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4. Textural and structural analysis 

G. Rabatel, C. Debain, C. Delenne, M. Deshayes, 
Cemagref, UMR ITAP & UMR TETIS, Montpellier (France) 

4.1. Introduction 

This chapter presents the methodologies that have been developed during the 
Bacchus project concerning the automatic detection and characterisation of 
vineyard plots in aerial images based on their structural properties, as well as the 
main results obtained in representative test areas of the project. They include a 
segmentation stage based on textural and shape criteria, followed by a more 
precise characterisation of the detected vineyard parcels. 

Three main steps are defined: i) various textural criteria, based on co-occurrence 
matrices, are computed in order to determine the probability of any pixel to be a 
vineyard pixel. ii) this probability information is combined with geometrical and 
regularity constraints on the parcel shape to achieve the image segmentation, by 
means of active contours. iii) finally, the last step of characterisation, based on a 
Fourier analysis, also helps in revising the parcel enumeration. In the following, 
we present successively these various steps. 

4.2.Textural analysis 

4.2.1. Textural parameters 
Texture analysis is a branch of image processing that began to be studied thirty 
years ago. Although the concept of texture was difficult to define (and is always), 
studies showed that spatial statistics computed on the grey levels of images were 
able to give good descriptors of the perceptual feeling of texture (for a review, see 
Haralick et al, 1973). Such textural descriptors are still developed today for 
classification tasks or segmentation problems (Ojala et al, 1996). In the present 
case, we have adapted the textural  approach to satellite and aerial images, which 
present red (R), green (G) and near-infrared (NIR) channels. 

The textural analysis is based on co-occurrences matrices. A co-occurrence matrix 
is the histogram, in a given neighbourhood for each pixel (e.g. 16x16), of the 
grey-level transitions when considering a given translation in a given direction. 



For K possible grey-levels, it consists of a KxK bidimensional array, on which 
various parameters can be computed (Haralick et al, 1973). 

In our case, we consider 8 elementary translations (x,y)  (x + Δx, y + Δy) 
where: 
 
- (x,y) are the pixel coordinates 
- (Δx, Δy) ∈ { (1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-1), (1, -1) } 
- K = 32  (number of grey level classes). 

The 8 corresponding co-occurrence matrices are then summed up to obtain a 
unique matrix M(i,j)  (0≤ i < K and 0≤ j < K). 

Five Haralick parameters are then computed as defined in Table 4.1. 

Table 4.1. Definition of Haralick parameters (M(i,j): KxK co-occurrence matrix) 
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  where µi ,σ i (resp. µj ,σ j) are the mean and standard deviation of M(i,j) on the 
line i (resp. on the row j).   
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Let us consider now a multispectral image, coded on n channels C1, 
C2,…Cu,…,Cn. The previous co-occurrence matrix definition can be extended 
for any pair of channels (Cu, Cv) by counting the transitions from grey levels in 
channel Cu to grey levels in channel Cv, which is leading to an histogram array 
Mu,v(i,j) 1. 

The pairs of channels that we have considered are (NIR,NIR), (R,R), (G,G), 
(NIR,R), (NIR,G), (R,G). We also compute the five Haralick parameters on the 
NDVI index given by : 
                                                           
1  The case u=v corresponds to the standard co-occurrence matrix for the channel 
Cu.   
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This finally leads to 35 different textural features (7x5). Some examples of such 
computations are given in Figure 4.1.a (see the original image in Figure 4.1.b, in 
Annex): each feature is represented as a new image, which is normalised and can 
be used to compute multivariate criteria. 

   
correlation on channel R entropy on channels (NIR,G)     contrast on channel NDVI 

Figure4.1.a. Representation of some textural features  
(original image in Figure 4.1.b in Annex) 

4.2.2. Vineyard probability index computation 
A multivariate algorithm has been developed to combine the textural features 
described above into a vineyard probability index, that reflects the probability that 
a pixel belongs to a vineyard area or not. It is based on a Discriminant Factor 
Analysis which chooses the best textural features and/or their linear combination 
according to vineyard and non-vineyard classes.  

The resulting value for a pixel is in the interval [0,1], the lower values 
corresponding to the highest vineyard probabilities (Figure 4. 2). 



 
Figure 4.2. Vineyard probability index computation on “Bassin du Roujan", 

France: darker areas correspond to a higher vineyard probability  
(original image in Figure 4.1.b, in Annex) 

4.3. Parcel segmentation and characterisation 

4.3.1. Methodological choices 
In the previous part, various textural criteria have been considered, their purpose 
being to highlight the image areas which exhibit a vineyard structure. However, 
such a local approach is often insufficient to make a satisfactory segmentation, 
due to remaining ambiguities in some image areas. More global considerations, 
such as the homogeneity and shape regularity of the parcels, are then required. 

For this reason, the parcel segmentation procedure is based on the grey-level 
probability image computed above (noted I in the following), in which each pixel 
value represents a probability of belonging to a vineyard rather than an actual 
textural classification result. Various approaches for region identification can be 
considered at this stage. Anisotropic diffusion (Perona & Malik, 1990) attempts to 
smooth local grey-level heterogeneities while preserving edges in the image. 
Region-growing algorithms, such as the Union-Find (Fiorio & Gustedt, 1996), 
allow labelling of homogeneous sub-areas (oversegmentation), which then can be 
merged according to shape criteria. 

In the present study, however, we have chosen an edge-based approach, the 
geodesic active contours, because it facilitates the introduction of regularity and 
shape constraints on the boundaries of the detected objects. Geodesic contours 



have been introduced by Caselles et al. (1997) as a new formulation of the 
classical “snakes” (Kass et al. 1988). They are based on the generic work of 
Osher and Sethian (1988) on front propagating curves. We have added “region 
forces”, as proposed by Paragios and Deriche (1999) in order to take better 
advantage of the probability image information. Finally, a contour shape analysis 
has also been implemented during the process, introducing more global shape 
criteria. 

4.3.2. Geodesic Active Contours implementation 
Geodesic contours rely on the idea that active contours can be seen as minimum 
length curves (or geodesics) in the image I, according to the particular metrics 
gI(x,y). If gI(x,y) is  nearly null in the high gradient areas of I, these contours will 
naturally follow the salient edges in the image, in order to minimise their length. 
Minimisation problems related to active contours are usually solved iteratively, 
using a time differential equation to guide the curve evolution toward the solution 
(starting from an initial position). But in the case of geodesic curves, a level-set 
implementation becomes possible: curves are considered as the intersection of a 
2D functional, the Ψ function, with the horizontal plane Z=0. A differential 
equation is then applied on the Ψ function, rather than on the contours 
themselves, to converge to the solution. Therefore, topological changes can occur 
during the process (Figure 4.3). 

 

X 
Y 

Z 

Z=0 

Ψ (x,y) 

X 
Y 

Z 

Z=0 

Ψ (x,y) 

 
Figure 4.3. Topological change of active contour by level-set implementation 

The initialisation of Ψ(x,y) is not critical, because of these possible topological 
changes. In our case, it is determined in such a way that the corresponding initial 
contours (Ψ(x,y) = 0) draw a grid of “seeds”, in order to be sure to reach every 
vineyard parcel edge during the contour propagation. 



Our “metric function” (or distance function) gI is defined by:   
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where ²),( yxI∇  is the square of the gradient of the image I at the considered 

pixel location and < ²I∇ > is its average for the whole image. 

As in Paragios and Deriche (1999), a “region function” RI has also been defined 
for every pixel (x,y) by: 

RI(x,y) = I(x,y) – s     (3) 

where s is a tuneable threshold value. The role of RI is to introduce the region 
forces which cause the active contours to expand themselves in the image areas 
containing pixels with values below the threshold s (high probability to be a 
vineyard area) and to retract themselves otherwise.  

Finally, according to Caselles et al. (1997) and Paragios and Deriche (1999), we 
obtain the following evolution equation: 
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where t is the time, κ is the curvature of the Ψ function, Ig∇  and Ψ∇  are 
respectively the gradient of gI and Ψ, and β is a tunable coefficient for the region 
force term. 



   

  
Figure 4.4. Contour evolution at various iteration steps 

A discrete form of equation (4) is applied iteratively2. Figure 4.4 shows an 
example of the active contours evolution at various iteration steps. The iterative 
process is automatically stopped according to a criterion based on the evolution 
speed of the total area of the negative parts of Ψ (i.e. of the total area of detected 
vineyard parcels, as according to the level-set implementation, the vineyard 
boundaries are given by Ψ(x,y)=0).   

                                                           

2 At each iteration k : tyx
t
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tΔ controls the evolution speed 



4.3.3. Region threshold management and contour shape analysis 
The introduction of region forces in geodesic active contours allows us to select 
only parcel edges, rather than any grey-level transitions in the image. However, it 
requires  definition of a threshold value s in equation (3) that should be well-
adapted for the whole image, which brings us back to a very classical (and 
impossible to solve) binary segmentation problem.  

To overcome this problem, the following scheme has been implemented: 
i). the whole process of geodesic active contour propagation is repeated with 

several increasing and arbitrary values of the threshold s.  
ii). at the end of each step, the boundaries of each detected parcel are analysed. 

The pieces of boundary that seem to correspond to real vineyard edges are 
then “locked” , so that they are not lost when applying further higher 
threshold values. 

The basic idea of this boundary analysis is that parcel edges are generally quite 
long and rectilinear. Therefore, each parcel contour is first approximated as a 
polygon. Each polygon edge is then checked, according to its length, to the gI(x,y) 
values along its length and to the grey-level difference in image I between each of 
its sides. Moreover, an iterative relaxation procedure3 is then applied on the 
selected polygon edges, in order to optimise their position and their length before 
locking (Figure 4.5). The locking itself consists of artificially re-enforcing the 
image source grey-level on the external side of the contour. 

Finally, when the higher threshold value has been applied, a list of detected 
parcels is produced in vector format. Figure 4.6 shows the result obtained at this 
stage, for the original image presented in Figure 4.1.b. Remaining segmentation 
errors are also indicated. 

                                                           
3 This relaxation procedure combines attraction by the low values of gI(x,y) and 
constant extension forces, the polygone edge being considered as a “rigid” snake. 



 
a. Initial edge              b. Repositioning 

 
c. Extension               d.Locking 

Figure 4.5. Edge relaxation and locking process 
(a,b,c: image of gI(x,y)         d: source image I ) 
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Figure 4.6. Vineyard parcel detection by geodesic active contours 



4.3.4. Parcel revision and characterisation 

Once the parcels have been detected, the last stage consists in determining some 
basic agronomic characteristics for all of them: distance between rows, 
orientation, etc. The inter-row and the orientation can easily be accessed by a 
Fourier analysis. However, some of the parcels identified by the previous step, 
due to detection errors, are made up of different parts with different 
characteristics. For this reason, the characterisation step includes a checking 
process, which allows revision of the parcel list. 

The core of this checking process is a very selective bandpass filtering (Gabor 
filter), computed in the Fourier space. The main original point, compared to 
classical filtering approaches, is the following: because we start from a previously 
defined vineyard parcel candidate, we are able to set precisely the frequency and 
the orientation of the sinusoidal wave corresponding to the filter centre, and thus 
to be very selective.  This filter centre is determined by looking for the amplitude 
peaks in the current Fourier spectrum, leading to a very efficient parcel selection, 
as illustrated in Figure 4.7. 
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 Initial image Peak selection  Filtered spectrum (peak 1) 

in frequency space 
 

   
 a. Filtered image (peak 1)  b. Filtered image (peak 2) c. Filtered image (peak 3) 

Figure 4.7. Vineyard parcel identification and characterisation based on a 
selective filtering process in the Fourier spectrum. 



In order to identify every possible vineyard plot, the following recursive scheme 
is applied (Figure 4.8): 

i) for each detected parcel from the initial list, its bounding box in the original 
aerial image (in grey-level) is considered and the corresponding Fourier spectrum 
is computed. 
In this spectrum, various amplitude peaks are present and correspond to various 
periodical structures in the image. The peak with the maximal amplitude is 
selected as representing the characteristics of the considered parcel (inter-row 
distance and orientation). 

ii) a sharp pass-band filter centred around this maximal peak is then applied so 
that the modulus of the inverse Fourier transform only highlights the image areas 
with the corresponding characteristics. 

iii) every new object obtained is considered as a parcel, except if it intersects a 
bounding box edge. In this last case, a new bounding box is defined around this 
truncated object with an enlargement on the side where the object is incomplete, 
and the process is reiterated. By this way, the initial detected object can be 
completely recovered in a few steps. 

For each initial parcel

- Creation of a bounding box 
with extension margins
- FFT computation

- Search for the maximum
in the Fourier spectrum
- Selective filtering

For each detected object:

Store as parcel

Erase detected objects

Does it remain parts of the initial parcel ?Does it remain parts of the initial parcel ?

Does the object touches
the bounding box ?
Does the object touches
the bounding box ?

Parcel not complete
Re entrance for extension

Re entrance for other
inter-row or direction

END

YESYES

YESYES

NONO

NONO
 

Figure 4.8. FFT based recursive scheme for parcel identification and 
characterisation. 

iv) finally, the process is reiterated on the initial bounding box after erasing the 
new detected parcels, so that other significant Fourier spectrum peaks can be 



selected and processed, to recover the parcels with different frequency or 
orientation.  

A revised list of vineyard parcels is then produced, as shown in Figure 4.9.  

The final outputs of the method are text files that give the number of vineyard 
parcels identified and for each parcel:  
• its area, 
• the position of its limits, 
• the interrow distance, 
• the row orientation. 

In order to separate trellis (or wire trained) vines from goblet vines, additional 
information is provided. Goblet vines suppose the presence of one (in case of 
square planting) or two additional alignments (in case hexagonal planting). As a 
consequence, the software examines the frequency space and looks for additional 
peaks situated at 90° (for square planting) or at 60° and 120° (for hexagonal 
planting). It computes 3 ratios: ratio90, ratio60 and ratio120. Each ratio represents 
the ratio between the height of the maximum detected along this complementary 
orientation and the one of the initial and original peak. A later classification will 
decide whether ratio90 or both ratio60 and ratio120 are sufficiently high to 
qualify the detected vine as being trained in goblets.  

    
Figure 4.9. Final result of parcel segmentation (vector format) 



4.4. Evaluation of results 

The results presented here have been obtained on two test sites of the Bacchus 
project, Limoux (Languedoc region, France) and Tarazona de la Mancha (Castilla 
La Mancha region, Spain). The Limoux test site has been selected as it is 
representative of vineyard areas where vines are predominantly grown with trellis. 
Furthermore the test site has been covered with two types of VHR data, aerial 
(AMDC data acquired by INTA) and satellite (QuickBird data). A second test site 
has been selected as representative of vineyard areas where vines are 
predominantly grown in goblets. This test-site is situated in Spain, near Tarazona 
de la Mancha. 

4.4.1. Data used 

The software for the segmentation of vine compartments has been tested with data 
extracted from two types of remote-sensing images of very high spatial 
resolution, INTA AMDC orthoimage and QuickBird panchromatic data. General 
information on the data available on the two sites are presented in Table 4.2.. 

Table 4.2. Remote-sensing data used for the segmentation of vine compartments 
for the Limoux (France) and Tarazona (Spain) test sites 

 INTA Limoux QUICKBIRD 
Limoux 

QUICKBIRD 
Tarazona 

Type Aerial 
orthophotography Satellite image Satellite image 

Date of acquisition 29/05/2004 25/06/2002 31/07/2003 

Spatial resolution 50 cm 62 cm 63 cm 
Spectral bands 
used 

Red, Near infrared 
and Panchromatic Panchromatic Panchromatic 

Size of the extract 4800 x 5300 pixels 
(636 ha) 

4000 x 4416 pixels 
(636 ha) 2500x2500 pixels 

Surface area of 
vine (photo-
interpretation) 

≈290 ha (258 
compartments) 

≈280 ha (257 
compartments) - 



4.4.2. Evaluation criteria 

Four different levels of accuracy in vine detection can be distinguished: 
1. Good detection (example on Figure 4.10, left): 

o The detected compartment and the real compartment share more 
than 80% of common surface area. 

2. Average detection:  
o The detected compartment and the real compartment share more 

than 60% of common surface area. 
o  a detected compartment groups together several real 

compartments (under-segmentation). 
o  several compartments are detected for a single real 

compartment, and detected compartments share more than 60% 
of common surface area with the real compartment (over-
segmentation, cf Figure 4.10, centre and right). 

  
Figure 4.10. Example of good detection (left) and over-detection because of a 

defect in the image (centre and detail, right) 
Possible source: zone of assembling between two AMDC images 

3. Insufficient detection (example Figure 4.11): 
o The detected compartment(s) and the real compartment have 

less than 60% common surface area. 
4. Non-detection 

The first two levels constitute ‘acceptable’ detection of compartments. 



 
Figure 4.11. Example of insufficient detection 

4.4.3. Results of vineyard plots identification and delineation on the Limoux 
test-site 

Table 4.3 summarises the segmentation results on the Limoux test site for the two 
extracts of 636 ha presented in Table 4.2. Results are listed for each detection 
level as a percentage of the total number of compartments and a percentage of 
total surface area under viticulture. Illustrations of the precision of detection with 
the different data and bands are shown in annex, on Figure 4.12 to Figure.4.16. 

Table 4.3. Results of the segmentation for the Limoux test site (percentage of 
compartments and surface area) 

 INTA Red 
(Figure.4.12, 

Annex) 

INTA NIR 
(Figure.4.13, 

Annex) 

INTA  
Red + NIR 

(Figure.4.14, 
Annex) 

INTA Pan 
(Figure.4.15, 

Annex) 

Quickbird Pan 
(Figure.4.16, 

Annex) 

 % 
Plots 

% 
Surface 

area 

%  
Plots 

%  
Surface 

area 

%  
Plots 

%  
Surface 

area 

%  
Plots 

%  
Surface 

area 

%  
Plots 

%  
Surface 

area 
1. Correct 
detection 36 49 39 40 - - 27 31 25 31 

2. Average 
detection 27 29 23 32 - - 18 18 33 29 

1+2: 
Acceptable 63 78 62 72 79 91 45 49 58 60 

3. Faulty 
detection 15 9 8 9 - - 23 31 10 17 

4. Non 
detection 22 13 30 19 - - 32 20 32 23 

3+4: 
Unacceptable 37 22 38 28 21 9 55 51 42 40 



4.4.4. Results of vineyard plots identification and delineation on the 
Tarazona test-site 

The Tarazona test site is interesting because complementary to the Limoux test 
site, due to the dominance of goblet vineyards. The results of vine identification 
and delineation are shown on Figure 4.17 and details of this segmentation on 
Figure 4.18. They show that detection of goblet vineyards is operative. However 
the detection is limited by certain characteristics of the test-site (heterogeneity of 
soil and vine plants development, contrast or absence of contrast of field borders 
with neighbouring area). These points will be discussed below. 

 
Figure 4.17. Result of the segmentation on the panchromatic channel of the 

Quickbird image, 2500x2500 pixels extract, Tarazona test-site (Spain) 
 



    
Figure 4.18. Details of segmentation on goblet vineyards, Quickbird image, 

Tarazona test-site (Spain) 

4.4.5. Results of vineyard plots characterisation 

Once a vineyard has been identified and delineated, it is de facto in the same time 
characterised, and with a good quality. Indeed if the parcel has been identified, it 
means that a significant peak is present in the frequency space, and through its 
polar coordinates (θ, r) this peak provides the information on interrow distance 
(related to r via the pixel size) and row orientation (θ). It should be kept in mind 
however that the precision in the determination of these parameters depends on 
the size and homogeneity of the plot: smaller and less homogeneous plots will 
lead to less precise parameters. Anyhow the user demand for precision in these 
parameters is not to the cm and the degree. A last remark is related to the 
identification of goblets. Once again, badly maintained goblet vines cause 
problems: when they are identified as vineyards, they are more liable to be not 
recognised as goblets and to remain identified as trellis. 

4.4.6. Causes of errors in detection 

The following causes of errors in detection have been identified: heterogeneity 
within the plot, young vines, detection of artefacts and bad detection of certain 
goblet vines. Details related to these faulty detections are presented hereafter. 

a) Heterogeneity of the plot 

The heterogeneity of the compartment is the major cause of bad detection. It can 
have several origins: 
• Differences in vine vigour within the compartment (Figure 4.19, left), often 

caused by differences in supply of water and nutritional elements, 
themselves related to the terrain contours.  



• Heterogeneity in the soil colour: soils with a clear colour provide a better 
contrast with vegetation in the visible bands whereas darker ones lead to less 
contrast (see an example on Figure 4.19, right). However areas with darker 
soils may appear more contrasted in the near infrared domain. 

          
Figure 4.19. Problem of detection caused by heterogeneities of vine vigour. Left: 
heterogeneity of vine vigour, the area devoid of vegetation is excluded from the 
vineyard. Right: heterogeneity of soil colour: only the areas that are the most 

contrasting are detected. 

b) Young vines 

Some vines are not detectable because their level of soil coverage is low. These 
are most notably young vines (‘plantiers’ in French), one or two years old (Figure 
4.20),  

 
Figure 4.20. Example of a young vine: the rows are barely discernible 

c) Detection of non-vine 

It is very rare for a compartment to be detected where there is no vine. Whenever 
this happens, it is often due to ditches between two compartments or roads that 
present an oriented texture (Figure 4.21). The latter case of false detections may 
be later suppressed through post processing. 



 
Figure4.21. Example of non-vine (here a highway) detected as vine 

d) Vines trained as goblets  

On the Limoux test site, vines trained as goblets i.e. pruned as bushes (untrained 
vines) are not easily detectable for at least three reasons. Firstly these vines are 
generally old (50 years and above), and generally not very well maintained, with a 
high level of missing vine plants. Furthermore the vines are not trimmed, which 
leads to a lower contrast, and finally they are grown on small plots (Figure 4.22). 
In the Limoux area, where the profession is dynamic and most of these vineyards 
have been uprooted and replanted with higher quality varieties, these goblet 
vineyards represent only 2 to 3% of the total. 

 
Figure 4.22. Example of vine trained as goblet (Limoux) 

4.4.7. Analysis and interpretation of results 

From the analysis of the above results, the following comments can be made: 
• With good conditions of contrast, the detection of vineyards, either in trellis 

(as in Limoux) or in goblets (as in Tarazona), is operative 



• Very few non-vine compartments were detected as vine (see a counter 
example on Figure 4.21). 

• Results are always better for surface area than for the number of 
compartments. In fact, compartments that were incorrectly detected or non-
detected are usually the very smallest ones. 

• Panchromatic channels do not seem to be suitable for detecting viticulture 
compartments in the Limoux region. 

• In spite of the slightly lower resolution of the Quickbird image, its results are 
distinctly better than those from the panchromatic channel of the INTA 
image. This can perhaps be explained by the fact that Quickbird’s 
panchromatic channel covers a wider spread of wavelengths, in particular for 
the near infrared, when compared with the panchromatic channel of the 
INTA image, which only covers the wavelengths of the visible domain. 

• On the Limoux test-site, the best results are provided by processing the red 
channel. However, the results of the processing on the near infrared channel 
are complementary: 79% of compartments (91% of viticulture surface 
area) are detected by the red channel and the near infrared channel 
(Table 4.3). The use of the panchromatic channel does not lead to any 
additional improvements. 

• The presence of a certain heterogeneity on the vineyards borders, with lower 
contrast (vine plants of lower vigour) or gaps in the row (missing plants) is 
not favorable to a reliable definition of the parcel limits. In order to obtain 
more representative limits,  a specific post-processing step would be 
necessary. 

Some incorrect detection can also be explained by an insufficient image 
resolution, specially for inter-row widths smaller than 2 m. Figure 4.23 shows an 
example of segmentation of an image of 20 cm resolution, obtained by Cemagref 
using an ULA. In this case, for a total of 20 compartments, only one was not 
detected, one was incorrectly detected, and there were two groupings of 
compartments. 

 
Figure 4.23. Example of segmentation of an ULA image of 20 cm resolution 



4.5. Discussion and conclusion 

In the Limoux region (and the corresponding appellation zone) and in the 
Tarazona region, there is an overall homogeneity of vines, with, in particular, the 
inter-row or inter-plant distances being generally greater than 2 m. These 
distances are specific to the vine in the region, other crops grown in rows (maize, 
sunflower..) having a much smaller separation (0.80 m) and there is no possibility 
of confusion. With these kinds of patterns, the algorithm developed in the 
Bacchus project is generally operative. 

The causes of insufficient detection have different origins. The first cause is 
heterogeneity in vine appearance. This heterogeneity depends on terrain contours, 
soil colour, soil depth and the relative supply of water and nutrients, all these 
factors being tightly interlinked. Yet another factor for heterogeneity is related to 
crop practices (tillage and/or total or partial weeding). Secondary causes of bad 
detection are the small size of plots (not favourable for obtaining a ‘good’ Fourier 
transform), young vines (less than two or three years old) and bad level of vine 
maintenance (numerous missing vine plants, ‘dirty’ vines, as with the old goblets 
vineyards in France). 

As a consequence, the methodology developed in the Bacchus project can 
produce good results, as on the Limoux test site, where 91% of the viticulture 
surface area has been detected. However these results directly depend on a good 
legibility of vineyards on the original remotely sensed images and cannot be 
generalised without taking a few precautions. And in any case they require a 
visual post-processing to correct detection defects before inclusion in the GIS data 
base. 

4.6. References 
 
Caselles, V., R. Kimmel, G. Sapiro 1997. Geodesic active contours. International 

Journal of Computer Vision 22(1)  61-79. 
Fiorio, C. and J. Gustedt 1996. Two linear time Union-Find strategies for image 

processing. Theoretical Computer Science 154(1996) 165-181. 
Franklin, S.E., R.J. Hall, L.M. Moskal, A.J. Maudie, M.B. Lavigne 2000. 

Incorporating texture into classification of forest species composition from 
airborne multispectral images. International Journal of Remote Sensing 
21(1) 61-79. 

Haralick, R. M., K. Shanmugam, I. Dinstein 1973. Textural Features for Image 
Classification. IEEE transactions on systems, man, and cybernetics 3(6) 
610-621.  

Kass, M., A. Witkin, D. Terzopoulos 1988. Snakes : Active contour models. 
International Journal of Computer Vision  1(4)  321-331. 



Ojala, T., M. Pietikäinen, D. Harwood 1996. A comparative study of texture 
measures with classification based on feature distributions. Pattern 
Recognition 29 51-59. 

Osher, S. and J. A. Sethian 1988. Fronts propagating with curvature dependent 
speed: algorithms based on Hamilton-Jacobi formulations. Journal of 
Computational Physics 79 12-49. 

Paragios, N. and R. Deriche 1999. Geodesic Active Regions for Supervised 
Texture Segmentation. In: Proceedings of the 7th IEEE Int. Conference on 
Computer Vision, ICCV '99; IEEE Comput. Soc.; Vol.1, 1999; pp. 926-32 

Perona, P. and J. Malik 1990. Scale-space and edge detection using anisotropic 
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 
12(7) 629-639. 



 ANNEXE 

 
Figure 4.1.b. Original 50 cm resolution color infrared image used for algorithm 

development. Roujan area, Languedoc, France  



 
Figure 4.12. Results of the segmentation on the red channel of the INTA image, 

Limoux test-site (France) 



 
Figure.4.13. Results of the segmentation on the near infrared channel of the INTA 

image, Limoux test-site (France) 



Plots detected with both bands

Plots detected with the red band only

Plots detected with the NIR band only

 

Figure.4.14. Complementarity of detection with the red and near infrared channels 
of INTA data, Limoux test-site (France) 



 
Figure.4.15. Result of the segmentation on the panchromatic channel of the INTA 

image, Limoux test-site (France) 



 
Figure.4.16. Result of the segmentation on the panchromatic channel of the 

Quickbird image, Limoux test-site (France) 
 




