) (1.04, 1.04) 2 2 2 5.05

CTP1 [13] (1, 2) (0.99, 1.00) 2 2 2 92.67

C3DTLZ4 [37] (3, 3) (2.00, 2.00) 2 6 2 22.22

OSY [8, 14] (0, 386) (-42.17, 76.00) 2 6 6 2.78

TBTD [17] (0.1, 50000) (0.1, 92774.46) 2 3 2 19.46

NBP [15] (11150, 12500) (12500, 114.09) 2 2 5 41.34

DBD [17] (5,50) (2.79, 26.40) 2 4 5 28.55

SPD [28] (16, 19000, -260000) (11.24, 12434.76, -292146.91) 3 6 9 3.27

CSI [21] (42, 4.5, 13) (41.61, 4.00, 12.52) 3 7 10 18.17

SRD [25] (7000, 1700) (5781.90, 1690.16) 2 7 11 96.92

WB [17] (350, 0.1) (53.72, 0.0145) 2 4 5 35.28

BICOP1 [9] (9, 9) (1, 1) 2 10 1 100

BICOP2 [9] (70, 70) (1.1, 1.08) 2 10 2 10.55

TRIPCOP [9] (34, -4, 90) (7.67, -11.77, 25.91) 3 2 3 15.85

WP [21] (83000, 1350, 2.85, (75684, 1347, 2.85, 5 3 7 92.06

15989825, 25000) 7625734, 24896)

experiments. Each test function is optimized in 11 independent runs

with different seeds. Optimization of the test functions is done by

using a reference point which is the worst possible objective score

per function as possible. The Nadir point [4] of the test functions is

approximated by taking the extremes of the objective scores on the

Pareto frontier from all combined experiment results. The hyper-

volume reported in the results of the experiments are calculated

by computing the hypervolume between the Pareto frontier and

the Nadir point. The algorithms variants, the experiments, and the

results can all be found on Github [10].

6.1 Hypervolume after Fixed Evaluation Budget
In the first experiment the hypervolume between the approximated

Nadir point and the obtained Pareto frontier is calculated after a

fixed evaluation budget. The algorithm with the different batch

sizes has a total allowed evaluation budget of 40 ·𝑑 . This evaluation
budget leads to an initial Halton sample of𝑑+1 samples and 39 ·𝑑−1
iterations for the SAMO-COBRA algorithm with the single-point

infill criteria. While for batch sizes larger then 1, it leads tomax(𝑑 +
1, 𝑝) initial Halton samples and

40·𝑑−max(𝑑+1,𝑝)
𝑝 iterations.

6.2 Convergence Experiment
As explained in the introduction, with batch optimization a lot of

wall clock time can be saved. The downside of proposing multiple

solutions simultaneously is that the new batch of solutions is based

on less information compared to when one solution would be added

per iteration. In this experiment, it is tested how much information

is lost per iteration, and on the other hand how much time can

be saved. This is tested by taking 90% of the maximum achievable

hypervolume as a threshold, then the algorithm convergence results

can tell howmuch algorithm iterations and total number of function

evaluations are required to achieve this hypervolume threshold for

the different batch sizes.

6.3 One Shot Optimization Experiment
In the last experiment the algorithm and multi-point acquisition

function is tested to see if it is capable of one shot optimization.

The one shot optimization algorithm configuration is tested with

40 initial Halton samples and then in one iteration 40 new optimal

solutions are proposed and evaluated. The hypervolume between

the Nadir Point and the obtained Pareto frontier is computed and

compared to the hypervolume obtained with batch size 1.

7 RESULTS
The results of the three experiments are presented in two Pareto

frontiers, two convergence plots and three tables. The overall re-

sults show that for test functions with strict constraints larger batch

sizes lead to worse results after the same number of function evalu-

ations. For other test functions with a higher feasibility rate, larger

batch sizes can be very beneficial in terms of required number of

evaluations and therefore iterations.

7.1 Hypervolume Results
In Table 2 the mean hypervolume and standard deviation of the

hypervolume between the Pareto frontier and Nadir point is given

for the different test functions. As can be seen in the table, the

hypervolume in most cases slightly decreases and the standard

deviation increases, when a larger batch size is chosen. In few cases,

the mean hypervolume is significantly better for larger batch sizes.

It is expected that this is the case because more exploration can be

beneficial for functions which are hard to fit with RBF models with

few initial data samples.

For two test functions, the obtained feasible solutions are plotted

for the algorithm with different batch sizes. In Figure 3a all the

obtained feasible solutions of the test problem TNK are presented.

In this figure it can be seen that the batch size 1 almost never misses

the Pareto frontier, while solutions of the larger batch sizes are often

dominated by other solutions from these batch sizes. In Figure 3b

all the obtained feasible solutions of the test problem C3DTLZ4 are

presented. In this figure it can be seen that the solutions with the

larger batch sizes show a better coverage among the Pareto frontier

versus the solutions from other batch sizes.

7.2 Convergence Results
The results of the second experiment can be found in Table 3. As

can be seen in the table, for the majority of the test functions, the

threshold of 90%was reached before the allowed number of function

evaluations. When comparing batch size 1 with the larger batch

sizes for each test function. The best result with the least number

of iterations on average required 75% less iterations, the trade-off

is that the number of evaluations on average increases with 58%

to find the 90% hypervolume threshold. So in the cases where time

consuming objective and constraint functions can be evaluated in

parallel, the wall clock time can significantly be reduced.

In Figure 3c the convergence plot is given for the TNK test

function. For this test function, the algorithm with different batch

size combinations all converge to the approximated optimum except

for batch size 20. In Figure 3d the convergence plot is given for the

C3DTLZ4 function. Interestingly enough, in this convergence plot

the extra exploration which is naturally included for larger batch

sizes seems to be beneficial since the larger batch sizes 20, 10 and 6

perform better compared to batch sizes, 2, 3, 4, and 5.

516

Multi-Point Acquisition Function for Constraint Parallel Efficient Multi-Objective Optimization GECCO ’22, July 9–13, 2022, Boston, USA

Table 2: Mean and standard deviation of hypervolume (hv) on set of test functions after 40 ·𝑑 function evaluations with different
batch sizes (1,2,3,4,5,6,10,20) for the Pℎ𝑣 infill criteria given 11 independent runs. HV Scores in bold indicate a higher mean
compared to batch size 1. A ∗ is added if the difference was significant according to the Wilcoxon rank-sum test with 𝑝 < 0.05.

Function Batch size 1 Batch size 2 Batch size 3 Batch size 4 Batch size 5 Batch size 6 Batch size 10 Batch size 20

hv std hv std hv std hv std hv std hv std hv std hv std

BNH 4969.2 0.0133 4969.0 0.1 4967.5 1.5 4967.6 0.5 4967.9 0.7 4967.6 1.2 4960.3 2.3 4949.8 5.7

CEXP 3.7972 0.0005 3.7961 0.0015 3.7963 0.0016 3.7944 0.001 3.7964 0.0004 3.7981∗ 0.0004 3.7925 0.0005 3.7794 0.0030

SRN 25019 5 25008 10 24977 16 24843 22 24729 53 24723 39 24583 97 24516 103

TNK 0.2988 0.0016 0.2966 0.0033 0.2965 0.0026 0.2949 0.0018 0.2953 0.0012 0.2985 0.0018 0.2957 0.0024 0.2676 0.0144

CTP1 0.2985 0.0001 0.2985 0.0001 0.2984 0.0001 0.2984 0.0001 0.2981 0.0001 0.2984 0.0002 0.2977 0.0003 0.2956 0.0008

C3DTLZ4 1.5446 0.0759 1.4288 0.17 1.3569 0.0018 1.2526 0.0473 1.3375 0.0512 1.3933 0.0813 1.5091 0.0659 1.5827 0.0308

OSY 12629 2 12352 97 12609 3 12526 71 12396 139 12443 90 12073 105 11501 297

TBTD 8052.6 48.5 7892.3 90.0 7690.2 153.9 7506.0 237.4 7471.3 205.5 7419.4 300.2 7237.2 272.6 7213.8 231.5

NBP 799579 190 800186 130 799770∗ 258 798810 643 798377 844 797753 1496 793709 2257 776697 1517

DBD 59.9960 0.0806 60.0550∗ 0.0152 60.0614∗ 0.0063 60.0034 0.0391 59.9676 0.0334 59.8961 0.0262 59.8108 0.0296 59.6967 0.0506

SPD 5.511 · 109 2 · 106 5.513 · 109 3 · 106 5.502 · 109 3 · 106 5.493 · 109 8 · 106 5.497 · 109 8 · 106 5.474 · 109 1.3 · 107 5.369 · 109 1.7 · 107 5.259 · 109 3.0 · 107
CSI 7.5394 0.0038 7.5343 0.0049 7.5438 0.0064 7.5372 0.0077 7.5432 0.0076 7.5409 0.0112 7.4329 0.018 6.8714 0.0704

SRD 2952123 95 2949030 574 2945522 755 2941958 935 2940695 1019 2939470 2003 2934512 941 2925597 3690

WB 0.6375 0.0185 0.6435 0.0133 0.6373 0.0138 0.6416 0.0209 0.6475 0.0128 0.6089 0.0263 0.6213 0.0169 0.5952 0.0125

BICOP1 0.6640 0.0004 0.6609 0.0010 0.6442 0.0052 0.6226 0.0111 0.6029 0.0160 0.5901 0.0139 0.4302 0.1118 0.3375 0.0809

BICOP2 0.2549 0.0381 0.2623 0.0161 0.2289 0.0358 0.2294 0.0364 0.2320 0.0356 0.2267 0.0160 0.2198 0.0435 0.2138 0.0250

TRICOP 49.6407 0.0430 49.6971∗ 0.0206 49.7224∗ 0.0215 49.6470 0.0449 49.7100 0.0402 49.7270∗ 0.0259 49.5006 0.0825 49.3136 0.1001

WP 3.677 · 1018 5 · 1015 3.662 · 1018 3 · 1015 3.653 · 1018 9 · 1015 3.631 · 1018 1.4 · 1016 3.583 · 1018 1.4 · 1016 3.556 · 1018 1.3 · 1016 3.492 · 1018 2.1 · 1016 3.471 · 1018 1.5 · 1016

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Objective 1

0.0

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e
2

Feasible Soltuions for TNK

Batch size 20
Batch size 10
Batch size 6
Batch size 5
Batch size 4
Batch size 3
Batch size 2
Batch size 1

(a) Obtained feasible solutions in objective space for TNK test func-
tion. With a different color for different batch sizes used in the
acquisition function.

0.0 0.5 1.0 1.5 2.0
Objective 1

0.0

0.5

1.0

1.5

2.0

Ob
je

ct
iv

e
2

Feasible Soltuions for C3DTLZ4

Batch size 20
Batch size 10
Batch size 6
Batch size 5
Batch size 4
Batch size 3
Batch size 2
Batch size 1

(b) Obtained feasible solutions in objective space for C3DTLZ4 test
function. With a different color for different batch sizes used in the
acquisition function.

0 10 20 30 40 50 60 70 80
Function Evalations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Hy
pe

rv
ol

um
e

Convergence Plot of TNK

batchsize = 20
batchsize = 10
batchsize = 6
batchsize = 5
batchsize = 4
batchsize = 3
batchsize = 2
batchsize = 1

(c) Convergence plot for TNK function. With a different color for
different batch sizes used in the acquisition function.

0 50 100 150 200 250
Function Evalations

0.8

1.0

1.2

1.4

1.6

Hy
pe

rv
ol

um
e

Convergence Plot of C3DTLZ4

batchsize = 20
batchsize = 10
batchsize = 6
batchsize = 5
batchsize = 4
batchsize = 3
batchsize = 2
batchsize = 1

(d) Convergence plot for C3DTLZ4 function. With a different color
for different batch sizes used in the acquisition function.

Figure 3: Obtained Pareto Frontiers and Convergence plots for TNK and C3DTLZ4 test function

517

GECCO ’22, July 9–13, 2022, Boston, USA R. de Winter, et al.

Table 3: Rounded mean number evaluations (Eval), mean number of algorithm iterations (Itr) given the different batch sizes
(1, 2, 3, 4, 5, 6, 10, 20) to achieve the hypervolume threshold. The hypervolume threshold is 90% of the total dominated area
between the Nadir point and the Pareto frontier of all runs together. A dash (-) indicates that the threshold is not achieved
within 40 · 𝑑 function evaluations for the 11 runs, an arrow down (↓) indicates that not every run reached the threshold.

Function Threshold Batch size 1 Batch size 2 Batch size 3 Batch size 4 Batch size 5 Batch size 6 Batch size 10 Batch size 20

Eval Itr Eval Itr Eval Itr Eval Itr Eval Itr Eval Itr Eval Itr Eval Itr

BNH 4496.2 9 9 10 5 10 4 8 2 8 2 9 2 13 2 21 2

CEXP 3.4380 9 9 11 6 11 4 12 3 13 3 11 2 17 2 31 2

SRN 22810 17 17 19 10 20 7 22 6 18 4 20 4 30 4 37 2

TNK 0.2775 44 44 47 24 48 16 48 12 46 10 44 8 49 5 68↓ 4↓
CTP1 0.2717 13 13 15 8 15 5 15 4 19 4 16 3 19 2 34 2

C3DTLZ4 1.5788 197↓ 197↓ 219↓ 110↓ - - - - - - - - 232↓ 24↓ 187↓ 10↓
OSY 11393 18 18 64 33 20 7 27 7 37 8 25 5 39 4 125↓ 7↓
TBTD 7359.8 16 16 29 15 43 15 57↓ 15↓ 61↓ 13↓ 36↓ 6↓ 76↓ 8↓ 77↓ 4↓
NBP 725935 16 16 15 8 14 5 19 5 19 4 20 4 26 3 46 3

DBD 54.133 14 14 15 8 15 6 14 4 15 3 20 4 27 3 32 2

SPD 5.106 · 109 59 59 58 30 62 21 68 17 62 13 77 13 103 11 140 7

CSI 7.1691 120 120 124 62 119 40 118 30 119 24 123 21 179 18 - -

SRD 2658080 14 14 14 7 16 6 17 5 18 4 20 4 23 3 68 4

WB 0.61745 94↓ 94↓ 88 45 106↓ 36↓ 65↓ 17↓ 81 17 133↓ 23↓ 132↓ 14↓ - -

BICOP1 0.59988 82 82 67 34 106 36 139 35 206↓ 42↓ 322↓ 54↓ - - - -

BICOP2 0.27667 353↓ 353↓ 338↓ 169↓ - - 356↓ 89↓ - - - - - - - -

TRICOP 45.3701 13 13 16 8 15 6 21 6 16 4 17 3 19 2 33 2

WP 3.517 · 1018 58 58 62 31 66 22 74 19 92 19 103 18 - - - -

7.3 One Shot Optimization Results
The Hypervolume of the one shot optimization algorithm configu-

ration is given in Table 4. Inspection of this table tells us that the

test functions with a high feasibility rate tend to give much better

results compared to test functions with a low feasibility rate. This

indicates that the constraints are not well fitted after the initial sam-

ple and that more adaptive sampling steps lead to better constraint

boundary approximation and therefore to better Pareto frontier

approximations.

8 CONCLUSION
In this paper a new acquisition function capable of multi-point

multi-objective optimization is introduced and implemented to-

gether with a constraint handling mechanism. This new acquisition

function is plugged in to the SAMO-COBRA algorithm, making it

able to propose multiple solutions per iteration. Experiments on a

benchmark test set show that with larger batch sizes, a significant

number of iterations can be reduced, and therefore a lot of wall

clock time can be saved. This is especially interesting in cases where

the evaluation of solutions is very time consuming and when they

can be evaluated in parallel. The new infill criteria not only gives

the possibility to save wall clock time, but also the computational

resources and the use of commercial licences can now be more

effectively exploited.

Future work will be put into dealing with multi-fidelity optimiza-

tion problems, and asynchronous function evaluations, to decrease

wall clock time even more. Other extensions of the algorithm could

be a discrete parameter handling mechanism so that the algorithm

can also be used for a mixture of decision variable types.

Table 4: Mean and Standard deviation of hypervolume of
the one shot optimization algorithm configuration between
the Nadir point and the obtained Pareto frontiers over 11
runs after 80 function evaluations with an initial Halton
sample of 40. The results are compared to the result of the
original infill criteria with batch size 1 by computing the
hypervolume differences in a percentage.

Function hv std Percentage

BNH 4939.6 2 −0.60%
CEXP 3.6507 0.0240 −4.01%
SRN 23649 262 −5.79%
TNK 0.2044 0.0341 −46.18%
CTP1 0.2731 0.0091 −9.30%
C3DTLZ4 1.4308 0.0458 −7.95%
OSY 6144.9 1240.3 −105.52%
TBTD 6007.2 425.2 −34.05%
NBP 768803 4997 −4.00%
DBD 56.812 0.541 −5.60%
SPD 2.9674 · 109 3.058 · 108 −85.72%
CSI 5.9929 0.0472 −25.81%
SRD 2855825 61403 −3.37%
WB 0.5601 0.0126 −13.82%
BICOP1 0.4193 0.0482 −52.04%
BICOP2 0.0759 0.0296 −235.84%
TRICOP 47.750 0.798 −3.96%
WP 3.198 · 1018 2.44 · 1017 −14.98%

ACKNOWLEDGMENTS
Special thanks to C-Job Naval Architects for financing the research.

518

Multi-Point Acquisition Function for Constraint Parallel Efficient Multi-Objective Optimization GECCO ’22, July 9–13, 2022, Boston, USA

REFERENCES
[1] Taimoor Akhtar and Christine A Shoemaker. 2019. Efficient multi-objective

optimization through population-based parallel surrogate search.

[2] Thomas Back. 1996. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university press.

[3] Samineh Bagheri, Wolfgang Konen, Michael Emmerich, and Thomas Bäck. 2017.

Self-adjusting parameter control for surrogate-assisted constrained optimization

under limited budgets. Applied Soft Computing 61 (2017), 377–393. https:

//doi.org/10.1016/j.asoc.2017.07.060

[4] Slim Bechikh, Lamjed Ben Said, and Khaled Ghedira. 2010. Estimating nadir point

in multi-objective optimization using mobile reference points. In IEEE Congress on
Evolutionary Computation. IEEE, 1–9. https://doi.org/10.1109/CEC.2010.5586203

[5] Torsten Bosse, Nicolas R. Gauger, Andreas Griewank, Stefanie Günther, and

Volker Schulz. 2014. One-Shot Approaches to Design Optimzation. In Trends
in PDE Constrained Optimization, Günter Leugering, Peter Benner, Sebastian
Engell, Andreas Griewank, Helmut Harbrecht, Michael Hinze, Rolf Rannacher,

and Stefan Ulbrich (Eds.). Springer International Publishing, Cham, 43–66. https:

//doi.org/10.1007/978-3-319-05083-6_5

[6] Jakob Bossek, Carola Doerr, Pascal Kerschke, Aneta Neumann, and Frank Neu-

mann. 2020. Evolving Sampling Strategies for One-Shot Optimization Tasks. In

Parallel Problem Solving from Nature – PPSN XVI, Thomas Bäck, Mike Preuss,

André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Traut-

mann (Eds.), Vol. 12269. Springer International Publishing, Cham, 111–124.

https://doi.org/10.1007/978-3-030-58112-1_8

[7] Martin D Buhmann. 2003. Radial basis functions: theory and implementations.
Vol. 12. Cambridge university press.

[8] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, et al. 2007.

Evolutionary algorithms for solving multi-objective problems. Vol. 5. Springer.

5,10,188–189 pages.

[9] Rituparna Datta and Rommel G Regis. 2016. A surrogate-assisted evolution

strategy for constrained multi-objective optimization. Expert Systems with Appli-
cations 57 (2016), 270–284. https://doi.org/10.1016/j.eswa.2016.03.044

[10] Roy de Winter. 2022. Roy de Winter/Multi-Point-SAMO-COBRA: Release1.

https://doi.org/10.5281/zenodo.6461614

[11] Roy de Winter, Philip Bronkhorst, Bas van Stein, and Thomas Bäck. 2022. Con-

strained Multi-Objective Optimization with a Limited Budget of Function Evalu-

ations. Memetic Computing (2022), 1–14.

[12] Roy de Winter, Bas van Stein, Matthys Dijkman, and Thomas Bäck. 2019. Design-

ing Ships Using Constrained Multi-objective Efficient Global Optimization. In

Machine Learning, Optimization, and Data Science, Giuseppe Nicosia, Panos Parda-
los, Giovanni Giuffrida, Renato Umeton, and Vincenzo Sciacca (Eds.). Springer

International Publishing, Cham, 191–203.

[13] Kalyanmoy Deb. 2001. Multi-objective optimization using evolutionary algorithms.
Vol. 16. John Wiley & Sons.

[14] Kalyanmoy Deb, Amrit Pratap, and TMeyarivan. 2001. Constrained test problems

for multi-objective evolutionary optimization. In International conference on
evolutionary multi-criterion optimization. Springer, Springer, 284–298. https:

//doi.org/10.1007/3-540-44719-9_20

[15] Alexander Forrester, Andras Sobester, and Andy Keane. 2008. Engineering design
via surrogate modelling: a practical guide. John Wiley & Sons. https://doi.org/10.

2514/4.479557

[16] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. 2010. Kriging is

well-suited to parallelize optimization. In Computational intelligence in expensive
optimization problems. Springer, 131–162.

[17] Wenyin Gong, Zhihua Cai, and Li Zhu. 2009. An efficient multiobjective differen-

tial evolution algorithm for engineering design. Structural and Multidisciplinary
Optimization 38, 2 (2009), 137–157. https://doi.org/10.1007/s00158-008-0269-9

[18] Raphael T. Haftka, Diane Villanueva, and Anirban Chaudhuri. 2016. Par-

allel surrogate-assisted global optimization with expensive functions–a sur-

vey. Structural and Multidisciplinary Optimization 54, 1 (2016), 3–13. https:

//doi.org/10.1007/s00158-016-1432-3

[19] John H Halton. 1960. On the efficiency of certain quasi-random sequences of

points in evaluating multi-dimensional integrals. Numer. Math. 2, 1 (1960), 84–90.
[20] Gideon Hanse, Roy de Winter, Bas van Stein, and Thomas Bäck. 2021. Optimally

weighted ensembles for efficient multi-objective optimization. In International
Conference on Machine Learning, Optimization, and Data Science. Springer, 144–
156.

[21] Himanshu Jain and Kalyanmoy Deb. 2014. An Evolutionary Many-Objective

Optimization Algorithm Using Reference-Point Based Nondominated Sorting

Approach, Part II: Handling Constraints and Extending to an Adaptive Approach.

IEEE Trans. Evolutionary Computation 18, 4 (2014), 602–622. https://doi.org/10.

1109/tevc.2013.2281534

[22] Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Efficient global

optimization of expensive black-box functions. Journal of Global optimization 13,

4 (1998), 455–492.

[23] Jian-Yu Li, Zhi-Hui Zhan, and Jun Zhang. 2021. Evolutionary Computation

for Expensive Optimization: A Survey. International Journal of Automation

and Computing 18 (Oct. 2021), 1–21. http://ijac.xml-journal.net/en/article/id/

3b0787b0-c3fd-41bd-9593-da155838a209

[24] Charles A Micchelli. 1986. Interpolation of scattered data: distance matrices and

conditionally positive definite functions. Constructive approximation 2, 1 (1986),

11–22.

[25] Seyedali Mirjalili, Pradeep Jangir, and Shahrzad Saremi. 2017. Multi-objective ant

lion optimizer: a multi-objective optimization algorithm for solving engineering

problems. Applied Intelligence 46, 1 (2017), 79–95. https://doi.org/10.1007/s10489-

016-0825-8

[26] Giacomo Nannicini. 2019. Performance of hybrid quantum-classical variational

heuristics for combinatorial optimization. Physical Review E 99, 1 (2019), 013304.

[27] Emre Özkaya and Nicolas R Gauger. 2009. Single-step one-shot aerodynamic

shape optimization. In Optimal control of coupled systems of partial differential
equations. Springer, 191–204.

[28] Michael G Parsons and Randall L Scott. 2004. Formulation of multicriterion design

optimization problems for solution with scalar numerical optimization methods.

Journal of Ship Research 48, 1 (2004), 61–76. https://doi.org/10.1007/s10489-016-

0825-8

[29] Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. 2008.

Multiobjective Optimization on a Limited Budget of Evaluations Using Model-

Assisted S-Metric Selection. In International Conference on Parallel Problem Solv-
ing from Nature. Springer, Springer, 784–794. https://doi.org/10.1007/978-3-540-

87700-4_78

[30] Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann, and Markus Vincze. 2008.

Multiobjective optimization on a limited budget of evaluations using model-

assisted S-metric selection. In International Conference on Parallel Problem Solving
from Nature. Springer, 784–794.

[31] Michael JD Powell. 1992. The theory of radial basis function approximation in

1990. Advances in numerical analysis (1992), 105–210.
[32] M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the

Objective and Constraint Functions by Linear Interpolation. In Advances in
Optimization and Numerical Analysis. Springer Netherlands, 51–67. https://doi.

org/10.1007/978-94-015-8330-5_4

[33] Frederik Rehbach, Martin Zaefferer, Boris Naujoks, and Thomas Bartz-Beielstein.

2020. Expected Improvement versus Predicted Value in Surrogate-Based Opti-

mization. In Proceedings of the 2020 Genetic and Evolutionary Computation Con-
ference (Cancún, Mexico) (GECCO ’20). Association for Computing Machinery,

New York, NY, USA, 868–876. https://doi.org/10.1145/3377930.3389816

[34] Thomas P Scholcz, Tomasz Gornicz, and Christian Veldhuis. 2015. Multi-objective

hull-form optimization using Kriging on noisy computer experiments. InMARINE
VI: proceedings of the VI International Conference on Computational Methods in
Marine Engineering. CIMNE, CIMNE, 1064–1077.

[35] Lei Shi, RJ Yang, and Ping Zhu. 2012. A method for selecting surrogate models

in crashworthiness optimization. Structural and Multidisciplinary Optimization
46, 2 (2012), 159–170.

[36] Bas van Stein, Hao Wang, and Thomas Bäck. 2019. Automatic Configuration

of Deep Neural Networks with Parallel Efficient Global Optimization. In 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–7. https:

//doi.org/10.1109/IJCNN.2019.8851720

[37] Ryoji Tanabe and Akira Oyama. 2017. A note on constrained multi-objective

optimization benchmark problems. In 2017 IEEE Congress on Evolutionary Com-
putation (CEC). IEEE, IEEE, 1127–1134.

[38] TakashiWada andHideitsu Hino. 2019. Bayesian Optimization forMulti-objective

Optimization and Multi-point Search. arXiv:1905.02370 [stat.ML]

[39] Hao Wang, Bas van Stein, Michael Emmerich, and Thomas Back. 2017. A new

acquisition function for Bayesian optimization based on the moment-generating

function. In 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, IEEE, 507–512.

[40] JolanWauters, Andy Keane, and Joris Degroote. 2020. Development of an adaptive

infill criterion for constrained multi-objective asynchronous surrogate-based

optimization. Journal of Global Optimization 78, 1 (2020), 137–160.

519

https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1109/CEC.2010.5586203
https://doi.org/10.1007/978-3-319-05083-6_5
https://doi.org/10.1007/978-3-319-05083-6_5
https://doi.org/10.1007/978-3-030-58112-1_8
https://doi.org/10.1016/j.eswa.2016.03.044
https://doi.org/10.5281/zenodo.6461614
https://doi.org/10.1007/3-540-44719-9_20
https://doi.org/10.1007/3-540-44719-9_20
https://doi.org/10.2514/4.479557
https://doi.org/10.2514/4.479557
https://doi.org/10.1007/s00158-008-0269-9
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1109/tevc.2013.2281534
https://doi.org/10.1109/tevc.2013.2281534
http://ijac.xml-journal.net/en/article/id/3b0787b0-c3fd-41bd-9593-da155838a209
http://ijac.xml-journal.net/en/article/id/3b0787b0-c3fd-41bd-9593-da155838a209
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1145/3377930.3389816
https://doi.org/10.1109/IJCNN.2019.8851720
https://doi.org/10.1109/IJCNN.2019.8851720
https://arxiv.org/abs/1905.02370

	Abstract
	1 Introduction
	2 Related Works
	2.1 Parallel Single Objective Optimization
	2.2 Parallel Multi-Objective Optimization
	2.3 Constrained Parallel Multi-objective Optimization
	2.4 One Shot Optimization

	3 Problem Definition
	3.1 Constrained Multi-Objective Problem
	3.2 Single-Point Acquisition Function

	4 Multi-Point Acquisition Function
	4.1 Optimization of Acquisition Function

	5 Algorithm configuration
	5.1 RBF Hyper-Parameter Settings
	5.2 Parallel Optimization
	5.3 One Shot Optimization

	6 Experiments
	6.1 Hypervolume after Fixed Evaluation Budget
	6.2 Convergence Experiment
	6.3 One Shot Optimization Experiment

	7 Results
	7.1 Hypervolume Results
	7.2 Convergence Results
	7.3 One Shot Optimization Results

	8 Conclusion
	Acknowledgments
	References

