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Nathalie Saint-Geours, Jean-Stéphane Bailly, Christian Lavergne, Frédéric

Grelot

To cite this version:
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract — The variance-based Sobol' approach is one of the 

few global sensitivity analysis methods that is suitable for 

complex models with spatially distributed inputs. Yet it needs a 

large number of model runs to compute sensitivity indices: in 

the case of models where some inputs are 2D Gaussian random 

fields, it is of great importance to generate a relatively small set 

of map realizations capturing most of the variability of the 

spatial inputs. The purpose of this paper is to discuss the use of 

Latin Hypercube Sampling (LHS) of geostatistical simulations 

to reach better efficiency in the computation of Sobol’ 

sensitivity indices on spatial models. Sensitivity indices are 

estimated on a simple analytical model with a spatial input, for 

increasing sample size, using either Simple Random Sampling 

(SRS) or LHS to generate input map realizations. Results show 

that using LHS rather than SRS yields sensitivity indices 

estimates which are slightly more precise (smaller variance), 

with no significant improvement of bias. 

Keywords: global sensitivity analysis; Latin Hypercube 

Sampling; Gaussian random field; unconditionnal simulation 

I.  INTRODUCTION 

Sensitivity analysis (SA) techniques are increasingly 
recognized as useful tools for the modeller: they allow 
robustness of model predictions to be checked and help 
identifying the input factors that account for most of model 
output variability (Saltelli et al., 2008). Among the various 
available SA techniques (see Helton and Davis, 2006 for a 
review), variance-based Sobol’ global sensitivity analysis 
(GSA) has several advantages: it explores widely the space 
of uncertain input factors and is suitable for complex models 
with non-linear effects and interactions. It can be applied to 
models with spatial inputs by associating randomly 
generated map realizations to scalar values (Lilburne and 
Tarantola, 2009). This allows complex description of spatial 
uncertainty to be used: when model inputs are continuous 2D 
fields (e.g. a digital elevation model built from some limited 

terrain points), random map realizations can be generated 
through geostatistical simulation (Chilès and Delfiner, 1999). 

Yet GSA approach needs a large number of model runs 
to compute sensitivity indices. With time consuming models, 
using an effective sampling scheme is necessary to get the 
most accurate sensitivity indices with the fewest model runs. 
This issue has been widely discussed in the case of models 
with scalar inputs. But in many models used for 
environmental risk assesment (e.g. a flood damage model), 
inputs are maps (e.g. a water level map) rather than scalars. 
In such a case, it is also of great importance to generate a 
relatively small set of map realizations capturing most of the 
variability of the spatial inputs. Latin Hypercube Sampling 
(LHS) of Gaussian random fields (Pebesma and Heuvelink, 
1999) may be a way to reach better efficiency in the 
computation of sensitivity indices on spatial models. 

The purpose of this paper is thus to discuss the influence 
of LHS sampling design when used to generate geostatistical 
simulations for GSA of models with spatial inputs and a 
single scalar output. Sensitivity indices are estimated on an 
artificial model (a simplification of a real flood damage 
model) with a 2D spatial input (a Gaussian random field), 
with a) two different sampling designs of geostatistical 
simulations (Simple Random Sampling and LHS), b) 
increasing sample size. Relative bias and standard deviation 
are used to compare exactness and precision of sensitivity 
indices estimates. 

II. A SIMPLE SPATIAL MODEL 

A. Flood damage model description 

Let Y = Y (H, θ) be a spatial flood damage model with 
two inputs. H is a map of the maximal water levels reached 
during a flood event on a study area. The water levels hu are 
given at each location u of the area, represented by a regular 
grid G as shown in Fig. 1 (total number of pixels: P = 2500). 

We acknowledge financial support from the “Risque Décision 

Territoire” research program, funded by the French Ministry of 

Environment's (MEEDDM) PUCA department.  
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Figure 1.  Study area represented by a discrete grid G 

θ = (α, β) is a vector of ℝ². It describes a linear damage 
function f: the surfacic damage due to submersion under a 
water level h is f (h, θ) = α.h + β. The model output Y is the 
total damage due to the flood on the study area (1). 

 ( )∑
∈
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B. Uncertainties in input factors 

The two input factors of model Y are considered 
uncertain. Map H is described as a Gaussian random field of 

mean 7=h and variance σ² = 121. Spatial correlation 

follows an exponential covariance model C(d), with range 
parameter a = 10 and a nugget effect parameter η = 0.3 (d 
being the Euclidian distance between two points) (2). 
Parameter values were chosen arbitrarily.  
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The two components α and β of vector θ are independent 
and follow normal distributions, of respective means α  = 

6, β  = 1, and variances σα² = 16, σβ² = 1. The two input 

factors H and θ are independent. 

III. SPATIAL GLOBAL SENSITIVITY ANALYSIS: METHOD 

Through Sobol’ global sensitivity analysis (GSA), we 
can discuss the relative influence of uncertainty in map H 
and uncertainty in θ on the model output variability. The 
simple form of Y makes it possible to give analytical 
expression of Sobol’ sensitivity indices for each input factor. 
These exact values are then compared with estimates, which 
are computed with a sampling-based method, using a set of 
random geostatistical simulations of map H. 

A. Analytical expression of sensitivity indices 

Sobol’ sensitivity indices are based on the decomposition 
of the output variance in conditional variances. First-order 
sensitivity indice of input factor X is defined as  
Var[E(Y|X)]/Var(Y). It represents the main effect contribution 
of input factor X to the variance of output Y. For more details 
on GSA basics, see Saltelli et al., 2008. 

Let M be the average of water levels over the study area, 
and F the average of local damage function f over the grid: 
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M and F are aleatory variables depending on H and θ. Let 
VM and VF be the respective variances of M and F. Total 
variance of model output Y is Var(Y) = P².VF where VF is 
given by (4): 

 [ ] [ ] [ ]MMF VhVV ⋅++⋅+⋅= ²²²²² αβα σσσα  (4) 

Variance VM depends on the model C(d) of spatial 
correlation in map H (5). du,v is the Euclidian distance 
between two points u and v on grid G. 
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The conditional expectation E(Y | H) is given by: 
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 First order sensitivity indice of H is then: 

 
FMH VVS ⋅= ²α  (6) 

The conditional expectation E(Y | θ) is given by: 

 ( ) ( )βαβαβα +⋅⋅=+⋅∑
∈

hPhE
Gu

u ,   

First order sensitivity indice of θ is then: 

 ( ) FVhS ²²² βαθ σσ +⋅=  (7) 

Interactions between input factors H and θ are accounted 
for by the second order sensitivity indice SH ,θ: 

 
FMHH VVSSS ⋅=−−= ²1, αθθ σ  (8) 

Total order sensitivity indices account for the total 
contribution to Y variation due to input factor X. In this case 
of a model with two input factors, total order sensitivity 
indice STH is simply the sum of first order indice SH and 
second order indice SH,θ (and accordingly for STθ). Tab.1 
gives the exact values for first order, second order and total 
order sensitivity indices, derived from (2), (4), (5), (6), (7) 
and (8). 

B. Generating map realizations 

In order to estimate sensitivity indices, a set of n random 
realizations of Gaussian field H must be sampled. Two 
methods are considered to generate this set: Simple Random 
Sampling (“SRS set”) and Latin Hypercube Sampling (“LHS 
set”). First a SRS set is generated using LU decomposition of 
the covariance matrix (Chilès and Delfiner, 1999). From this 
set, following the procedure described in (Pebesma and 
Heuvelink, 1999), a LHS set of maps is drawn (Fig. 2). This 
procedure works by repeating the following steps at each 
location u of grid G:  

TABLE I.  SENSITIVITY INDICES EXACT VALUES 

Sensitivity indice Notation Value 

First order indice of map H SH 0.309 

First order indice of θ Sθ 0.554 

Total order indice of map H STH 0.446 

Total order indice of θ STθ 0.691 

Second order indice SH,θ 0.137 
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Figure 2.  Three simulations of Gaussian random field H by Simple 

Random Sampling along a line of grid G. Water levels simulated by Simple 

Random Sampling (◦) and Latin Hypercube Sampling (▲) are given for 

two locations u et v. Vertical lines indicate the shift for individual sample 

elements; dotted horizontal lines indicate stratum boundaries. 

• Let s(u) be the vector of the n sampled values at 
location u from the SRS set: s(u) = (s1(u), …, sn(u)). 

• Let r(u) be the vector with the ranks of s(u): ri(u) is 
the rank of si(u) in the ordered list of (sj(u)). r(u) is a 
permutation of {1 ; … ; n}. 

• Let F
-1

 be the inverse marginal distribution of 

( )σ,hN . Divide the pdf of hu into n equally probable 

strata Ii according to (9): 

 

 

(9) 

• The new value zi(u) of the i
th
 simulation at point u is 

obtained by randomly sampling a value in ( )
)(uri

IU .  

At each location u, the ranking of the n simulations from 
the SRS set is preserved in the LHS set: a spatial correlation 
is thus maintained in each realization of map H (Fig. 2). 

C. Estimating sensitivity indices 

First order and total order sensitivity indices are 
estimated using “spatial Sobol’” approach (Lilburne and 
Tarantola, 2009), which is a generalisation of the methods of 
Sobol’ and Saltelli to spatially dependent models. It uses two 
quasi-random samples of size N, combined through several 
permutations, to explore the uncertainty domain of input 
factors H and θ and estimate sensitivity indices. Spatial input 
H is handled by sampling 2N scalar values from a discrete 
uniform distribution in {1; … ; n}: each discrete level is 
associated with a single simulation of H from the set of n 
maps previously generated. Input factor θ is treated as a 
“group of factors”; components α and β are sampled 
independently from their pdf, but sensitivity indices are 
estimated globally for the group θ = (α, β). Total number of 
model runs is C = 2·N·(k+1) where N is the size of the quasi-
random samples and k is the number of (groups of) input 
factors. Here N is fixed (N = 512), k = 2 and C = 3072. 

Sensitivity indices estimates are computed using either 
SRS or LHS set of maps, for an increasing number n of 

generated maps. The whole process is replicated 1000 times. 
Mean values with ± standard deviation bars for each estimate 
are shown on Fig 3. while Tab 2. gives for each estimate its 
standard deviation over the 1000 replicas, and the relative 
bias compared to its analytical value, for n = 10 and n = 250.  

IV. RESULTS AND DISCUSSION 

A. Exactness and precision of sensitivity indices estimates 

Fig 3. and Tab. 2 show that for small n, SH estimate has a 
negative bias, while Sθ has a positive one. When n is low, the 
small set of map simulations fails to capture the overall 
variability of Gaussian random field H: thus the influence of 
H variability on model output Y is underestimated; 
conversely the influence of θ is overestimated. This bias 
decreases when n increases. 

LHS sampling of Gaussian random field H doesn’t bring 
improvement to estimates bias. For small n (n ≤ 10), LHS 
estimates have an additional bias which will be discussed in 
(IV.B). For larger sets of simulated maps (n ≥ 25), LHS 
procedure yields estimates whose relative biases are not 
significantly different from SRS estimates (significance 
tested with a Welch’s t-test for each value of n). 

 

Figure 3.  First order (top) and total order (bottom) sensitivity indices of 

input factors H (◦) and θ (+), depending on number n of generated maps 

and sampling strategy (SRS, LHS). Mean values with ±s.d interval over 

1000 replicas. The dashed lines show the analytical results from Tab. 1. 
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TABLE II.  EXACTNESS (RELATIVE BIAS IN %) AND PRECISION (± 

STANDARD DEVIATION) OF SENSITIVITY INDICES ESTIMATES, FOR 

DIFFERENT SIZES n OF THE SET OF GENERATED MAPS 

n = 10 generated maps n = 250 generated maps Sensitivity 

Indice SRS LHS SRS LHS 

SH 
-7.71% 

± 0.097 

-11.51% 

± 0.080  

+1.12% 

± 0.047 

+1.05% 

± 0.042 

Sθ 
+9.26% 

± 0.126 

+11.85% 

± 0.107 

+2.12% 

± 0.043 

+1.80% 

± 0.038 

SH,θ  
-17.13% 

 ± 0.062 

-19.30% 

± 0.061 

-8.06% 

± 0.049 

-6.60% 

± 0.049 

STH  
-9.81% 

 ± 0.124 

-13.10% 

± 0.105 

-1.23% 

± 0.042 

-0.70% 

± 0.038 

STθ  
+4.02% 

 ± 0.096 

+5.66% 

± 0.079 

+0.10% 

± 0.047 

+0.13% 

± 0.042 

 

Tab. 2 also shows that LHS estimates have a slightly 
smaller standard deviation than SRS estimates: this gain is 
significant for many (Si, n) couples (Levene’s test). This 
finding is consistent with more general results on variance 
reduction associated with LHS, in the case of sampling of 
scalar random variables (Helton and Davis, 2003). 

B. Disturbance of spatial correlation by LHS 

For small number n of generated maps (n = 3, 10), 
estimates computed with an LHS set of maps have an 
additional bias (underestimation of SH, overestimation of Sθ) 
compared to SRS estimates. This additional bias can be 
explained by the fact that spatial correlation is disturbed by 
the LHS procedure. Fig 4. shows that maps from a LHS set 
have smaller spatial correlations than those from a SRS set, 
as discussed in (Pebesma and Heuvelink, 1999). But spatial 
correlation in map H influences the value of VM and thus the 
values of sensitivity indices. (2) and (5) show that VM 
decreases when spatial correlation in map H decreases 
(smaller range parameter a). This results in an additional 
underestimation of sensitivity indice SH when estimated with 
a LHS set of maps. 

C. Discussion  

LHS sampling of Gaussian random field H yields some 
improvement to the variability of sensitivity indices 
estimates but no significant improvement to estimates bias. 
These results can be explained by a general property of LHS: 
the more the target quantity (here the sensitivity indices) is 
additive in the variables sampled, the more LHS improves on 
SRS (Pebesma and Heuvelink, 1999). Here the values of 
sensitivity indices depend heavily on the variance VM of M, 
the average water level over the study area ((5), (6) and (7)). 
But VM is not additive in sampled water levels hu: as a result, 
the efficiency gain brought by LHS procedure is small. 

TABLE III.  EXACTNESS (RELATIVE BIAS IN %) OF THE ESTIMATES OF 

EM (EXPECTATION OF M) AND VM, USING EITHER LHS OR SRS SIMULATION 

STRATEGY, FOR DIFFERENT NUMBER n OF GENERATED MAPS 

n = 10 n = 100 n = 200 Relative 

Bias SRS LHS SRS LHS SRS LHS 

( )MÊε  -0.20a -0.014 -0.54 -2.10-3 -0.13 -4.10-5 

( )MV̂ε  -0.74 -0.28 -1.10 0.46 -0.59 -0.21 

a. Mean value of relative bias over 100 replicas 

 

Figure 4.  Average semivariograms for exponential model, SRS set of 

maps and LHS set of maps, n = 10 maps. 

As an illustration, Tab 3. gives relative bias of estimates 
of expectation EM and variance VM, computed on SRS and 
LHS sets of maps. LHS brings a tremendous gain in estimate 
bias for the expectation EM (additive in sampled water levels 
hu), but no significant gain for the variance VM. 

V. CONCLUSION 

Sobol’ sensitivity indices were estimated on an artificial 
spatial model (derived from a complex model for flood risk 
economic assesment) with a 2D spatial input (a Gaussian 
random field), and compared to their analytical values. Two 
sampling strategies were used to generate realizations of 
input Gaussian random field: Simple Random Sampling and 
Latin Hypercube Sampling (higher CPU cost). Results show 
that (1) LHS sensitivity indices estimates have a significantly 
smaller variance (2) LHS sampling brings no significant 
improvement in estimates bias (3) for small sample size, 
disturbance of spatial correlation by LHS procedure yields an 
additional bias in estimates. 

The poor improvement brought by LHS sampling comes 
from sensitivity indices not being additive in the variables 
sampled. Other ways should be sought to select input map 
realizations to perform sensitivity analysis of spatial models. 
These conclusions would be different if SA was computed 
“locally”, i.e. with a spatially distributed output (e.g. a map 
of damage). In this latter case, the spatial dimension of the 
problem would be reduced, and we could expect LHS to 
bring the same improvement as in a nonspatial context. 
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