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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00453817


Discussion of “Development and Verification of an Analytical Solution for Fore-

casting Nonlinear Kinematic Flood Waves” by Sergio E. Serrano

Journal of Hydrologic Engineering, July/August 2006, Vol. 11, No. 4, pp. 347-353.
DOI: 10.1061/(ASCE)1084-0699(2006)11:4(347)
Xavier Litrico1 and Vincent Guinot2

This discussion appeared in the Journal of Hydrologic Engineering, Vol. 12, No. 6, pp. 703-705.

The author presents an interesting method to forecast nonlinear kinematic flood waves (Serrano,
2006). As a first remark, the discussers would like to stress the fact that the proposed method
is an approximate solution and not an analytical solution, as suggested by the title of the paper.
Indeed, an analytical expression is given by the backwards characteristics methods, as in Eq.
(6) of the paper. However, since this solution is implicit, the author proposes an approximate
explicit solution by making simplifying assumptions.
The discussers would like to raise two points in this discussion:

1) There exists a forward, analytical solution to the Kinematic Wave Equation (KWE).
The range of time lags for which this analytical solution is applicable being restricted,
a linearization of the KWE is a good compromise between accuracy and robustness.
However,

2) The KWE should be linearized in a such a way that the propagation speed in the original
and linearized equations remain comparable. In this respect, the comparison between the
nonlinear KWE and the linearized KWE as provided in Serrano (2006) is unfair because
it is based on an improper linearization.

These points are treated separately in what follows. We only focus on the case with zero lateral
discharge q = 0. The results of this discussion also apply with slight modifications when the
lateral discharge is not zero.

A Forward Analytical Solution to the Nonlinear Kinematic Wave

The characteristic equation presented in the paper is to be solved

dQ

dt
= 0 for

dt

dx
= αβQβ−1 (1)

Therefore a forward solution method gives

Q(x, t + T (x, t)) = Q(0, t) (2)

where the distance x and the time lag T (x, t) are related by

T (x, t) = x
dt

dx
= xαβQ(0, t)β−1 (3)
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This solution given by Eqs. (2–3) of this discussion is exact, explicit and does not require any
approximate solution procedure. The downstream discharge is not computed at regular time
instants, but a simple linear interpolation can be done to obtain the discharge at the required
time instants.
This solution is limited to time delay variations that do not yield shocks, i.e. such that ∂Q/∂t
remains finite.
The simulation results of this discussion are obtained with this simple and direct procedure.

A Fair Comparison between Linear and Nonlinear Models

In the paper, the author compares the flood hydrographs simulated with various values of a
parameter β, which is given from the stage discharge relationship of the river A = αQβ. The
author observes that “For values of β < 1, the peak flow occurs at a time earlier than that
predicted by the linear hydrograph (β = 1). For values of β > 1, the peak flow occurs at a
time later than that predicted by the linear hydrograph.” And he concludes by “This suggests
that, depending on the stream parameters, the simulation of flood propagation may not be
appropriately described by a linear model.”
The discussers do not agree with the author concerning this last sentence. From our viewpoint,
one issue is the nonlinear dynamic behavior of the flow propagation in the river; another one
is the ability of a linear model to represent flow propagation. Indeed, it is well-known that the
large majority of physical system has a nonlinear behavior. However, linear models are widely
used to represent the dynamics of a nonlinear system around a functioning point.
In the case considered here, a fair comparison between linear and nonlinear models would be
to linearize the nonlinear model around a functioning point (a reference discharge) to obtain a
linear model.
The linearization of the kinematic wave equation given by Eq. (1) of the paper around a
reference discharge Q is obtained by assuming Q = Q + δQ and neglecting second order terms,
which leads to the linear kinematic wave equation:

∂δQ

∂x
+ αβQ

β−1 ∂δQ

∂t
= 0 (4)

Then, the flood routing represented by Eq. (4) of this discussion is equivalent to

δQ(L, t) = δQ(0, t − T ) (5)

where T is a constant time-delay, given by:

T = αβLQ
β−1

(6)

and L is the length of the river.
From the original paper, the average time delay obtained using β = 1 is:

T = αL (7)

This may be coherent with equation (6) of this discussion as long as the reference discharge Q
verifies:

Q =

(

1

β

)
1

β−1

(8)
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However, in this relation, Q is not related to the input discharge, and may lead to very low
values.
To summarize, the relationship A = αQβ presented in the original paper has two degrees
of freedom, namely the coefficient α and the exponent β. In an appropriate linearization
procedure, the simplification induced by the modification of β must be compensated by a
modification of the coefficient α. More generally, any modification of β can be accompanied
with an appropriate modification of α such that the propagation speed of the wave remains a
constant about a reference discharge Q. From Eq. (2), changing β to β′ keeps the travel time
T unchanged provided that α is changed to a value α′ that satisfies the following condition:

α′β′Q
β′
−1

= αβQ
β−1

(9)

In the particular case of a linearization, β′ = 1 and Eq. (9) yields the following expression for
α′:

α′ = αβQ
β−1

(10)

Such a modification of coefficient α would provide a correct linear simulation, contrarily to the
ones presented in the original paper.
As an example, Figure 1 shows the advection of a hydrograph along a river reach of 10 km for
α = 3 m2−3βsβ and β = 1.5. As indicated by Eq. (10), the nonlinear KWE can be linearized
using the reference discharge Q = 1.5 m3/s. In this case Eq. (10) gives a value α′ = 5.51
m−1s. The solution given by the linearization is indicated by the plus-shaped markers in
Figure 1. It is easy to see that the propagation speed of the reference discharge Q = 1.5 m3/s
is preserved by the linearization. On the contrary, the hydrograph obtained by using β = 1
leads to underestimate the time delay.
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Figure 1: Comparison of different models for the propagation of a sinusoidal hydrograph on a
10 km long river with α = 3.0 m2−3βsβ, β = 1.5 and Q = 1.5 m3/s.

The value of β mainly has an effect on the symmetry of the hydrograph. Values of β larger
than unity tend to smooth out the front and steepen the tail (Figure 1), while values of β
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smaller than unity lead to steepen the head and smooth out the tail of the hydrograph (see
Figure 2, obtained for α = 3.0 m2−3βsβ and β = 0.3). From a physical point of view, β < 1 is
a more realistic representation of most natural and artificial channels.
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Figure 2: Comparison of different models for the propagation of a sinusoidal hydrograph on a
10 km long river with α = 3.0 m2−3βsβ, β = 0.3 and Q = 1.5 m3/s.

Choice of the Reference Discharge Q

Then, in order to perform a fair comparison between linear and nonlinear models, we need to
determine the suitable reference discharge Q. This may be done by two means:

• A priori evaluation of Q, by choosing the average input discharge, or the maximum input
discharge, or another one compatible with the input data,

• A posteriori evaluation of Q, by estimating the average time delay of the river based on
available measurements, and computing the corresponding average discharge by inverting
Eq. (6) of this discussion.

The second method can be combined with an optimization procedure. In this case, one looks for
the value of the constant time delay (and the corresponding reference discharge) that minimizes
a chosen criteria. Fig. 3 plots the fit coefficient γ proposed in Eq. (26) of the paper for linear
simulations with various reference discharges Q, for two river reaches of 10 km, represented by
the nonlinear KWE, one with β = 0.3 and the other one with β = 1.5.
The circular dots represent the value of the fit coefficient γ obtained by choosing β = 1 as did
the author in his paper. The reference discharge is then given by Eq. (8). It clearly appears
that a model properly linearized leads to a better fit. In the case considered here, a reference
discharge Q = 1.5 m3/s is a good choice in terms of this fit coefficient γ.
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Figure 3: Fit coefficient γ for the propagation of a sinusoidal hydrograph on a river of length
L = 10 km represented by the nonlinear KWE with α = 3 m2−3βsβ, β = 0.3 and β = 1.5.

Application to the Schuylkill River

The application section of the paper considers the Schuylkill river, for which the parameters are
given by α = 4.6 m2−3βsβ, β = 0.594, and L = 21 km. The daily discharge measurements were
retrieved from the USGS website (http://waterdata.usgs.gov/wis/) and were used to compute
the time delay T (L, t) given by Eq. (3) of this discussion corresponding to the input data for
Fig. 6 of the original paper. This is plotted in Fig. 4. It appears that the delay T (L, t) varies
from 1 h to 4.5 h, and that an average value T of about 2 h should lead to an adequate linear
approximation of the dynamic behaviour of the river. Using Eq. (6), this corresponds to a
reference discharge of Q = 166 m3/s.
As a comparison, the time delay chosen by the author in his linear simulation corresponds to
a delay of αL = 4.6 × 21000 = 26.8 h, which is more than ten times the average delay of the
river! And the corresponding reference discharge is given by Eq. (8) Q = 0.277 m3/s, which is
about 100 times smaller than the discharges of figures 5 and 8 of the paper.
It is therefore not surprising that the simulations with a linear model corresponding to such a
large delay lead to a poor fit coefficient.
Finally, it is recalled that the KWE is valid under the assumptions of negligible inertia and
velocities, assuming small depths and steep slopes, so that the energy grade line can be assumed
identical to the river bed slope. With an average slope smaller than 0.1 % between the two
gauging stations, this assumption is obviously not valid in the case of the Shuylkill river between
Norristown and Philadelphia.
As a conclusion, the backward method proposed by the author to simulate the nonlinear kine-
matic wave is not analytical, while the discussers provide a forward analytical solution. The
discussers argue that a linear kinematic wave model may be adequate to simulate nonlinear
kinematic river flow, provided that a proper linearization is done.
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Figure 4: Variation of the time delay along time T (L, t) for daily input discharge of the
Schuylkill river at Norristown
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