
Reverse engineering for industrial-environment cad

models

Rodrigo De Toledo, Bruno Levy, Jean-Claude Paul

To cite this version:

Rodrigo De Toledo, Bruno Levy, Jean-Claude Paul. Reverse engineering for industrial-
environment cad models. International Symposium on Tools and Methods of Competitive
Engineering, TMCE 2008, Apr 2008, Izmir, Turkey. 2008. <inria-00202465>

HAL Id: inria-00202465

https://hal.inria.fr/inria-00202465

Submitted on 7 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00202465

Proceedings of TMCE 2008, April 21–25, 2008, Kusadasi, Turkey, edited by I. Horváth and S. Engin Kilic
c© Organizing Committee of TMCE 2008, ISBN —

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS

Rodrigo de Toledo
Tecgraf – PUC-Rio

rtoledo@tecgraf.puc-rio.br

Bruno Lévy
ALICE - LORIA - INRIA

levy@inria.fr

Jean-Claude Paul
Institute of Computer Aided Design - Tsinghua University

Paul@tsinghua.edu.cn

ABSTRACT
Industrial-environment CAD models are commonly
represented by triangular meshes, which do not pre-
serve original information about implicit surfaces
used during design. The reverse-engineering algo-
rithms presented in this paper focus on reconstruct-
ing implicit information, recovering original data.
We propose two different approaches, a numerical
one and an original topological approach. We ex-
plore specificities found in CAD meshes to achieve
high effectiveness, reconstructing 90% of informa-
tion from massive models (with millions of triangles)
after few minutes of processing.

KEYWORDS
reverse engineering, CAD models, shape retrieval,
surface recovery, model reconstruction, topological
algorithms

1. INTRODUCTION
Modeling and simulation of complex industrial en-
vironments are difficult tasks for designers and en-
gineers. There are several different domains in this
context: oil industries (platforms and refineries),
transport industries (airplanes and ships), industrial
plant architecture, and so forth. Even though they
involve similar kinds of tasks, each domain is quite
different, and as a consequence there is a multitude
of software applications.

Industrial-environment models are mainly composed
of multiple sequences of pipes, cable trays and other
technical networks, which are basically combina-
tions of simple primitives (e.g., cylinders, cones and
torus slices). Each application has its own inter-

nal data format and different ways to manipulate the
primitives. For instance, even a simple cylinder can
be stored in different ways: as two points and a ra-
dius, as a circle extrusion, as a segment revolution or
even as a tessellated approximation. The most com-
mon way to export data is through a triangular mesh
(actually, the only one found in all software). One
of the reasons for using triangles as data format is
rendering, since current graphics cards are optimized
for triangle rendering (which has been the case for
the last ten years).

However, representing simple primitives by tessel-
lated approximations is clearly not the best solution
for many reasons:

• Even using a very high resolution, tessellation is
always an approximation. Losing the original in-
formation about the primitives may result in inac-
curate simulation and coarse reconstruction. For
example, during visualization, there will always
be a detailed zoom at which one can see a faceted
silhouette instead of a smooth one.

• It causes much higher memory consumption:
while simple cylinder can be stored with 7
floating-point numbers (i.e., the 3D coordinates
of two points and the radius) when it is tessel-
lated with 8 vertices in both extremities it takes
up about 400 bytes (to store topological informa-
tion, vertex position and normal).

• Another issue is an ambiguity problem; for exam-
ple, an 8-sided cylinder could be a representation
of a circular cylinder or a pipe with really 8 faces.

Tessellation presents a clear tradeoff between qual-
ity and simplicity. The more quality is demanded,
the larger number of triangles required for the rep-

1

resentation. However, an excessive number of trian-
gles should be avoided for multiple reasons: mem-
ory consumption for storage, CPU/GPU transference
overloading and performance downgrading for visu-
alization.

On the other hand, if we have the original informa-
tion on the primitives, we can generate the discretiza-
tion only when necessary. Moreover, it is possible to
control the discretization level, which is useful for
visualization and numerical simulations (e.g., stress
analysis).

In this paper we present an algorithm to retrieve
higher-order geometric primitives from a tessellated
database by means of a reverse-engineering method.
We start by showing that classical numerical meth-
ods are not well suited for this kind of data (Section
3), even after some improvement (Section 3.2), and
then we propose a novel topological method (Sec-
tion 4). Our implementation is highly efficient, re-
covering 90% of original polygons in some massive
industrial models after a few minutes of automatic
processing (see results in Section 5).

2. RELATED WORK AND CONTEXT

Several applications make use of Implicit Surface Re-
covery: surface reconstruction, geometry enhance-
ment, reverse engineering, model-based recognition
and geometry simplification. For this reason, implicit
surface recovery has been the subject of multiple re-
search work in the last years (Petitjean, 2002; Werghi
et al., 1999; Y.Y. et al., 1996; Lukacs et al., 1997; Wu
& Kobbelt, 2005; Ohtake et al., 2003; Ohtake et al.,
2005). Typically, the input consists of a dense 3D
point set obtained after a three-dimensional scanning
of an object. However, some methods consider poly-
gon meshes as input information, which is our case.

In our application, we are only concerned with manu-
factured objects for our reverse-engineering process.
Usually, objects composed by mechanical pieces
can be well described by patches of planes, cones,
spheres, cylinders and toroidal surfaces (Thompson
et al., 1999). According to Nourse et al. (Nourse
et al., 1980) and Requicha et al. (Requicha & Voel-
cker, 1982), 95% of industrial objects can be de-
scribed by these implicit patches (or 85% if toroidal
patches are not allowed). Thus, our recovery algo-
rithm focuses on finding the equations of the original
implicit surfaces used to describe the object.

Petitjean (Petitjean, 2002) lists the four main tasks
usually found in recovery algorithms:

estimation: computes the local surface geometry
using differential parameters such as normal and cur-
vature;

segmentation: responsible for dividing the origi-
nal data into subsets, each one probably forming a
unique geometric primitive;

classification: this step decides in which surface
type a subset should be included (cylinder, torus,
cone or some other); and

reconstruction: finds the surface parameters to cor-
rectly fit the input data.

The estimation step can be seen as a preprocessing
stage for segmentation and classification. In this step,
local properties are computed for the whole original
data set. Using topological information from the in-
put data, different methods are capable of computing
these properties. In general, the properties we are in-
terested in are: normal (n), principal curvature direc-
tions (e1, e2) and principal curvature values (k1, k2).
Based on differential geometry principles (do Carmo,
1976), the estimation methods vary significantly, and
there is no consensus on the most appropriate way
to approximate geometric local properties (Petitjean,
2002).

Segmentation and classification steps are closely re-
lated. In an ideal case, the classification step would
clearly benefit from a correct segmentation output.
In this case, when trying to find which surface best
represents the segment, the algorithm would not suf-
fer from disturbing neighboring data. But, unfortu-
nately, both tasks are rarely executed in a perfect se-
quence. In general, they are executed simultaneously
rather than sequentially.

The segmentation step is commonly executed us-
ing region-based approaches. There are different
region-based strategies found in the literature: re-
gion growing (Lukacs et al., 1997), split-and-merge
(Parvin & Medioni, 1986) and region clustering (Wu
& Kobbelt, 2005). In some of these strategies, seg-
mentation is done in combination with the classifica-
tion step (Werghi et al., 1999).

Classification is the last difficult task in recovery al-
gorithms, since reconstruction is almost a straight-
forward procedure, provided all the previous steps
were well executed.

In this paper, we introduce two recovery strategies
used in our application. The first one, described in

2 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

Section 3, is more similar to conventional surface-
recovery approaches. The second one, in Section 4,
is more industrial-CAD data driven, and is deeply
based on specificities found in our input data.

In order to understand the characteristics present in
industrial-environment data, we enumerate the de-
tails and important points of this data type.

2.1. Industrial-Environment CAD
Models

Ideally, the tessellated representation should never
be the only option to access industrial data sets. In
practice, however, this is not the case, and triangle
meshes are frequently the only data representation
available. One reason is that triangle meshes are
currently the lingua franca in computer visualization
and mesh representation. The multitude of software
in the numerous CAD areas also contributes to the
lack of another common representation or data type.

Reverse engineering typically uses scanned data as
input. In this kind of data, there is a dense set of
points laid down on objects surfaces. However, the
data we are dealing with presents a different situ-
ation, since they were generated without any scan-
ning or capturing step. Although both types of data
are composed by point sets (and additional topology
information), we can list some different characteris-
tics found in industrial tessellated software-generated
data (or CAD data):

1. CAD data have sparser samples in the point set
when compared to scanned data. For example, a
cylinder patch can contain only 12 vertices in its bor-
der.

2. The vertices are regularly distributed in tessel-
lated CAD data. For instance, in most cases, the ver-
tices of a tubular structure will be located on a set
of circles (or rings), like a backbone and vertebrae.
This regularity can also be observed in the topology;
for example, in a cylinder, edges are aligned with the
axis.

3. Besides regularity, the vertices also have a precise
location. This means, for example, that if a set of ver-
tices is expected to be lying on the same plane, then
this will be the case, except for a very small thresh-
old.

4. There is a partial segmentation, with some ob-
jects separated from one another. For instance, two
different pipelines are separated objects in the data,

although each one is still composed by different
patches (cylinders, cones and tori) that were not yet
split.

This last characteristic is a significant advantage of
our data set. However, characteristic (1) is a draw-
back that disturbs traditional recovery algorithms. In
Section 3 we explain a numerical approach for sur-
face recovery that tries to overcome this problem.
On the other hand, characteristics (2) and (3) are an
advantage that we have explored in our topological
method described in Section 4.

3. NUMERICAL METHOD
In this section we approach the classification step,
which is the third step in conventional recovery algo-
rithms (estimation, segmentation, classification and
reconstruction). In Subsection 3.2 we focus on how
to overcome the sparse characteristic of CAD indus-
trial data that disturbs conventional classification.

Let us consider that the normal ~ni of each vertex vi

was already computed in the estimation step and that
the segmentation step was already successfully exe-
cuted. Now we have a set of surface meshes, each
one corresponding to a higher-order geometric prim-
itive. In the classification step we want to verify
which of these meshes correspond to quadric sur-
faces. As explained in (Werghi et al., 1999) we can
execute a least square fitting to find out the coeffi-
cients that determine the quadric equation.

Although some authors suggest a specific search for
each quadric surface (Fitzgibbon et al., 1997; Petit-
jean, 2002), we adopted the strategy of starting by
fitting the 10 coefficients (9 in practice) of generic
quadrics and then classifying each surface as one of
the expected types (cylinder, cone, sphere, etc.).

Our quadric recovery procedure follows the se-
quence:

Step I quadric fitting (by least-square fitting)

Step II quadric classification (by evaluating the
quadric coefficients)

Step III reconstruction (by extracting main direc-
tions and by projecting input vertices)

3.1. Quadric Fitting (Step I)
We want to find the quadric surface that best fits
the input point-set already segmented. In standard

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS 3

quadric fitting, the adequacy is measured by evaluat-
ing the minimum distance between the point set and
the quadric. The goal is to find the quadric surface
Q parameterized by 10 coefficients (see Equation 2)
that best describes the point set. For a point set with
n 3D points pi = (xi, yi, zi), we want the solution of
the following system of linear equations:

f(xi, yi, zi) = 0, 0 > i ≥ n (1)

f(x, y, z) = Ax2 + 2Bxy + 2Cxz + 2Dx + (2)
Ey2 + 2Fyz + 2Gy +
Hz2 + 2Iz + J = 0

or using 4× 4 symmetric matrix Q:
x
y
z
1

T

A B C D
B E F G
C F H I
D G I J

Q

x
y
z
1

 = 0 (3)

For dense point clouds, n is much larger than the
number of degrees of freedom (9 for quadrics) and
the above system is overdetermined. The system is
solved by using least-squares fitting to globally min-
imize the distance between the points and the surface.

We can write the system above (Equations 1 and 2)
in matrix form (Ax = b):

x1
2 x2

2 · · · xn
2

2x1y1 2x2y2 · · · 2xnyn

2x1z1 2x2z2 · · · 2xnzn

2x1 2x2 · · · 2xn

y1
2 y2

2 · · · yn
2

2y1z1 2y2z2 · · · 2ynzn

2y1 2y2 · · · 2yn

z1
2 z2

2 · · · zn
2

2z1 2z2 · · · 2zn

T

A
B
C
D
E
F
G
H
I

=

1
1
...
1

We want to minimize the residual error r = Ax −
b, so we solve x for the least-squares equation[
AT A

]
x =

[
AT b

]
. This can be done using the

Cholesky factorization. (Note that the 10th quadric
coefficient (J) is actually a constant so setting the
right hand to 1 is equivalent to fixing J = −1.)

Unfortunately, in our application the point cloud is
not dense. For example, a cylinder candidate seg-

?

Figure 1 Top: The 16 vertices (in red) of a cylinder in
a CAD model are used for fitting a quadric in
the reverse-engineering process. That is not
much information, and may result in ambigu-
ity. For example, the vertices can be fitted by
a cylinder (bottom left) or by a cone (bottom
right).

ment can have about 12 vertices with multiple align-
ments, yielding an underdetermined system of equa-
tions with many possible solutions. For instance, ei-
ther a cylinder or a cone can fit the vertices of a typi-
cal CAD cylinder (see Figure 1). Therefore, we need
more equations to provide our system with more in-
dependent information.

3.2. Improving Numerical Fitting
In order to feed the linear system in Equation 1 with
additional information, we have used the vertices
normal vector. To do so, we have added extra equa-
tions to fit the quadric surface normal to the normal
~ni of each vertex. Thus, for each vertex, three new
equations (corresponding to x, y and z components
of the normal) were inserted in the system respecting
the rule:

~n =
[

df

dx
,
df

dy
,
df

dz

]
(4)

df

dx
= 2Ax + 2By + 2Cz + 2D = ~ni.x

df

dy
= 2Bx + 2Ey + 2Fz + 2G = ~ni.y

df

dz
= 2Cx + 2Fy + 2Hz + 2I = ~ni.z

With this improvement, the number of equations is
4n instead of n and we can converge to a single
best solution (in least-squares sense). Figure 2 shows
the final system of equations. Once again, we want
to minimize the residual error of this new system
of equations. This is done by solving

[
AT A

]
x =

4 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

x1
2 2x1y1 2x1z1 2x1 y1

2 2y1z1 2y1 z1
2 2z1

2x1 2y1 2z1 2 0 0 0 0 0
0 2x1 0 0 2y1 2z1 2 0 0
0 0 2x1 0 0 2y1 0 2z1 2

x2
2 2x2y2 2x2z2 2x2 y2

2 2y2z2 2y2 z2
2 2z2

2x2 2y2 2z2 2 0 0 0 0 0
0 2x2 0 0 2y2 2z2 2 0 0
0 0 2x2 0 0 2y2 0 2z2 2
...

...
...

...
...

...
...

...
...

xn
2 2xnyn 2xnzn 2xn yn

2 2ynzn 2yn zn
2 2zn

2xn 2yn 2zn 2 0 0 0 0 0
0 2xn 0 0 2yn 2zn 2 0 0
0 0 2xn 0 0 2yn 0 2zn 2

4n×9

A
B
C
D
E
F
G
H
I

9

=

1
~n1.x
~n1.y
~n1.z
1

~n2.x
~n2.y
~n2.z

...
1

~nn.x
~nn.y
~nn.z

4n

Figure 2 Improving numerical fitting. For each vertex, three new equations corresponding to normal components were
inserted in the system of equations.

[
AT b

]
with the Cholesky factorization.

3.3. Classification (Step II)
Based on the quadric coefficients [A, · · · , J] com-
puted in the previous step, we can find out what kind
of quadric surface these coefficients determine. In
our case, we are searching for simple surfaces such
as cylinders, cones and spheres. Our classification
is partially based on the quadric geometric invariants
(Y.Y. et al., 1996). For this purpose, we need to eval-
uate the upper-left three-by-three matrix R extracted
from the quadric matrix Q:

R =

[
A B C
B E F
C F H

]
, where Ri,j = Qi,j(1<i,j≤3)

The eigenvalues and the determinant of R are fun-
damental for quadric classification. The eigenvectors
will be also explored in the next step, reconstruction.

3.4. Reconstruction (Step III)
The input of this step is a mesh representing a surface
segment already detected as one of the quadrics we
are interested in. The expected output are the exact
parameters that can be used to reconstruct this sur-
face segment.

Let us take the cylinder as an example. We are inter-
ested in a higher-level representation of the cylinder
consisting of the two extreme 3D points P1 and P2

and the cylinder radius r.

First of all, using the eigenvalues and eigenvectors it
is possible to find the cylinder’s main direction ~v. As-

suming that the quadric coefficients describe a cylin-
der, the matrix R3×3 contains two identical eigenval-
ues and one null eigenvalue. The eigenvector associ-
ated with the null eigenvalue indicates the cylinder’s
main direction.

After obtaining cylinder direction, it is necessary
to compute at least one point lying on the cylin-
der’s main axis to completely describe it. To
find this point we solve a very simple system of
equations. Given the implicit function c(P) =
[PxPyPz1]Q[PxPyPz1]T , in which the zero-set de-
fines a cylinder, the derivative of the function is null
if and only if P is a point on the cylinder’s main axis:

c′(P) = [0, 0, 0], if and only if P ∈ cylinder axis.

So we can set the following system of equations:

dc

dx
= 0,

dc

dy
= 0,

dc

dz
= 0

Any point P0 satisfying the above system is on the
cylinder’s main axis.

So, up to this point, we have obtained P0 and ~v defin-
ing the cylinder’s axis. But we still need to find out
the extreme points P1 and P2 and the radius r.

By projecting all the vertices vi of the original mesh
on the main axis parametrically defined by P0 + t~v,
we can find the extreme points P1 and P2:

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS 5

P1 = P0 +
N

min
i=1

(~v · (vi − P0))

P2 = P0 +
N

max
i=1

(~v · (vi − P0))

and the radius r can be computed by:

r =
N∑

i=0

‖ (~v × (vi − P0)) ‖
N ‖ ~v ‖

.

Sections 5.1 and 5.2 show some results obtained with
this numerical method.

3.5. Normal dependency
The use of normal equations has improved the re-
sults for recovering quadrics from CAD meshes. We
have tested this algorithm with segmented pieces of
industrial CAD models (see Section 5). However, for
non-segmented data, a problem related to the normal
computation may appear.

The normal at each vertex is obtained by comput-
ing the average normal of neighbor faces during the
estimation phase. Therefore, a vertex shared by a
cylinder and a torus will not be perpendicular to the
cylinder axis as we should expect (see Figure 3)1.
Even if the normal information is already available
in the original data (as in the PowerPlant data set),
the normals are not precise (see Figure 3(right)), and
they were also probably computed using the average
of normal faces. This problem disturbs our classifi-
cation algorithm and it would also disturb standard
segmentation algorithms, which are heavily normal
dependent (Petitjean, 2002).

The next section shows a new approach, which is not
based on numerical fitting.

4. TOPOLOGICAL METHOD
Drawbacks of the numerical approach (such as seg-
mentation difficulties, heavy normal dependency and
the complexity of tori fitting (Lukacs et al., 1997))
motivated us to search for alternative ideas about how
to extract higher-order primitive information. The
regularity found in the input data encouraged us to
investigate the topological approach.

Our algorithm is exclusively designed to segment
tubes composed of cylinders, truncated cones and

1In other words, the normal vectors of vertices forming cir-
cular sections (rings) should lie in the plane containing the ring.
See Section 4 for more information about rings.

Figure 3 Normal estimation problem. Left: For
a tubular mesh with fixed radius, one should
expect the normals of vertices in rings (circu-
lar sections) to have a perpendicular direction
to the ring’s normal. Even for rings separat-
ing two different primitives (e.g., a torus and
a cylinder) the normals (in green) should re-
spect a perpendicular direction. Right: How-
ever, the normal estimation of a vertex uses the
average of neighboring faces, resulting in nor-
mals not perpendicular to the ring’s direction
(in red).

“elbows” (elbows correspond to torus slices, shown
in green in Figure 4). The basic idea is to find all
circular regular sections (the rings) and their connec-
tivity. By verifying consecutive rings we can trivially
determine if they fit one of these three higher-order
primitives. Speed is one of the advantages of this
method over traditional numerical approaches for re-
verse engineering. Numerical approaches are very
appropriate for rough data input (for example, ob-
tained by scanner). In our case, however, we exploit
the fact that the data are almost constantly regular
and can be easily traversed by executing a simple cut-
and-find algorithm.

Our method is based on a mesh traversal consisting
of three steps described in the following subsections.

4.1. Ring detection
Rings are identified in the mesh as coplanar loops of
six vertices or more, equidistant to their center. See
Figure 4(a). By traversing mesh topology we identify
them in sequence.

4.2. Tube segmentation and
classification

Rings are grouped into primitives (see Figure 4(c))
according to their radii and normal vector:

• cylinders: correspond to a pair of rings with the
same normal and radius;

6 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

(b)

(a) (c)

Figure 4 (a) Identification of coplanar loops (rings) by
traversing the mesh. (b) We estimate the prop-
erties of each ring: center C , radius r and nor-
mal vector. (c) Segmentation and classifica-
tion are done by evaluating consecutive rings.
Reconstruction of the higher-order primitives
is obtained by evaluating ring properties.

• cone sections: correspond to a pair of rings with
the same normal and different radii;

• elbows: correspond to a set of rings with the same
radius, and with co-normals radiating from the
same point (see yellow lines in Figure 4(c)). For
a consecutive pair of rings, R1 and R2, we first
verify if their centers and their normals are copla-
nar; if this is not the case, it is not an elbow.
Then, we find the radiation point (see red points
in the same figure) as the intersection point be-
tween three planes: the plane just tested, the plane
containing R1 and the plane containing R2. This
way, the co-normal of a ring is the vector linking
the radiation point and the center. (Note that we
accept torus slices with up to 180 degrees, other-
wise they will be cut into two.)

4.3. Primitive reconstruction
Once the set of rings corresponding to each primitive
is determined, it is straightforward to find the param-
eters of the primitive from the loop centers and radii.
The centers of the extreme sections (P1 and P2) of
each primitive are simply the centers of the first and
last corresponding rings. The radii are also deter-
mined from the loops. For elbows, the center C is
the intersection of the co-normals (shown in yellow
in Figure 4(c)). Each primitive is then completely
determined by a small set of parameters:

• cylinder: P1, P2, r
• cone: P1, P2, r1, r2

Figure 5 Top: P40 Oil-Platform model used on tests in
Section 5.1. Bottom: PowerPlant model used
on tests in Sections 5.2 and 5.3.

• elbow: P1, P2, C, r

After our reverse-engineering algorithm is applied to
the database, the result is a set of higher-order primi-
tives (cylinders, cones, elbows) and a set of polygons
for the other objects.

5. RESULTS AND APPLICATIONS

We have used two data sets in our tests: PowerPlant
(PP), with 13 million triangles, and Oil Platform P40
from Petrobras, with 27 million triangles (see Figure
5). We have tested both numerical and topological
approaches. The first one has no cutting algorithm,
so, in its case, we have restricted the tests to some
examples where most of primitives were already sep-
arated (Sections 5.1 and 5.2).

The times were taken using an AMD Athlon(TM) XP
3800+ 2.41GHz with 2GB of memory.

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS 7

Figure 6 Part of an oil platform model made of 446 dif-
ferent meshes (top). There are several tes-
sellated cylinders around the model sample
(middle). Our numerical algorithm has recov-
ered the higher-order information about the
cylinders, so we can obtain their original para-
metric information (bottom).

5.1. Numerical approach for Helicopter
Landing on P40 Oil-Platform

In the example shown in Figure 6, there are 446 sep-
arated meshes. Some of them define the interior of
the sample model, which contains symbols (“P 40”
and “H”) and other geometric forms; and most of the
meshes around the model are the tessellated cylinders
we are interested in.

With the numerical approach for reverse engineering
described in Section 3 we have successfully recov-
ered the 436 cylinders in this model. The execution
time was 6.11 seconds for the entire recovery pro-
cess, which includes fitting, classification and recon-
struction.

5.2. Numerical and Topological
approaches for Sections 17 and 18
on PowerPlant

In Section 17 almost all the cylinders are disjointed
meshes in the original data. They appear in the model

Figure 7 PowerPlant piece of data (Section 17, Part
b, g1). 118 cylinders are found (bottom)
from the original data (top). In this piece,
there are mainly structural cylinders instead of
pipes. As a consequence, they are already seg-
mented.

more as structural objects than as pipes (see Figure
7). This is an important issue because our numerical
algorithm does not segment the model.

Table 1 shows the results. Compared with the topo-
logical method, the numerical approach misses some
cylinders (there are 901 found with the topological
method against 871 with the numerical approach).
They are probably some not-segmented meshes that
are undetectable by our numerical approach.

Section 18 of PowerPlant is exclusively composed
by cylinders and tori. These data were completely
recovered by the topological reverse engineering.
However, the numerical approach faced two prob-
lems: there is no torus detection and the not-
segmented cylinders could not be found. Another
significant difference between both methods is effi-
ciency. While the numerical method executed the re-
verse engineering in almost two minutes, the topo-
logical one took less than two seconds.

8 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

Data set PP – Section 17 PP – Section 18
(triangles ∆) (251,184) (167,012)

method numer. topo. numer. topo.

cylinders found 871 901 2214 2674
tori found 0 0 0 858
recovery time 9.53s 2.84s 110.62s 1.43s
unrecognized ∆ 236,864 203,958 129,540 0
effectiveness 5.7% 18.8% 22.43% 100%

Table 1 Numerical and topological reverse-engineering
approaches for Sections 17 and 18 of the Pow-
erPlant. The topological approach has better
performance and effectiveness.

5.3. Topological approach for the entire
PowerPlant

We have applied the topological algorithm, based on
ring traversal, to the PowerPlant data. The data are
distributed in 21 sections and Section 1 is the largest,
containing about 3.5 million triangles corresponding
to 30% of the model.

We have tested the reverse-engineering method over
the entire PowerPlant. Table 2 shows the numbers for
each data section. For each one we have measured:

Original Data: the number of triangles and the size
of a ply file that records the data.

Reverse Engineering: the execution time for the
topological reverse-engineering method.

Unrecovered Data: the same kind of information as
in Original Data. The unrecovered data are mainly
box walls and floors and very few primitives not
found (see effectiveness below).

Recovered Primitives: the number of the three ba-
sic primitives (cylinder, cone and torus) and the
memory space computed as: 4 ∗ (7 ∗ cylinders + 8 ∗
(cones) + 10 ∗ (tori)).

There are some specific but relevant information
about the sections:
• Sections 1, 2, 15, 18, 19 and 20 were exclusively

composed by tubes. As a consequence, they were
100% recovered. See Table 2.

• The number of triangles in Section 12 does not
match the number available in the UNC home-
page from where the PowerPlant was down-
loaded. There might be an error either in our load-
ing algorithm or in their homepage.

Figure 8 PowerPlant Section 1, with about 60,000
primitives recovered from 3,500,000 triangles.

• The external part of the chimney in Section 16
was found after a manual cutting of its base. This
is the only case of assisted recovering on Power-
Plant.

Effectiveness

From the sum row (Σ) in Table 2 we can observe that
90% of the PowerPlant was recovered as cylinders,

cones and tori
((unrecovered triangles)

(original triangles) ≈ 10%
)

.

Most of the unrecovered data were objects that can-
not be directly described by implicit surfaces (for ex-
ample, boxes and walls). However, our algorithm
missed some surfaces that should be described im-
plicitly. Figure 9 shows the most common cases. Un-
fortunately, in our implementation, if a tube contains
one of the objects in Figure 9 the whole pipe is not
recovered.

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS 9

Section Original Data Rev. Eng. Unrecovered Data Recovered Primitives Effect.
triangles mem. time triangles mem. cylinders cones tori mem. recovered

(KB) (sec.) (KB) (KB) rate (%)

1 3429528 119213 24,03 0 0 31372 20 26546 1895 100%
2 161568 5955 1,23 0 0 1795 0 1205 96 100%
3 382062 14406 3,75 41836 1125 4061 629 2038 210 89%
4 55178 2675 0,70 22136 1076 771 12 154 27 60%
5 222728 9196 2,09 28629 1691 2589 593 1021 129 87%
6 55300 2410 0,78 18945 790 804 96 80 28 66%
7 98592 5519 1,26 53075 3485 1391 0 2 38 46%
8 152586 6013 1,40 9270 525 1664 30 972 84 94%
9 121862 6253 2,40 35901 1434 2773 0 6 76 71%

10 197120 11472 3,09 161401 9862 636 20 0 18 18%
11 133398 8692 1,95 114352 7185 674 0 0 18 14%
12 360872 13755 3,93 38067 1392 3678 493 2034 195 89%
13 114334 4360 1,15 8616 239 1312 185 659 67 92%
14 248432 15748 3,73 212635 13127 507 2 18 14 14%
15 1141240 34777 9,00 1632 90 13656 0 8183 693 100%
16 365970 22739 5,34 291864 18271 970 2 68 29 20%
17 251184 15638 2,84 203958 12451 901 0 0 24 19%
18 167012 6465 1,43 0 0 2674 0 858 106 100%
19 2650680 89245 18,48 0 0 22433 6 19607 1379 100%
20 2415976 86556 17,51 0 0 22940 24 18908 1366 100%
21 17356 986 0,26 8702 58 300 0 0 8 50%

Σ 12742978 482073 106,35 1251019 72801 117901 2112 82359 6507 90.18%

Table 2 Reverse engineering over the power plant sections.

Figure 9 Some of the missing data in our recovery al-
gorithm: half-sphere; very thin torus section;
sheared cylinder section; torus section with a
singular vertex (this happens when the torus
radii have the same value, it is called horn
torus); and sheared cone.

Efficiency

In our tests, before executing reverse engineering, the
data was already in memory, thus we did not consider

the time of loading and topology creation in the col-
umn Rev. Eng. of Table 2. We have measured the ex-
ecution time including deleting the recovered meshes
from original data. By deleting them, we are able to
correctly save the unrecovered data after execution.

In Figure 10 we plot the relation (triangles×time)
of all 21 sections (the deleting column in Table 2).
As expected, the recovery algorithm’s performance
is linearly proportional to the number of triangles.

We were able to process more than 100 thousand tri-
angles per second:

12, 742, 9784
106.35s

≈ 120, 0004/s.

Memory Reduction

The meshes that were completely converted to prim-
itives represent 11,491,959 triangles in 409,272 KB.
After recovering them to higher-order primitives they

10 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

tim
e

(i
n

se
co

nd
s)

0

5

10

15

20

25

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

triangles

Figure 10 Performance for recovering the 21 sections
of the PowerPlant. The algorithm’s perfor-
mance is linearly proportional to the number
of triangles.

were reduced to 6,507 KB. The reduction factor is
98.41%.

1− 409, 272
6, 507

= 0.9841

However, if we consider that 1,251,019 triangles
were not converted and they still use 72,801 KB
of memory, the reduction factor becomes 83.54%,
which still is an expressive rate.

1− 482, 073
79, 308

= 0.8354

6. CONCLUSION AND FUTURE WORK
The insertion of equations that fit the normals im-
proved the numerical recovery process of sparse ver-
tices. However, the results shown here were success-
ful exclusively over disjoint sets of meshes. On the
other hand, we have observed that regularity is a pos-
itive characteristic in this kind of input data. For this
reason, we have developed the topological approach,
which is well adapted to the specificity of such data.

The topological recovery procedure converts 90% of
the original data of industrial models. The memory
space of recovered data is reduced to at most 2%
(98% of reduction). This is a consequence of com-
pact implicit representation used for recovered prim-
itives. If we consider the remaining 10% of unre-
covered triangles, industrial models such as oil plat-
forms and power plants can be stored in about 15%
of their original data size. This expressive reduction
in storage can contribute to rendering performance.
Transferring information from CPU memory to GPU

memory and then to vertex processing are expensive
operations. Through special GPU primitives (see
(Toledo & Levy, 2004)), these steps are alleviated,
increasing the frame rate.

The tests done with the topological method have
demonstrated its efficiency. The positive points of
this method are simplicity and execution speed. The
ring-traversal implementation is simple and robust
for regular CAD meshes. Only a few minutes were
necessary to entirely recover the high-order primi-
tives in the PowerPlant data (13 million triangles),
considering the model already loaded in memory.

A very important point in recovering CAD data is
how to separate the higher-order recovered primitives
from the rest. As shown in our results, for models
with mixed data (pipes and boxes, for example), we
were able to split both types of primitives (implicit
surfaces and triangle meshes) without losing infor-
mation.

However, there are some limitations to the topo-
logical approach. This method only extracts three
types of higher-order primitives: cylinders, trun-
cated cones and tori. Other implicit surfaces, such
as spheres, although not as numerous as tubes and
pipes, may also appear in industrial environments.
We propose the use of the numerical approach, ex-
plained in Section 3, right after running the topologi-
cal algorithm. This procedure enables the recovery
of quadric surfaces that are already segmented in-
side the model and that were not found in topological
step.

Another problem related to CAD mesh recovery is
ambiguity. Without any additional information, we
cannot ensure that a faceted piece is an approxima-
tion of a round one or an exact representation of the
original piece. For example, in Figure 11, the octag-
onal piece on the left should not be represented by a
perfect cylinder, but by an octagonal mesh. This is
an intrinsic issue when recovering CAD models. In
a perfect scenario, round implicit surfaces, such as
cylinders, should not have the tessellated represen-
tation as their unique information, but unfortunately
this is often the case.

We also suggest for future work extending our topo-
logical technique to other possible implicit primi-
tives. For example, in our testes we have missed
some sheared cylinders and sheared cones. CSG
primitives (Constructive Solid Geometry) are com-
plex primitives, formed by Boolean combination of
simple ones, that can also be the subject of study.

REVERSE ENGINEERING FOR INDUSTRIAL-ENVIRONMENT CAD MODELS 11

- - �
��@
@@

Figure 11 An octagonal piece (left) should be repre-
sented by an octagonal mesh (center). Ide-
ally, the recovery algorithm should not sub-
stitute the tessellated model for a perfect
cylinder (right), but it cannot identify it
without extra input information. This is an
intrinsic issue when recovering CAD data.

Finally, another open issue is the application of the
topological recovery strategy to data sets different
from the industrial-environment domain.

ACKNOWLEDGEMENTS
To Petrobras, for allowing the publication of this pa-
per and for supporting part of the present work. To
Paulo Ivson, for helping in tuning the algorithm for
Petrobras platform models.

REFERENCES
do Carmo, M. (1976). Differential Geometry of Curves

and Surfaces. Prentice Hall.

Fitzgibbon, A. W., Eggert, D. W., & Fisher, R. B. (1997).
High-level CAD model acquisition from range im-
ages. Computer-aided Design, 29(4), pp. 321–330.

Lukacs, G., Marshall, A., & Martin, R. R. (1997). Geo-
metric least-squares fitting of spheres, cylinders, cones
and tori.

Nourse, B., Hakala, D. G., Hillyard, R., & Malraison, P.
(1980). Natural quadrics in mechanical design. Auto-
fact West, 1, pp. 363–378.

Ohtake, Y., Belyaev, A., & Alexa, M. (2005). Sparse
low-degree implicit surfaces with applications to high
quality rendering, feature extraction, and smoothing.
In SGP ’05: Proceedings of the 2005 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry pro-
cessing: Eurographics Association.

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel,
H.-P. (2003). Multi-level partition of unity implicits.
ACM Trans. Graph., 22(3), pp. 463–470.

Parvin, B. & Medioni, G. (1986). Segmentation of
range images into planar surfaces by split and merge.
In CVPR ’86: In Proc. of International Conference
on Computer Vision and Pattern Recognition (CVPR
’86): pp. 415–417.

Petitjean, S. (2002). A survey of methods for recover-
ing quadrics in triangle meshes. ACM Comput. Surv.,
34(2), pp. 211–262.

Requicha, A. A. G. & Voelcker, H. B. (1982). Solid mod-
eling: a historical summary and contemporary assess-
ment. IEEE Computer Graphics and Applications, 2,
pp. 9–22.

Thompson, W., Owen, J., de St. Germain, H., Stark, S.,
& Henderson, T. (1999). Feature-based reverse engi-
neering of mechanical parts. pp.5̃7.

Toledo, R. & Levy, B. (2004). Extending the graphic
pipeline with new gpu-accelerated primitives. In 24th
International gOcad Meeting, Nancy, France. Also
presented in Visgraf Seminar 2004, IMPA, Rio de
Janeiro, Brazil.

Werghi, N., Fisher, R., Ashbrook, A., & Robertson, C.
(1999). Faithful recovering of quadric surfaces from
3d range data.

Wu, J. & Kobbelt, L. (2005). Structure recovery via hybrid
variational surface approximation. Computer Graph-
ics Forum (Proceedings of Eurographics ’04), (3), pp.
277–284.

Y.Y., C., A.Y.C., N., & H.T., L. (1996). Geometric feature
detection for reverse engineering using range imaging.
Journal of Visual Communication and Image Repre-
sentation, 7, pp. 205–216.

12 Rodrigo de Toledo, Bruno Lévy, Jean-Claude Paul

