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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52632352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00197578


Spatial cluster detection using the number of
connected components of a graph

Avner Bar-Hena, Michel Koskasb, Nicolas Picardc
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Abstract
The aim of this work is to detect spatial clusters. We link Erdös

graph and Poisson point process. We give the probability distribution
function (pdf) of the number of connected component for an Erdös
graph and obtain the pdf of the number of cluster for a Poisson pro-
cess. Using this result, we directly obtain a test for complete spatial
randomness and also obtain the clusters that violates the CSR hy-
pothesis. Border effects are computed. We illustrate our results on a
tropical forest example.
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1 Introduction

Point process modelling is a classical approach for spatial processes when lo-
cations of events are random [Cressie 1993, Diggle 1983, Ripley 1988, Stoyan et al. 1995,
Stoyan and Stoyan 1994, Daley and Vere-Jones 1988]. The spatial pattern of
a given population of trees in a forest for example can be viewed as the re-
sult of interactions between the biology of the population and other ecological
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processes on the abiotic and biotic environments of the population. Then de-
scribing the spatial distribution of a species, as a print of these processes, is
an important tool to understand its dynamic.

Exploration of a point process classically begins by descriptive statis-
tics. These exploratory statistics are basic statistical summaries upon which
further modeling studies are based. These analyses rely on tests based on
comparisons of descriptive statistics to confidence bounds of their coun-
terparts under complete spatial randomness (CSR) [Diggle 1983]. If CSR
is rejected, tests will help to choose between aggregative or regular mod-
els. The shape of the descriptive statistics is generally used as a guide
for parametric modeling of the point process. Many methods are based on
various distance measurements between events or between sampled points
and the nearest event ([Cressie 1993]). A common feature of these tests
is to compare the empirical distribution to simulated distribution of the
chosen statistic under H0. More recently, ([Justel, Peña and Zamar1997,
Cucala & Thomas-Agnan2006, Zimmerman1993]) proposed tests based on
the empirical distribution in R2 but they rely on asymptotic properties.
Speed of convergence on the asymptotics is a difficult task and from a prac-
tical point of view, simulated empirical percentiles should be preferred to the
asymptotic distribution.

A second classical objective is to identify zone(s) in which events are
most concentrated, usually named cluster. Spatial cluster detection affects
several fields: medicine, cosmology with spatial clustering of galaxies, so-
cial sciences and criminology, agronomy and more. The question of whether
events are clustered in space has received considerable attention in the lit-
erature. Among the cluster detection methods, the spatial scan statistic
([Kulldorff and Nagarwalla1995, Kulldorff1997]) has become the most pop-
ular one. The aim of this method is to scan the study area using win-
dows of a predefined shape (generally circles) and to determine the one
that groups together an abnormally high number of cases using the log-
likelihood ratio test. Many extensions were proposed ([Patil and Taillie2004,
Duczmal and Assunção2004, Tango and Takahashi2005, Demattei C, Molinari N & Daurès2007]).
Cluster significance is always obtained via Monte Carlo simulations.

Two main points can be noted: (i) at first CSR tests and cluster detection
are done separately: The first aim of this article is to propose a unified
approach for theses two tests; and (ii) CSR tests and cluster detection are
generally based on Monte Carlo simulations: we derive exact distribution of
the proposed statistics.
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Given a cloud of points, we construct edge between two points if the
distance between the two points is less than a given threshold r. The resulting
graph G has k of connected components. In the next section we compute
the probability that G is made of k connected components, for a given k ≥ 1
under the hypothesis of a Poisson process for the points. One may expect
that a regular process has too many connected components (may be isolate
points) while aggregative processes are composed of a too low number of
connected components. Relationships between random graphs and point
processes were studied by some authors as [Penrose2003] from a probabilistic
point of view. In this article we are not looking for asymptotic distributional
properties but for finite distance statistics.

To illustrate the interest of considering the influence of these measure-
ment errors, we selected one of the many tropical tree species of the French
Guiana terra firme rainforest, mapped and surveyed on the plots of the Para-
cou Experimental Site [Gourlet-Fleury et al. 2004]. Dicorynia guianensis
Amshoff, Caesalpiniaceae) is characterised by an aggregated spatial pattern
[Loubry et al. 1993, Collinet 1997].

2 Connections between graph theory and spa-

tial statistics

In the following, we denote Y = (y1, ..., yn) a set of n points observed in a
window W . Without loss of generality, we can assume W = [0, 1]2.

The first process to obtain connected components is described above:
points of Y are randomly chosen in a window, a radius r is chosen and given
this radius, two points are connected if and only if they are at distances less
than or equal to r.

A second process to build random graphs (and connected components)
is the following: the vertices of a graph are given and a parameter p (a
probability) is chosen. For all pairs of vertices u and v, one chooses to build
the edge between u and v with the probability p. Once the edges are built,
so are the connected components. Such a graph is called an Erdös graph of
parameters p and n (see [Bollobás 2001] for example).

For a Poisson point process the two approaches are equivalent. In the first
case, the points are random while in the second case, the edges are random.
The next section is dedicated to a theoretical computation of the number of

3



connected components for a random graph.

2.1 Main results on graph

We consider an Erdös graph of n vertices. Let p the probability of connection
for two vertices. In this section we consider that p is given. We denote, as
usual, q = 1− p. The number pk,n shall denote the probability that a graph
build with the given probability p containing n vertices were made of exactly
k connected components, where 1 ≤ k ≤ n. The following Proposition
permits to compute pk,n recursively from pk′,n′s with k′ < k and n′ < n.

Proposition 1 The numbers pk,n verify the following relation: ∀k ≥ 2,

pk,n = 1
k

∑n−(k−1)
l=1

(
n
l

)
p1,lpk−1,n−lq

l(n−l). Furthermore, p1,n = 1−
∑n

k=2 pk,n.

Proof: When a graph consisting of n vertices is constituted of k con-
nected components, one can particularize one of these components, whose
size lies between 1 and n− (k − 1). There are k choices for this component
and once its size is chosen, there are

(
n
l

)
different ways to choose its elements.

The probability that the remaining part is constituted of exactly n−l vertices
and k − 1 connected components is pk−1,n−l and none of the vertices of the
particular connected component is connected to any vertex of the remaining
part of the graph, which gives the term ql(n−l).

Remark 1 This relation may be written ∀k ≥ 2,

pk,n =
1

k

∑
l1≥1,l2≥1,
l1+l2=n

(
n

l1

)
p1,l1pk−1,l2q

l1l2 .

This formula may be extended to relate pk,n to the size of each component,
i.e. to write pk,n as a function of each p1,l. It is the aim of the two following
propositions.

Proposition 2 For all k ≥ 2, the numbers pk,n verify the following relation:

pk,n =
1

k!

∑
∀1≤i≤k, li≥1,

l1+l2+···+lk=n

(
n

l1, l2, . . . , lk

)
p1,l1p1,l2 . . . p1,lkq

∑
1≤a<b≤k lalb .
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Proof: Let us prove this property by induction on k. It is true for k = 2.
Now let us suppose that it is true for k− 1 (for a k ≥ 3) and let us prove

it is true for k.
Since pk,n = 1

k

∑
l1≥1,l′2≥1,
l1+l′2=n

(
n
l1

)
p1,l1pk−1,l′2

ql1l′2 and

pk−1,l′2
=

1

(k − 1)!

∑
∀2≤i≤k, li≥1,

l2+l3+···+lk=l′2

(
n− l1

l2, l3, . . . , lk

)
p1,l2p1,l3 . . . p1,lkq

∑
2≤a<b≤k lalb ,

the following relation stands:

pk,n =
1

k

∑
l1≥1,l′2≥1,
l1+l′2=n

(
n

l1

)
p1,l1

1

(k − 1)!

∑
∀2≤i≤k, li≥1,

l2+l3+···+lk=l′2

(
l′2

l2, l3, . . . , lk

)

p1,l2p1,l3 . . . p1,lkq
∑

2≤a<b≤k lalbql1(l2+···+lk)

which is the wanted formula. We now obtain the formula regarding only p1,li :

Proposition 3 For all n ≥ 1,

p1,n = 1−
n∑

d=2

1

d!

∑
l1+l2+···+ld=n

li≥1

(
n

l1, l2, . . . , ld

)
p1,l1p1,l2 . . . p1,ldq

∑
1≤a<b≤d lalb .

To illustrate the formulas, we gather a few results for very little values of
n in Table 1.

For n = 3 for instance, a graph has 3 connected components with a
probability q3 because it is the probability that the graph did not contain any
edge. It has 2 connected components with a probability p2,3 = 3q2p because
such a graph must contain exactly one edge (there are three possibilities).
Finally p1,3 = 1− (p2,3 + p3,3) = p2(2q + 1).

2.2 Connection between Poisson point process and graph.

For sake of simplicity we consider the unit square U . For computational
reason (see later, border effects) we use L∞ distance, but the results extend
to other norms of R2.
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n
k 0 1 2 3 4 5

0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 p q 0 0 0
3 0 p2(2q + 1) 3pq2 q3 0 0
4 0 p3(6q3 + 6q2 + 3q + 1) p2q3(11q + 4) 6pq5 q6 0
5 0 p4(24q6+36q5+30q4+20q3+10q2+4q+1) 5p3q4(10q3+8q2+3q+1) 5p2q7(7q+2) 10pq9 q10

Table 1: The first values of pk,n

Let neglect the border effect for the moment. For a Poisson process the
probability to have two points closer than r is r2 for 0 ≤ r ≤ 1. This is a
characteristic of Poisson process.

Therefore we can construct a Erdös graph with probability p by connect-
ing all the points with distances less that r =

√
p.

The main idea is to notice that choosing an edge with probability p is
equivalent to have two points of a Poisson process closer than

√
p. Thanks

to Palm measure, this is also equivalent to the probability that a ball centred
on a point of the observed process contained another point of the proces.

By comparing the empirical number of components with the theoretical
distribution of components for a Poisson process we can test if the observed
cluster are compatible with the Poisson hypothesis.

One difficult task with scan statistics is the border of the cluster which
is directly determined by the shape of the scan. Since we only consider the
points we do not have this problem with the proposed methodology. Another
difficulty with scan statistics is test multiplicity. Since we only consider one
empirical curve, we do not have multiple test.

Border effect occurs when the distance between a subject point (taken at
random) and the centre C of the square W is greater than the distance from
C to the border of W . Border effect can strongly affect the results for large
p. Correcting border effects at distance r involves computing the intersection
between W and the set of all points at distance less than r from C. Using
the L∞ distance, this is equivalent with computing the intersection of two
squares, which simplifies computations. Taking border effects into account,
the probability to have two randomly chosen points in U closer than r is less
than r2. This probability is equal to the mean surface of the intersection of

6



 

 

d/2 1−d/2d/2 1−d/2

d/
2

1−
d/

2

Figure 1: Definition of the corner, border and central part of the square for
a given radius d

the unit square U and the square Wr with radius r centred on a randomly
chosen point. The following proposition gives the border correction.

Proposition 4 Let Wd be the square with radius d centred on the origin,
and U the unit square of R2. The expectation of the area of U ∩ (Wd + x)
where x is a random point with uniform distribution in U is d2(1− d + 3

8
d2)2

Proof: Looking at Figure 1 we see that, for a given d three cases have to
be considered: (i) the surface of the central part is (1− d)2 while the surface
of U∩Wd is d2; (ii) the surface of a border part is (1−d)d/2 while the surface

of U ∩ Wd is d
∫ d/2

0
(d/2 + x)dx = d3d

4
; (iii) the surface of a corner is d2/4

while the surface of U ∩Wd is
(

3d
4

)2
. Easy computations finish the proof.

Hence, conditionnally to the observation of n points within U , generating
an Erdös graph with parameters p and n is equivalent with connecting all the
points with distances less that r in a point pattern generated by a Poisson
process with intensity n, where r solves r2(1− r + 3

8
r2)2 = p.
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3 Cluster detection and inference

From a practical point of view, we compute the matrix of distance between
the n points. For a given distance r, we connect all points such that the
distance is less than r and we compute the number of components. The
theoretical distribution of the number of components of an Erdös graph with
a probability of connection

√
(r) is given in the various propositions. Con-

struction of a test of H0 : Complete spatial randomness (CSR) is therefore.
When H0 is rejected the clusters are directly identified.

4 Example

In this section we illustrate our method on the analysis of the spatial pat-
tern of two tree species surveyed at the Paracou experimental site in French
Guiana [Gourlet-Fleury et al. 2004]. This site is dedicated to ecological stud-
ies on the impact of various types of silvicultural treatments — timber and
fuelwood logging, possibly followed by poison-girdling — on the functioning
of the forest ecosystem. It is located in the coastal part of the region, approx-
imately 15 km SSE of the town of Sinnamary and 50 km NW of the European
space town of Kourou (5◦18’ N, 52◦53’ W). The climate is equatorial, with
a well marked dry season (middle August to middle November) and a long
lasting rainy season, often interrupted by a short drier period between March
and April. Natural forest stands grow on shallow ferralitic soils. Within each
plot, all trees with diameter at breast height (dbh) greater than 10 cm were
located, botanically determined and monitored each year within a core area
of 6.25 ha.

Each plot was square 250 m × 250 m with ropes placed at the edge of
the plot with decametre and compass. The coordinates of a tree were then
measured with respect to the nearest origin (of the system of ropes axis) with
decametre and compass (to keep the orthogonality).

Dicorynia guianensis displayed punctual clusters of radius about 50 m,
distant about 100 m from each other over the whole site [Dessard et al. 1999].
Various studies of this species [Loubry et al. 1993, Gourlet-Fleury et al. 2004]
led to the conclusion that this clustered spatial pattern was the result of a
limited dispersal distance, combined with a relatively high shade-tolerance
at young stages and, possibly, an internal replacement dynamics inside the
clusters due to a higher turnover inside than outside the clusters.
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Figure 2 presents the studied population of D. guianensis, the theoretical
mean and 95%confidence interval (red and green lines) and the empirical
number of clusters. The x-axis represents the distance of interest and the
y-axis represents the number of cluster. If the empirical curve is under the
confidence interval, it means that the number of cluster is significantly lower
than expected. This is a characterisation of clustered process. We zoomed
the distance between 0 and 100 meters since after there is only one cluster
of points (as expected).

The smallest distance between trees is 6 metres and the number of clusters
is outside the confidence interval for all values between 6 and 50 metres.
Under six metres, the number of clusters is equal to the number of points.

Figure 3 presents the detected clusters for distances between 10 and 90
metres. For a given distance, we connect all points closer than the distance.
The number of connected components, i.e. clusters is given in Figure 2. One
may notice that isolated points at the upper right and lower left corner can
be part of cluster outside the window. The Figure gives the construction of
the three clusters.
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espèces structurantes d’une forêt dense humide d’après l’analyse de leur
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Figure 3: Connected components for distance less than 10, 20, 30, 40, 50, 70,
80 and 90 metres
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