
Real-Time Marker Level Set on GPU

Xing Mei, Philippe Decaudin, Bao-Gang Hu, Xiaopeng Zhang

To cite this version:

Xing Mei, Philippe Decaudin, Bao-Gang Hu, Xiaopeng Zhang. Real-Time Marker Level Set on
GPU. International Conference on Cyberworlds, Sep 2008, Hangzhou, China. IEEE, pp.209-
216, 2008, <10.1109/CW.2008.18>. <inria-00336647>

HAL Id: inria-00336647

https://hal.inria.fr/inria-00336647

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00336647


Real-Time Marker Level Set on GPU

Xing Mei1, Philippe Decaudin2, Baogang Hu1, Xiaopeng Zhang1

1LIAMA/NLPR, CASIA, Beijing, China
2Evasion, INRIA, Grenoble, France

xmei@(NOSPAM)nlpr.ia.ac.cn, philippe.decaudin@(NOSPAM)antisphere.com, hubg@(NOSPAM)nlpr.ia.ac.cn, xpzhang@(NOSPAM)nlpr.ia.ac.cn

Abstract

Level set methods have been extensively used to track the
dynamical interfaces between different materials for physi-
cally based simulation, geometry modeling, oceanic model-
ing and other scientific and engineering applications. Due
to the inherent Eulerian characteristics, interface evolution
based on level set usually suffers from numerical diffusion,
sharp feature missing and mass loss. Although some effec-
tive methods such as Particle Level Set (PLS) and Marker
Level Set (MLS) have been proposed to tackle these dif-
ficulties, the complicated correction process and the high
computational cost pose severe limitations for real-time ap-
plications. In this paper we provide an efficient parallel
implementation of the Marker Level Set method on latest
graphics hardware. Each step of the MLS method is fully
mapped on GPU with an innovative combination of differ-
ent computation techniques. Relying on GPU’s parallelism
and flexible programmability, the method provides real-time
performance for large size 2D examples and moderate 3D
examples, which is significantly faster than previous CPU-
based methods.

1. Introduction

Dynamic interface evolution between different materi-
als is an important research topic in computational physics,
computer vision, computer graphics and many other fields.
The level set method, first introduced by Osher and
Sethian [24], is a useful numerical technique for simulating
such processes. The basic idea is to represent the interface
as a zero level set of a discrete signed distance function. The
interface motion is then determined by the level set advec-
tion with a problem-related velocity field [23, 30]. The con-
tinuous level set field captures large interface deformation
and topology change automatically, and provides normal
and curvature information easily without explicit surface re-
construction. These advantages make the level set method
very popular in numerous applications such as fluid anima-

tion [8, 9], geometry processing [22], virtual surgery [14]
and flow visualization [6, 35].

Pure level set method suffers from numerical diffusion
because all the computation is performed on finite Eule-
rian grids. Sharp geometry features are gradually smoothed
and distorted during the evolution, and the interface keeps
shrinking due to the large mass loss. This is a severe limita-
tion for level-set based applications such as fluid simulation
and flow visualization. Several techniques have been pro-
posed to address the problem, such as the Coupled Level
Set and Volume of Fluid method (CLSVOF) [33], the Par-
ticle Level Set method (PLS) [7, 8], the semi-Lagrangian
contouring method [1] and the recent Marker Level Set
method (MLS) [19, 20]. However, these methods are com-
putationally expensive for two reasons: First, the level set
itself is embedded into a grid with higher dimensions, and
many iterations over the grid at each time step can be costly.
Second, significant computation cost has to be spent on the
level set correction process. Although adaptive representa-
tions such as the local level set [26], the octree decompo-
sition [18] and the Hierarchical RLE level set [15] help to
alleviate the computation load, the performance is still lim-
ited for real-time applications.

In this paper, we present a fast and accurate level set
method which runs totally on GPU. The method is based
on the basic Marker Level Set framework [19, 20]: a set
of surface particles move along with the interface, and their
location information is used to correct the level set field.
MLS has several distinguished advantages over other meth-
ods such as CLSVOF and PLS, which will be detailed in the
next section. We propose some modifications to the orig-
inal MLS method so that the data and each computation
step can be efficiently mapped on GPU for hardware ac-
celeration. The modifications include a level set correction
process based on particle coupling, a robust re-initialization
step and a simple particle adjustment strategy. The level set
data, the surface particles are packed into GPU resources
and get updated in parallel by algorithms running on the
GPU. An efficient level set correction scheme is designed
to couple the marker particles into the Eulerian grid. Ex-



perimental results demonstrate that the GPU-based MLS
method is both accurate and efficient. The numerical diffu-
sion is successfully removed from the level set field. Large
size 2D examples and moderate 3D examples can be han-
dled interactively within the system, which makes GPU-
based MLS more attractive for real-time applications than
previous CPU-based methods.

2. Related Work

As mentioned in the introduction, several effective tech-
niques have been introduced to solve the numerical diffu-
sion problem. CLSVOF [33] suggests coupling the level
set method with the volume of fluid method for better mass
conservation. Since both methods are Eulerian, sharp inter-
face corners still get smoothed and distorted on relatively
coarse grids. More methods try to incorporate some La-
grangian information into the level set framework. The
semi-Lagrangian contouring method [1] proposes to implic-
itly track the surface mesh with a distance field. The new
distance field is computed from the surface mesh extracted
at the previous time step, which is more accurate than pure
Eulerian advection. However, the distance computation and
the mesh extraction at each step bring significant computa-
tional cost. And the contouring method is difficult to fit into
the GPU computation framework.

Both PLS [7, 8, 14] and MLS [19, 20] share the same
idea: a set of Lagrangian particles are maintained to cor-
rect the distorted level set field. In PLS, the particles are
placed in a narrow band around the interface. Each parti-
cle is treated as a massless sphere with position and radius
information for the correction of the level set. A compli-
cated particle reseeding strategy is included to deal with the
particles that escape from the interface. While in MLS, the
particles are placed exactly on the interface. The correction
process requires only the position information of the par-
ticles. Therefore MLS maintains much less particles and
employs a simpler correction process than PLS. The accu-
racy of MLS is also comparable with PLS. These advan-
tages make MLS a better choice for real-time applications.

With rapid development in hardware, more and more re-
searchers are turning to highly parallel GPU for computa-
tion acceleration (GPGPU) [25]. The level set method is a
good candidate for GPU computation, since it is defined on
a regular Eulerian grid. Segmentation based on 2D and 3D
level set has been successfully ported to GPU in a series of
papers [17, 27, 31]. In these applications, the level set is
driven by the local curvature. Numerical diffusion is not a
serious issue. However, if the level set is used to visualize a
turbulent flow field or to track the free surface of the water,
numerical diffusion will lead to visual artifacts and degrade
the results of the simulation. Less work has been done on
developing an accurate level set method on GPU. In 2007,

Cuntz et al. propose the first parallel implementation of the
particle level set method on latest graphics hardware [6].
The implementation strictly follows the PLS framework,
which means a lot of particles are maintained and period-
ically reseeded. A hierarchical distance computation algo-
rithm [5] is included for level set re-initialization and par-
ticle reseeding, which turns out to be the most complicated
part of the method. As discussed above, our method is based
on the MLS framework due to its several advantages over
PLS, which yields a simpler implementation with compara-
ble accuracy and efficiency.

Recently the CUDA toolkit, a general GPU computation
library provided by NVIDIA, has become popular in scien-
tific computing applications. The library provides a conve-
nient development environment for researchers who are not
familiar with the GPU architecture, but it lacks the direct
control on the graphics pipeline. Since the computation re-
sults usually need to be visualized immediately for graphics
applications, traditional GPGPU framework [3, 13, 25] is
still a better choice.

3. Marker Level Set Method

Before going into the MLS method, we first describe the
necessary data and notations:

- the scalar level set field φ, which defines the interface
as its zero set

- the surface particle set P , which defines a set of parti-
cles lying on the interface

- the external velocity field �V , which is provided by the
specific application

φ and �V should be defined everywhere in the computation
domain Ω. Then the level set evolution problem can be
stated as: Let φt, Pt, �Vt be the data at time t, Δt be the
time interval, how to get the updated level set field φt+Δt

and the updated particle set Pt+Δt at time t + Δt.
At each time step, the Marker Level Set method performs

the following five steps:

1. Level set advection

2. Surface particle advection

3. Level set correction with the surface particles

4. Level set re-initialization

5. Particle addition and deletion

Step 1, 3, 4 update the level set field, while step 2 and 5
deal with the particles. We briefly discuss the proper al-
gorithms and the possible problems for each step in turn,



which serves a starting point for the GPU implementation.
We refers the readers to the original MLS papers for math-
ematical details, proper parameter settings and surface par-
ticle set initialization [19, 20].

In step 1, the level set field φ is advected by the velocity
field �V . The advection equation ∂φ

∂t + �V · ∇φ = 0 can
be solved with first order semi-Lagrangian method [32] or
second order BFECC algorithm [29]. Since the accuracy of
the method is mainly determined by the surface particles,
semi-Lagrangian advection would be enough for step 1.

In step 2, the surface particles P are advected with the
same velocity field �V . The position of each particle is up-
dated with the second-order Runge-Kutta algorithm for ac-
curate results.

The level set correction process (step 3) is the most im-
portant part of the MLS method: the particles are assumed
to be still on the surface after the advection, so their po-
sition information is used to correct the distorted level set
field. For a cell (i, j, k) ∈ Ω, the correction equation for
φ(i, j, k) is given as follows:

φnew(i, j, k) = φ(i, j, k)−
∑

p∈Ni,j,k

w(p)φ(p)
/∑

p∈Ni,j,k

w(p) (1)

where Ni,j,k is a small neighborhood of cell (i, j, k), p is a
surface particle in Ni,j,k, φ(p) is the interpolated level set
value at the particle position, and w(p) is a weight value
related to the distance between the particle p and the cell
(i, j, k). From eqn. (1) we can see that to correct the level
set value φ(i, j, k), all the surface particles in Ni,j,k must
be collected. However, despite some recent progress [11,
34], performing an efficient neighboring search on GPU is
still a challenging task. Therefore we need to define the
correction process in a different way: for each particle p,
its contribution to all the neighboring cells is computed and
stored respectively at these cells. The contribution of all
the particles are accumulated for the final correction of the
level set field. This idea leads to an efficient GPU-friendly
coupling process, which will be detailed in Section 4.

After the advection, the level set ceases to be a signed
distance function. The uneven local gradient will distort
the interface, which brings considerable numerical errors.
Therefore in step 4, a re-initialization process is performed
to guarantee the gradient smoothness around the interface.
The re-initialization can be realized with the fast marching
method [30] or with the PDE-based method [26]. As stated
in [6], the fast marching method can not be parallelized on
GPU since it is basically a sequential method. Therefore we
employ the PDE-based re-initialization method [26]. One
known disadvantage of the PDE-based methods is that the
interface tends to move slightly during the re-initialization
due to the discretization error. The sub-cell fix proposed
by Russo and Smereka [28] helps to alleviate the prob-
lem, but the computation cost increases since special care

mush be taken for the cells near the interface. We provide
a simple solution to get around the problem: we turn off
the re-initialization process and keep the level set value un-
changed for those cells near the interface. Therefore the
gradient smoothness around the interface is achieved with-
out destroying the accurate results obtained in step 3. The
similar idea has been adopted for BFECC level set advec-
tion [29].

In the final step, the surface particle set P is adjusted
with the new level set field. The particles escaping from
the surface are deleted from P . For those regions where the
particle density is too sparse, some new particles are gen-
erated and added to P . Removing and creating particles
are difficult on GPU. Although some data compaction and
expansion schemes such as HistoPyramids [37] have been
proposed to deal with the data arrays with changing length
on GPU, we still maintain a particle set with fixed length for
better computation efficiency. If a particle is drifting away
from the interface, we first try to move the particle towards
the interface in the normal direction. This can be done effi-
ciently with the accurate local level set field. If the adjusted
particle is still far away from the interface, we mark this par-
ticle as ’escaped’ and do not use it for level set correction.
To avoid the regions with sparse particle density, enough
surface particles need to be generated before running the
simulation. In practice we provide a user-specified param-
eter to control the number of the particles per unit surface
area. The proper parameter is achieved by running the sim-
ulation multiple times.

If we use φ∗ and P ∗ to represent the intermediate up-
dated data, the data flow in five steps from time t to time
t + Δt can be summarized as follows:

1. φ∗ ← LevelSetAdvection(φt, �Vt);

2. P ∗ ← ParticleAdvection(Pt, �Vt);

3. φ∗∗ ← LevelSetCorrection(φ∗, P ∗);

4. φt+Δt ← LevelSetReInitialization(φ∗∗);

5. Pt+Δt ← ParticleAdjustment(P ∗, φt+Δt)

4. Parallel Implementation on GPU

4.1. Overview

The basic GPU computation framework relies on the two
important features of the graphics hardware: the render-to-
texture extension and shader programming ability. The data
is packed into textures and sent to the GPU memory. Then a
quad is drawn parallel to the image plane. For each pixel in
the quad, a fragment is generated by the hardware rasterizer
and processed by a customized fragment shader. The frag-
ment shader takes care of the computation for each pixel,



which is the kernel of the process. Finally, the output data
is written into a new texture, which will be used for the com-
putation in the next pass. At first the framework only works
well for 2D textures, which means 3D data must be re-
organized and stored in a tiled 2D texture for parallel com-
putation. Recently this limitation has been removed from
the Shader Model 4.0 GPUs by the new render-to-volume
feature. For a detailed introduction to GPU computation,
see [3, 13, 25].

We first pack the necessary data into several textures:
level set φ is a scalar field in the 3D domain Ω, so we rep-
resent it with a single channel 3D texture Tφ. Another 3D
texture Tc with the same size as Tφ is preserved for level set
correction. The particle set P is actually a 1D array which
stores the position information for all the surface particles.
P is re-organized and packed into a 2D texture TP with four
channels, since 2D textures are better candidates than 1D
textures for parallel computation. Besides Tφ, Tc and TP ,
the 3D velocity field texture T�V is provided for the advec-
tion of the level set and the particles. All the textures are in
16-bit floating point format, which reduces the bandwidth
requirements and still preserves the computation accuracy.

Figure 1. An overview of the MLS implemen-
tation on GPU

Following the data flow described in Section 3, the MLS
method is implemented as a multi-pass computation process
on GPU, as shown in Figure 1. Each step takes in some tex-
tures from previous steps and updates them in one or sev-
eral passes. For step 1, 2 and 5, the implementation follows
the basic GPU computation framework: the textures get up-
dated in parallel with specific fragment shaders following
the governing equations. Only one pass is needed respec-
tively for these steps. The level set correction step (step 3)
is the most important part of the computation, which can
be efficiently implemented in two passes (Section 4.2). For
level set re-initialization, the PDE needs to be iterated over

the level set grid multiple times to get a narrow band with
smooth gradient around the interface. In practice, six passes
are enough for step 4. In total eleven passes are needed for
a complete computation cycle. Then the updated level set
Tφ is directly used for visualization (Section 4.3).

4.2. Level Set Correction

As discussed in Section 3, to correct the level set value in
a grid cell, all the surface particles that stay close to the cell
need to be collected. Instead of performing a neighborhood
search which is difficult to map on GPU, the level set cor-
rection step is implemented as a particle-to-grid coupling
process within two passes. In the first pass, each surface
particle adds its contribution to the neighboring grid cells
within its supporting domain. The contribution from all the
particles is accumulated in a new grid Tc. In the second
pass, Tc is used to correct the level set field Tφ. Therefore
the accuracy and the efficiency of the correction process rely
on how the particle information is coupled into the 3D grid
in the first pass.

Figure 2. The particle-to-grid coupling pro-
cess

Several methods have been proposed for the particle cou-
pling problem, which basically share the same idea: ren-
der several splats around the particle position in the grid
to scatter the particle information into the grid. The differ-
ence lies in the selection of the splat geometry: point sprites,
quads [16] and points [6]. In PLS, the particle is used to cor-
rect the level set value of its eight direct neighboring cells.
Therefore Cuntz et al. [6] suggests that rendering, for each
particle, eight individual points into two subsequent slices
for the correction step. However, this method doesn’t work
well with MLS since more neighboring cells (at least 27
) need to be corrected for each surface particle. Rendering
many points would not be efficient. Therefore we still use
quads as the proper splat geometry.



The coupling pass is illustrated in Figure 2. For each sur-
face particle, its grid position is retrieved from the particle
texture Tp in the vertex shader. The particle is sent to the
geometry shader. We first check if the particle is an ’es-
caped’ one or not. If yes, we discard the particle; if not, we
generate three 2D splat quads with the particle in the geom-
etry shader. Each quad’s size is 3×3 so that the three quads
cover the 27 neighboring cells in the grid. Then these quads
are rendered into three subsequent slices of the correction
texture Tc at a time. The particle’s contribution is computed
in the fragment shader. The blending mode of this pass is set
to ’Additive’ to collect the contribution of all the particles
in Tc.

Our implementation relies on two important features of
the Shader Model 4.0 hardware: the geometry shader and
the render-to-volume extension. The use of the geometry
shader allows us to generate the splat quads on the fly, while
previous methods tend to store the splats into a predefined
vertex buffer. For large size particle set, much less geomet-
ric primitives are sent to the vertex shader in our approach.
The use of the render-to-volume extension allows us to di-
rectly render the splat quads into correct slices of a 3D tex-
ture in one draw, without storing the volume in a tile 2D
texture like previous methods. The adoption of the two new
features leads to efficient coupling and interactive results,
as shown in Section 5.

4.3. Level Set Visualization

The updated level set field φ is stored in a 3D volume
texture.We employ a ray-casting method in [10] for fast vol-
ume visualization. Rays are cast into the texture volume,
and their intersection points with the zero level set are found
with a quick searching algorithm. The intersection points,
which represent the evolving interface, are then shaded in
the pixel shader using Phong lighting.

Our main framework can be easily adapted for 2D level
set computation. The texture resources for the level set and
the velocity field are changed into 2D formats. And the cor-
responding computation step 1, 3 and 4 now follow the 2D
GPU computation framework instead. The only difference
between 2D and 3D level set lies in the visualization part.
The zero set is a set of contour lines in the 2D space. Tra-
ditional volume rendering techniques are no longer applica-
ble. We develop a fast GPU version of the classic CONREC
contouring algorithm [2] to visualize the 2D zero set.

5. Experimental Results

In this section we test the GPU-based MLS method with
several 2D and 3D examples. These typical examples have
been extensively used in computational physics and fluid

simulation for evaluating the accuracy of the interface track-
ing methods [8, 7, 14, 19, 23]. The test platform is a Pen-
tium IV 2.40GHz PC equipped with a NVIDIA GeForce
8800 GTX graphics card. See the accompanying video at
http://xmei.info/demo/GPUMLS.avi.

Figure 3. 2D Zalesak’s disk test: (a) the orig-
inal disk (b) disk after 360◦ rotation with pure
level set (c) disk after 360◦ rotation with GPU-
based MLS. Adjacent ±4.0Δx contour lines
are given in red and green.

Figure 4. 3D Zalesak’s sphere test: (a)
180◦(middle) and 360◦(right) rotation with
level set (b) 180◦(middle) and 360◦(right) ro-
tation with GPU-based MLS

We first test the 2D Zalesak’s disk problem: the rigid-
body rotation for a slotted disk in a constant-vorticity ve-
locity field. The grid resolution is 256× 256. The advected
results for pure level set method and MLS after 360◦ rota-
tion are given in Figure 3. With the level set method, the
sharp corners of the disk get badly smoothed, and the area
of the disk shrinks because of the mass loss. Both problems
are solved with the GPU-based MLS method: the disk stays
as a rigid-body and all the sharp features are well preserved
during the rotation. The similar results for 3D Zalesak’s
sphere problem are presented in Figure 4. The 3D grid size
is 128×128×128. Again the numerical diffusion is success-
fully removed from the rigid-body rotation with GPU-based



Figure 5. 2D Vortex test: (a) interface evolution with level-set (b) interface evolution with GPU-based
MLS

MLS method.

Then we test with two difficult examples where the inter-
face would be greatly stretched and distorted by the under-
lying velocity field. The first example is a 2D vortex-in-a-
box problem. A disk in the computation domain is grad-
ually stretched and dragged around the domain center in
a vortex-based velocity field. After reaching a maximum
stretching time ts, the direction of the velocity field is re-
versed. The disk should return to its original position af-
ter another time interval ts. In this case, ts = 3. We use
a grid resolution 1024 × 1024 to show our framework is
available for large size 2D applications. The interface evo-
lution results for level set and GPU-based MLS are given
in Figure 5. In both cases, the interface performs well be-
fore the velocity field is reversed. This is partly related to
the fact that we are using a high-resolution grid. However,
with pure level set method, the interface gets much dis-
torted during the reverse process, while GPU-based MLS
successfully recovers the disk at the original location when
t = 6. The second example is a 3D deformation test which
is first proposed by Enright et al. [7]. The grid resolution
is 128 × 128 × 128. The velocity field is defined by com-
bining two deformation processes in two orthogonal direc-
tions. Like the 2D vortex test, the velocity field is reversed
at time point ts. We set ts = 1. A small sphere is put into
one corner of the computation domain to test the algorithm.
The deformation results are presented in Figure 6. At the
reverse time point t = 1, the interface gets very thin and
greatly stretched. For level set method, the interface breaks

Test
Grid
Size

Num.
Particles

Mass
Loss

FPS

2D Disk 2562 2232 0.1% 430
2D Vortex 10282 9560 1.5% 36
3D Sphere 1283 49272 0.9% 28

3D Deformation 1283 97708 1.8% 24

Table 1. Performance results for the four
tests. For each test, the grid size, the number
of the surface particles, the total mass loss
and the framerates are recorded.

up due to the large mass loss. The rest of the interface grad-
ually disappears during the deformation. For GPU-based
MLS, the thin interface at t = 1 is well kept due to the
coupling of the surface particles. The sphere returns to its
original position without obvious mass loss.

The performance results for the four tests are presented
in Table 1. For each test, we record the number of the sur-
face particles used in the simulation, the mass loss and the
framerates. For 2D Disk and 3D sphere tests, the mass loss
can be limited to a very small value with relatively few par-
ticles. However, for 2D Vortex and 3D deformation tests
where the interface gets much distorted, more particles are
needed for good mass conservation. GPU-based MLS runs
at interactive framerates for all the four tests. For the sphere
test, the performance is 28 fps, which is comparable with



Figure 6. 3D Enright deformation test: (a) interface evolution with level-set (b) interface evolution
with GPU-based MLS

Test
Level set

Advection
Particle

Advection
Level set

Correction
Level set

Re-initialization
Particle

Adjustment
Rendering, etc

2D Disk 3% 2% 6% 11% 2% 76%
2D Vortex 2% 1% 4% 19% 4% 70%
3D Sphere 2% 2% 26% 58% 2% 10%

3D Deformation 1% 1% 42% 44% 3% 9%

Table 2. The running time percentage for each step of GPU-based MLS in the four tests

the results reported in [6]: 14.74 fps on a GeForce 8800
GTS graphics chip. The time percentage for each step of
MLS in the four tests is presented in Table 2. For 2D cases
the visualization part takes most of the time, while for 3D
cases, the computation part is more demanding. The iter-
ative re-initialization process is the most time-consuming
step in the computation framework, while the running time
for the level correction step is closely related to the num-
ber of the surface particles used in the simulation. Finally
we provide a brief performance comparison with an open
source CPU-based PLS library [21]: for the 2D 256 × 256
disk example, the PLS library runs at 36 fps, while for the
3D 128× 128 × 128 sphere example, the PLS library runs
at 0.91 fps. Our method benefits a lot from the GPU accel-
eration.

6. Conclusions and Future Work

We have presented a fast and accurate level set method
for real-time applications. Relying on a modified MLS
framework, our method produces accurate interface evo-
lution results without numerical diffusion. Each step of

the modified MLS is well designed to be fully mapped
to GPU with specific computation techniques. Our GPU-
based MLS can handle large size 2D grids and moderate
3D grids efficiently. The interface evolution process can be
viewed at interactive framerates. These features are usually
difficult for previous CPU-based methods.

As a future work, we would like to integrate our method
into an existing GPU fluid solver for free surface water sim-
ulation. Although a lot of work has been done on GPU-
based fluid simulation [4, 12, 36], current simulators still
suffer from mass loss, inefficient poisson solvers, pressure
oscillation with non-staggered grids and other problems.
We expect GPU-based MLS would help improve the sim-
ulation results.

Acknowledgements

Xing Mei is supported by LIAMA NSFC 60073007 and
by a grant from the European Community under the Marie-
Curie project VISITOR MEST-CT-2004-8270. Philippe
Decaudin is supported by a grant from the European Com-
munity under the Marie-Curie project REVPE MOIF-CT-



2006-22230.

References

[1] A. W. Bargteil, T. G. Goktekin, J. F. O’brien, and J. A.
Strain. A semi-lagrangian contouring method for fluid sim-
ulation. ACM Trans. Graph., 25(1):19–38, 2006.

[2] P. Bourke. CONREC: A contouring subroutine. Byte: The
Small Systems Journal, 12(6):143–150, 1987.

[3] I. Buck. Mapping computational concepts to gpus. In GPU
Gems 2, chapter 32, pages 509–519. Addison-Wesley, 2005.

[4] K. Crane, I. Llamas, and S. Tariq. Real-time simulation and
rendering of 3d fluids. In GPU Gems 3, chapter 30, pages
633–673. Addison-Wesley, 2007.

[5] N. Cuntz and A. Kolb. Fast hierarchical 3d distance trans-
forms on the gpu. In EG’07 Short Papers, pages 93–96,
2007.

[6] N. Cuntz, R. Strzodka, and A. Kolb. Real-time particle level
sets with applications to flow visualization. Technical report,
Uinversity Siegen, 2007.

[7] D. Enright, F. Losasso, and R. Fedkiw. A fast and accurate
semi-lagrangian particle level set method. Computer and
Structures, 83(6-7):479–490, 2005.

[8] D. Enright, S. Marschner, and R. Fedkiw. Animation and
rendering of complex water surfaces. ACM Trans. Graph.,
21(3):736–744, 2002.

[9] N. Foster and R. Fedkiw. Practical animation of liquids. In
Proc. SIGGRAPH ’01, pages 23–30, 2001.

[10] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and
M. Gross. Real-time ray-casting and advanced shading of
discrete isosurfaces. Computer Graphics Forum, 24(3):303–
312, 2005.

[11] T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed par-
ticle hydrodynamics on gpus. In Proc. CGI ’07, 2007.

[12] M. Harris. Fast fluid dynamics simulation on the gpu. In
GPU Gems, chapter 38, pages 637–666. Addison-Wesley,
2004.

[13] M. Harris. Mapping computational concepts to gpus. In
GPU Gems 2, chapter 31, pages 493–508. Addison-Wesley,
2005.

[14] S. E. Hieber and P. Koumoutsakos. A lagrangian parti-
cle level set method. Journal of Computational Physics,
210(1):342–367, 2005.

[15] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and
K. Museth. Hierarchical rle level set: A compact and versa-
tile deformable surface representation. ACM Trans. Graph.,
25(1):151–175, 2006.

[16] A. Kolb and N. Cuntz. Dynamic particle coupling for gpu-
based fluid simulation. In Proc. 18th Symposium on Simula-
tion Technique, pages 722–727, 2005.

[17] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker.
Interactive deformation and visualization of level set sur-
faces using graphics hardware. In Proc. VIS ’03, page 11,
2003.

[18] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and
smoke with an octree data structure. ACM Trans. Graph.,
23(3):457–462, 2004.

[19] V. Mihalef, D. Metaxas, and M. Sussman. Textured liquids
based on the marker level set. Computer Graphics Forum,
26(3):457–466, 2007.

[20] V. Mihalef, M. Sussman, and D. Metaxas. The marker level
set method: a new approach for computing accurate inter-
facial dynamics. submitted to Journal of Computational
Physics, 2007.

[21] E. Mokhberi and P. Faloutsos. A particle level set library.
Technical report, University of California, Los Angeles,
2006.

[22] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr.
Level set surface editing operators. ACM Trans. Graph.,
21(3):330–338, 2002.

[23] S. Osher and R. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces. Springer, 2003.

[24] S. Osher and J. Sethian. Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi for-
mulations. Journal of Computational Physics, 79(1):12–49,
1988.

[25] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80–113, 2007.

[26] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A
pde-based fast local level set method. Journal of Computa-
tional Physics, 155(2):410–438, 1999.

[27] M. Rumpf and R. Strzodka. Level set segmentation in graph-
ics hardware. In Proc. ICIP ’01, pages 1103–1106, 2001.

[28] G. Russo and P. Smereka. A remark on computing distance
functions. Journal of Computational Physics, 163(1):51–67,
2001.

[29] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An
unconditionally stable MacCormack method. Journal of Sci-
entific Computing, In Press, 2007.

[30] J. Sethian. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid
Mechanics, Computer Vision, and Materials Science. Cam-
bridge Unviersity Press, 1999.

[31] A. Sherbondy, M. Houston, and S. Napel. Fast volume
segmentation with simultaneous visualization using pro-
grammable graphics hardware. In Proc. VIS ’03, page 23,
2003.

[32] J. Stam. Stable fluids. In Proc. SIGGRAPH ’99, pages 121–
128, 1999.

[33] M. Sussman. A second order coupled level set and volume-
of-fluid method for computing growth and collapse of vapor
bubbles. Journal of Computational Physics, 187(1):110–
136, 2003.

[34] J. S. Venetillo and W. Celes. Gpu-based particle simulation
with inter-collisions. The Visual Computer, 23(9-11):851–
860, 2007.

[35] R. Westermann, C. Johnson, and T. Ertl. A level-set method
for flow visualization. In Proc. VIS ’00, 2000.

[36] E. Wu, Y. Liu, and X. Liu. An improved study of real-time
fluid simulation on gpu. Journal of Computer Animation
and Virtual World, 15(3-4):139–146, 2004.

[37] G. Ziegler, A. Tevs, C. Theobalt, and H. P. Seidel. Gpu-
based data compaction using histopyramids. In Proc. VMV
’06, pages 137–141, 2006.


