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1CIRAD, UMR Développement et Amélioration des Plantes & INRIA, Virtual Plants,

TA A-96/02, 34398 Montpellier Cedex 5, France

2Montpellier 3 University, Institut de Mathématiques et de Modélisation de Montpellier,
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Summary: Tree growth is assumed to be mainly the result of three components: (i) an endogenous

component assumed to be structured as a succession of roughly stationary phases separated by

marked change points that are asynchronous between individuals, (ii) a time-varying environmental

component assumed to take the form of synchronous fluctuations between individuals, (iii) an

individual component corresponding mainly to the local environment of each tree. In order to identify

and characterize these three components, we propose to use semi-Markov switching linear mixed

models, i.e. models that combine linear mixed models in a semi-markovian manner. The underly-

ing semi-Markov chain represents the succession of growth phases and their lengths (endogenous

component) while the linear mixed models attached to each state of the underlying semi-Markov

chain represent -in the corresponding growth phase- both the influence of time-varying climatic

covariates (environmental component) as fixed effects, and inter-individual heterogeneity (individual

component) as random effects. In this paper we address the estimation of Markov and semi-Markov

switching linear mixed models in a general framework. We propose a MCEM-like algorithm whose

iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii)

prediction of random effects given state sequences, (iii) maximization. The proposed statistical

modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine

trunks influenced by climatic covariates.



Key words: Individual random effect; Markov switching model; MCEM algorithm; Plant struc-

ture analysis; Semi-Markov switching model.
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1. Introduction1

The analysis of plant structure at macroscopic scales is of major importance in forestry2

and different fields of agronomy; see Durand et al. (2005) and Guédon et al. (2007) for3

illustrations. Tree development can be reconstructed at a given observation date from mor-4

phological markers corresponding to past events. Observed growth, as given for instance5

by the length of successive annual shoots along a tree trunk, is assumed to be mainly the6

result of three components: an endogenous component, an environmental component and7

an individual component. The endogenous component is assumed to be structured as a8

succession of roughly stationary phases that are asynchronous between individuals (Guédon9

et al., 2007) while the environmental component is assumed to take the form of fluctuations10

that are synchronous between individuals. This environmental component is thus assumed to11

be a “population” component as opposed to the individual component. The environmental12

factors that modulate plant development are mainly of climatic origin such as rainfall or13

temperature. The individual component may cover effects of diverse origins but always14

includes an individual genetic effect in the case of a tree population characterized by a15

genetic diversity. Other effects correspond to the local environment of each individual, e.g.16

competition between trees for light or nutrient resources.17

A Gaussian hidden Markov chain (or Markov switching Gaussian model) (Ephraim and18

Merhav, 2002; Cappé et al., 2005) can be defined as a pair of stochastic processes {St, Yt}19

where the output process {Yt} is related to the state process {St}, which is a finite state20

Markov chain, by the Gaussian distribution Yt|St = st ∼ N (µst
, Γ2

st
). Markov switching linear21

models extend the class of Gaussian hidden Markov chains by incorporating the influence22

of covariates as fixed effects in the output process; see Fruhwirth-Schnatter (2006) for an23

overview of Markov switching models with different applications. In the literature, hidden24

Markov models with random effects in the output process have been used in a limited way.25
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Altman (2007) introduced Markov switching generalized linear mixed models and applied1

these models to longitudinal data; see also (Rijmen et al., 2008). Both Altman (2007)2

and Rijmen et al. (2008) assumed that the individual random effect and its variance are3

independent of the non-observable states.4

A major drawback with hidden Markov models is the inflexibility in describing the time5

spent in a given state which is assumed to be geometrically distributed. It is unlikely that6

such a type of implicit state occupancy distribution is an appropriate model for tree growth7

phases. Guédon et al. (2007) applied hidden semi-Markov chains with simple observation8

distributions to forest tree growth data. Hidden semi-Markov chains (Guédon, 2003) gener-9

alize hidden Markov chains with the distinctive property of explicitly modeling the sojourn10

time in each state. Here we introduce semi-Markov switching linear mixed models that11

generalize both hidden semi-Markov chains and Markov switching linear mixed models. In our12

application context, the underlying semi-Markov chain represents the succession of growth13

phases and their lengths while the linear mixed models attached to each state of the semi-14

Markov chain represent -in the corresponding growth phase- both the effect of time-varying15

climatic covariates as fixed effects and inter-individual heterogeneity as random effects. In16

this paper, we will consider two types of random effect: (i) an individual random effect17

(common across states), and (ii) individual state-specific random effects. In both cases, we18

assume that the random effect variance depends on the non-observable state. The objective19

is both to characterize the tree population and analyse the behavior of each individual within20

the population.21

Since both the states of the underlying Markov (respectively semi-Markov) chain and22

the random effects are non-observable, Markov (respectively semi-Markov) switching linear23

mixed models involve two latent structures and remain difficult to estimate. Altman (2007)24

proposed a deterministic and a stochastic approximation method for estimating Markov25
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switching generalized linear mixed models. The deterministic approximation approach com-1

bines numerical integration by Gaussian quadrature and quasi-Newton methods, and relies2

on the fact that the hidden Markov model likelihood can be written as a product of matrices.3

Since the hidden semi-Markov model likelihood cannot be written as a product of matrices,4

this deterministic approximation method cannot be transposed to the semi-Markovian case.5

Moreover, the deterministic approximation approach can only be applied in the case of a6

few random effects. The stochastic approximation method is a Monte Carlo EM (MCEM)7

algorithm (Wei and Tanner, 1990) where the M-step involves quasi-Newton routines. Altman8

underlined some limitations of the two proposed methods such as sensitivity to starting val-9

ues, slowness to converge and a strong computation burden. Since conditional independence10

assumptions within a Markov switching generalized linear mixed model can be represented11

by a directed acyclic graph, Rijmen et al. (2008) proposed to implement the E-step of the12

EM algorithm by a junction tree algorithm. The M-step involves numerical integration by13

Gaussian quadrature and Fisher scoring methods. Since conditional independence assump-14

tions within a hidden semi-Markov model cannot be efficiently represented by a directed15

acyclic graph, this method cannot be transposed to the semi-Markovian case. Moreover, the16

approaches proposed by Altman (2007) and Rijmen et al. (2008) cannot be transposed to17

our context where the random effects may be attached to the states. Kim and Smyth (2006)18

proposed an estimation method for a “left-right” semi-Markov switching linear mixed model19

with individual state-specific random effects. Thus, the states are ordered and each state can20

be visited at most once. Their proposed method, which is basically an application of the EM21

algorithm based on a forward-backward algorithm for the E-step, relies heavily on the two22

specific model assumptions (state visited at most once and individual state-specific random23

effects). Its complexity is cubic in the sequence length (because of the computation of the24

marginal observation distributions for each possible state segment location).25
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For stochastic models involving a latent structure such as Markov or semi-Markov switching1

models, Markov chain Monte Carlo (MCMC) algorithms can be difficult to implement and2

suffer from problems such as poor mixing and the difficulty of diagnosing convergence; see3

Fearnhead (2008) and references therein. Here we propose a non-MCMC method which is a4

MCEM-like algorithm for estimating, in a general framework including as particular cases5

“ left-right” and ergodic models, Markov and semi-Markov switching linear mixed models6

with either individual or individual state-specific random effects. Its iterations decompose7

into three steps: (i) sampling of state sequences given random effects, (ii) prediction of8

random effects given state sequences, (iii) maximization.9

This paper is organized as follows. Markov and semi-Markov switching linear mixed models10

are formally defined in Section 2. The maximum likelihood estimation of both Markov and11

semi-Markov switching linear mixed models using the proposed MCEM-like algorithm is12

presented in Section 3. The semi-Markov switching linear mixed model is illustrated in13

Section 4 by the analysis of successive annual shoots along Corsican pine trunks. Section 514

consists of concluding remarks.15

2. Model definition16

Let {St} be a Markovian model with finite state space {1, . . . , J}. A J-state Markov chain17

is defined by the following parameters:18

• initial probabilities πj = P (S1 = j), j = 1, . . . , J with
∑

j πj = 1,19

• transition probabilities p̃ij = P (St = j|St−1 = i), i, j = 1, . . . , J with
∑

j p̃ij = 1.20

A J-state semi-Markov chain is defined by the following parameters:21

• initial probabilities πj = P (S1 = j), j = 1, . . . , J with
∑

j πj = 1,22

• transition probabilities23
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– nonabsorbing state i: for each j 6= i, pij = P (St = j|St 6= i, St−1 = i), with
∑

j 6=i pij = 11

and pii = 0,2

– absorbing state i: p̃ii = P (St = i|St−1 = i) = 1 and for each j 6= i, p̃ij = 0.3

• An explicit occupancy (or sojourn time) distribution is attached to each nonabsorbing4

state:5

dj(u) = P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u − 2|St+1 = j, St 6= j), u = 1, 2, . . . , Uj

where Uj denotes the upper bound to the time spent in state j and
∑Uj

u=1 dj(u) = 1.6

We define as possible parametric state occupancy distributions binomial distributions,7

Poisson distributions and negative binomial distributions with an additional shift parameter8

h (h > 1) which defines the minimum sojourn time in a given state; see Web Appendix A9

for definitions of these parametric state occupancy distributions.10

Since t = 1 is assumed to correspond to a state entering, the following relation is verified11

P (St+1 6= j, St−v = j, v = 0, . . . , t − 1) = dj (t) πj.

Let Ya,t be the observation and Sa,t be the non-observable state for individual a (a =12

1, . . . , N), at time t (t = 1, . . . , Ta). Let Y Ta

a,1 = (Ya,1, Ya,2, . . . , Ya,Ta
) denote the Ta-dimensional13

vector of observations for individual a, and Y the T -dimensional vector of all observations14

with T =
∑N

a=1 Ta. The vectors of non-observable states, STa

a,1 and S, are defined analogously.15

A Markov (respectively semi-Markov) switching linear mixed model can be viewed as a16

pair of stochastic processes {Sa,t, Ya,t} where the output process {Ya,t} is related to the17

state process {Sa,t}, which is a finite state Markov (respectively semi-Markov) chain, by18

a linear mixed model. We introduce two nested families of Markov (respectively semi-19

Markov) switching linear mixed models which differ in the assumptions made concerning20

inter-individual heterogeneity in the output process:21
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• Individual random effect:1

Given state Sa,t = sa,t, Ya,t = Xa,tβsa,t
+ τsa,t

ξa + ǫa,t, (1)

ξa ∼ N (0, 1), ǫa,t |Sa,t = sa,t ∼ N (0, σ2
sa,t

).

The individual status (compared to the average individual) within the population is com-2

mon to all the states. The random effect ξa is thus common to all the states but the random3

effect standard deviation τsa,t
depends on the state.4

• Individual state-specific random effect:5

Given state Sa,t = sa,t, Ya,t = Xa,tβsa,t
+ τsa,t

ξa,sa,t
+ ǫa,t, (2)

ξa,sa,t
∼ N (0, 1), ǫa,t |Sa,t = sa,t ∼ N (0, σ2

sa,t
).

The individual status is different in each state. The random effect ξa,sa,t
(with the attached6

standard deviation τsa,t
) depends thus on the state.7

In these definitions, Xa,t is the Q-dimensional row vector of covariates for individual a at8

time t. Given the state Sa,t = sa,t, βsa,t
is the Q-dimensional fixed effect parameter vector9

and σ2
sa,t

is the residual variance. The individuals are assumed to be independent.10

In our context, the random effects ξa or ξa,sa,t
are standardized (i.e. follow the standard11

Gaussian distribution). This formalization is in particular appropriate for the individual12

random effect model where the random effect variance changes with state; see Foulley and13

Quaas (1995). In the individual state-specific random effect models, the random effects14

for an individual a are assumed to be mutually independent (cov(ξa,j, ξa,j′) = 0; j 6= j′).15

Including random effects in the output process removes the assumption that the successive16

observations for an individual are conditionally independent given the non-observable states.17

In the individual state-specific random effect models, observations in different states for18

an individual a are assumed to be conditionally independent given states (for t 6= t′,19

cov(Ya,t, Ya,t′|STa

a,1 = sTa

a,1) = 0 if sa,t 6= sa,t′ and cov(Ya,t, Ya,t′|STa

a,1 = sTa

a,1) = τ 2
sa,t

if sa,t = sa,t′).20
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In the individual random effect models, observations in different states for an individual a1

are not assumed to be conditionally independent given states (cov(Ya,t, Ya,t′|STa

a,1 = sTa

a,1) =2

τsa,t
τsa,t′

for t 6= t′). In state j, the introduction of random effects makes it possible to3

decompose the total variance Γ2
j = τ 2

j + σ2
j into two parts: variance due to inter-individual4

heterogeneity τ 2
j and residual variance σ2

j .5

3. Maximum likelihood estimation with a Monte Carlo EM-like algorithm6

The maximum likelihood estimation is presented in the case of Markov switching linear7

mixed models with individual state-specific random effects. The extension to semi-Markov8

switching linear mixed models and the transposition to individual random effect models9

are straightforward. Markov switching linear mixed model parameters can be divided into10

two categories: parameters π = (πj; j = 1, . . . , J) and P̃ = (p̃ij; i, j = 1, . . . , J) of the11

underlying Markov chain and parameters β = (βj; j = 1, . . . , J), τ = (τj; j = 1, . . . , J)12

and σ2 = (σ2
j ; j = 1, . . . , J) of the J linear mixed models. In the following, we denote by13

θ = (π, P̃ , β, τ, σ2) the set of parameters to be estimated.14

Let ξJ
a,1 = (ξa,j; j = 1, . . . , J) be the J-dimensional random effect vector for individual a.15

The likelihood function of the observed data is given by16

L(y; θ) =
N∏

a=1

∫ { ∑

s
Ta
a,1

f(sTa

a,1, ξ
J
a,1, y

Ta

a,1; θ)

}
dξJ

a,1

=
N∏

a=1

∫ { ∑

s
Ta
a,1

f(sTa

a,1; θ)f(ξJ
a,1; θ)f(yTa

a,1 | sTa

a,1, ξ
J
a,1; θ)

}
dξJ

a,1, (3)

where
∑

s
Ta
a,1

means “sum over every possible state sequences of length Ta for individual a”.17

Since both the states of the underlying Markov chain and the random effects are non-18

observable, the EM algorithm (McLachlan and Krishnan, 2008) at first sight appears to be19

a natural candidate for estimating Markov switching linear mixed models. Let us consider20

the complete-data log-likelihood where both the observed data y, the random effects ξ and21
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the states s of the underlying Markov chain are observed:1

log f(s, ξ, y; θ) =
N∑

a=1

log f(sTa

a,1, ξ
J
a,1, y

Ta

a,1; θ)

=
N∑

a=1

{
log f(sTa

a,1; θ) + log f(ξJ
a,1; θ) + log f(yTa

a,1 | sTa

a,1, ξ
J
a,1; θ)

}

=
N∑

a=1

J∑

j=1

I
(
sa,1 = j

)
log πj

+
N∑

a=1

Ta∑

t=2

J∑

i,j=1

I
(
sa,t = j, sa,t−1 = i

)
log p̃ij

+
N∑

a=1

J∑

j=1

log φ(ξa,j; 0, 1)

+
N∑

a=1

Ta∑

t=1

J∑

j=1

I
(
sa,t = j

)
log φ(ya,t; Xa,tβj + τjξa,j, σ

2
j ), (4)

where φ(y; µ, σ2) is the Gaussian density with mean µ and variance σ2, and I() is the indicator2

function.3

The E-step of the EM algorithm requires calculating the conditional expectation of4

log f(s, ξ, y; θ) given the observed data y and the current value of θ. But the EM algorithm5

for hidden Markov models cannot be applied because the successive observations for an6

individual are not conditionally independent given the non-observable states; see Section 2.7

The EM algorithm for a finite mixture of linear mixed models (Celeux et al., 2005) cannot8

be adapted because the distributions of ξa,j |Y Ta

a,1 = yTa

a,1 and ξa,j |Sa,t = j, Y Ta

a,1 = yTa

a,1 cannot9

be analytically derived for each individual a at time t. Thus, the Monte Carlo EM algorithm10

(Wei and Tanner, 1990), where the quantities computed in the deterministic E-step are11

approximated using Monte Carlo methods, provides an alternative approach.12

For the presentation of the estimation algorithm, we adopted the framework of restoration-13

maximization (RM) algorithms proposed by Qian and Titterington (1991). The MCEM algo-14

rithm proposed by Altman (2007) can be interpreted as a RM algorithm with two restoration15

steps for the two latent structures, an unconditional stochastic one for the random effects16
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and a conditional deterministic one for the state sequences (the unconditional/conditional1

qualifier refers to the other latent structure). We cannot adopt a similar approach with2

an unconditional restoration step since, in our definition of Markov switching linear mixed3

models (see Section 2), the random effects may be attached to the states. Hence, following4

Shi and Lee (2000), we chose rather to perform two conditional restoration steps, one for the5

state sequences given the random effects (and the observed data) and one for the random6

effects given the state sequences (and the observed data).7

The proposed RM algorithm takes thus the following form:8

1. Choose starting values θ(0) and ξ(0) for k = 0.9

2. a. Conditional restoration step (R-step) for state sequences :10

For each individual a, sample Mk state sequences sTa

a,1(m) from the conditional11

distribution P (STa

a,1 = sTa

a,1 | ξJ
a,1(m), Y Ta

a,1 = yTa

a,1; θ
(k)) using:12

• a direct application of the forward-backward algorithm proposed by Chib (1996)13

in the Markov switching model case; see Web Appendix B;14

• a direct application of the forward-backward algorithm proposed by Guédon15

(2007) in the semi-Markov switching model case; see Web Appendix C.16

b. Conditional restoration step for random effects; see Section 3.1 :

For each individual a, compute for each sampled state sequence, m = 1, . . . ,Mk, the

best posterior prediction

ξJ
a,1(m) = E

(
ξJ
a,1 |STa

a,1 = sTa

a,1(m), Y Ta

a,1 = yTa

a,1; θ
(k)

)
.

c. Maximization step (M-step); see Section 3.2 :

Choose θ(k+1) that maximizes

1

Mk

N∑

a=1

Mk∑

m=1

log f
(
sTa

a,1(m), ξJ
a,1(m), yTa

a,1; θ
(k)

)
.

d. Sample size increase step:17
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Set k = k + 1 and increase the number of sampled state sequences. If Mk+1 > Mk,1

sample with replacement Mk+1 random effects among the Mk predicted random2

effect.3

3. If convergence is achieved, then declare θ(k+1) to be maximum likelihood estimator;4

otherwise, return to step 2.5

Since Markov (respectively semi-Markov) chain parameters and linear mixed model pa-6

rameters form disjoint sets and influence the complete-data log-likelihood separately (see7

Equation 4 in the Markov switching model case and Web Equation 15 in Web Appendix8

D in the semi-Markov switching model case), Markov (respectively semi-Markov) chain9

parameters can be updated when the state sequences S are sampled, and linear mixed10

model parameters can be updated when the random effects ξ are predicted. It makes sense11

to re-estimate the parameters immediately before performing the conditional R-step for the12

other latent structure in order to speed up the convergence.13

The forward-backward algorithm for sampling state sequences given the random effects can14

be decomposed into two passes, a forward recursion which is similar to the forward recursion15

of the usual forward-backward algorithm and a backward pass for sampling state sequences;16

see Web Appendix B for Markov switching linear mixed models and Web Appendix C for17

semi-Markov switching linear mixed models.18

3.1 Prediction of random effects given state sequences19

The predicted vector for the random effects ξJ
a,1(m) attached to the mth state sequence20

sampled for individual a is:21

ξJ
a,1(m) = E

(
ξJ
a,1 |STa

a,1 = sTa

a,1(m), Y Ta

a,1 = yTa

a,1; θ
(k)

)

= ΩU ′
a(m)

{
Ua(m)Ω2U ′

a(m) + diag(Ua(m)σ2)
}−1(

yTa

a,1 −
J∑

j=1

Ia,j(m)Xaβj

)
, (5)

where22
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• sTa

a,1(m) is the mth state sequence sampled for individual a,1

• Ω = diag(τj; j = 1, . . . , J) is the J × J random standard deviation matrix,2

• Ua(m) is the Ta × J design matrix associated with state sequence sTa

a,1(m), composed of 13

and 0, where ua,t(m) =
(
I(sa,t(m) = 1), . . . , I(sa,t(m) = J)

)
is the tth row with row sums,4

∑
j Ua(m)(t, j) = 1 and the sum of all elements,

∑
t

∑
j Ua(m)(t, j) = Ta,5

• σ2 = (σ2
1, . . . , σ

2
J)′ is the J-dimensional residual variance vector,6

• diag(Ua(m)σ2) is the Ta×Ta diagonal matrix with (ua,t(m)σ2; t = 1, . . . , Ta) on its diagonal,7

• Ia,j(m) = diag
{

I(sa,t(m) = j), t = 1, . . . , Ta

}
is a Ta × Ta diagonal matrix,8

• Xa is the Ta × Q matrix of covariates.9

3.2 Maximization-step10

The M-step is presented in the case of Markov switching linear mixed models. The M-11

step for semi-Markov switching linear mixed models is presented in Web Appendix D. In12

the proposed MCEM-like algorithm, the conditional expectation of the complete-data log-13

likelihood (Equation 4) given the observed data is approximated at iteration k by14

E
{

log f(S, ξ, Y ; θ) |Y = y; θ(k)
}

=
N∑

a=1

E
{

log f(STa

a,1, ξ
J
a,1, Y

Ta

a,1 ; θ) |Y Ta

a,1 = yTa

a,1; θ
(k)

}

≈ 1

Mk

N∑

a=1

Mk∑

m=1

log f
(
sTa

a,1(m), ξJ
a,1(m), yTa

a,1; θ
(k)

)

≈ 1

Mk

N∑

a=1

Mk∑

m=1

J∑

j=1

I
(
sa,1(m) = j

)
log π

(k)
j

+
1

Mk

N∑

a=1

Mk∑

m=1

Ta∑

t=2

J∑

i,j=1

I
(
sa,t(m) = j, sa,t−1(m) = i

)
log p̃

(k)
ij

+
1

Mk

N∑

a=1

Mk∑

m=1

J∑

j=1

log φ(ξa,j(m); 0, 1)

+
1

Mk

N∑

a=1

Mk∑

m=1

Ta∑

t=1

J∑

j=1

I
(
sa,t(m) = j

)
log φ(ya,t; Xa,tβ

(k)
j + τ

(k)
j ξa,j(m), σ

2(k)
j ). (6)
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At iteration k, the new values for the parameters of the Markov switching linear mixed1

model are obtained by maximizing the different terms of Equation 6, each term depending2

on a given subset of θ.3

For the parameters of the underlying Markov chain, we obtain:4

• initial probabilities5

π
(k+1)
j =

∑
a

∑
m I

(
sa,1(m) = j

)

NMk

,

• transition probabilities6

p̃
(k+1)
ij =

∑
a

∑
m

∑Ta

t=2 I
(
sa,t(m) = j, sa,t−1(m) = i

)

∑
a

∑
m

∑Ta

t=2 I
(
sa,t−1(m) = i

) .

For the parameters of the J linear mixed models, we obtain:7

• fixed effect parameters8

β
(k+1)
j =

( ∑

a

∑

m

X ′
aIa,j(m)Xa

)−1{ ∑

a

∑

m

X ′
aIa,j(m)

(
yTa

a,1 − τ
(k)
j ξa,j(m)

)}
, (7)

• random effect standard deviations9

τ
(k+1)
j =

∑
a

∑
m

∑
t I

(
sa,t(m) = j

)
ξa,j(m)

(
ya,t − Xa,tβ

(k)
j

)

∑
a

∑
m

∑
t I

(
sa,t(m) = j

)
ξ2
a,j(m)

, (8)

• residual variances10

σ
2(k+1)
j =

∑
a

∑
m

(
yTa

a,1 − Xaβ
(k)
j − τ

(k)
j ξa,j(m)

)′

Ia,j(m)
(
yTa

a,1 − Xaβ
(k)
j − τ

(k)
j ξa,j(m)

)

∑
a

∑
m tr(Ia,j(m))

. (9)

These reestimation formulas are thus similar to standard maximum likelihood estimators11

for the different parameters.12

For the computation of standard errors, Wei and Tanner (1990) proposed a Monte Carlo13

version of Louis method where the expectation is replaced by a Monte Carlo procedure14

when using a MCEM algorithm. The Wei and Tanner method can directly be applied in the15

proposed MCEM-like algorithm.16
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3.3 MCEM-like algorithm for individual random effect models1

The application to individual random effect models (linear mixed model (1)) is straightfor-2

ward. Since the individual random effects are incorporated in the output process, the main3

difference concerns the conditional R-step of random effect prediction given a state sequence4

(Equation 5). Using the notations introduced in Section 3.1, the predicted random effect ξa5

for each individual a is given by6

ξa(m) = E
(
ξa |STa

a,1 = sTa

a,1(m), Y Ta

a,1 = yTa

a,1; θ
(k)

)

= τ ′U ′
a(m)

{
Ua(m)ττ ′U ′

a(m) + diag(Ua(m)σ2)
}−1(

yTa

a,1 −
J∑

j=1

Ia,j(m)Xaβj

)
,

where τ = (τ1 · · · τJ)′ is the J-dimensional random effect standard deviation vector. In the7

forward-backward algorithm (see Web Appendix B for Markov switching linear mixed models8

and Web Appendix C for semi-Markov switching linear mixed models) and in the M-step9

(Equations 7, 8 and 9), the random effects ξJ
a,1 are replaced by ξa.10

3.4 Initialisation of the algorithm11

Various simulations were conducted using different starting values. The more distant the12

starting values from true values, the worse the parameter estimates. We recommend choosing13

as starting values the parameters estimated by the EM algorithm for a simple Markov or14

semi-Markov switching linear model (i.e. without random effects).15

3.5 Convergence of the algorithm16

Under the assumption of convergence of random effect predictions, we chose to monitor17

the convergence of the proposed MCEM-like algorithm by the difference between successive18

iterations19

log P (Y = y | ξ(k+1); θ(k+1)) − log P (Y = y | ξ(k); θ(k)). (10)
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The quantity log P (Y = y | ξ(k); θ(k)) is obtained directly as a byproduct of the forward1

recursion.2

3.6 Sample size3

The conditional R-steps rely on the restoration of several pairs (sTa

a,1, ξ
J
a,1) for each individual4

a. As discussed by Wei and Tanner (1990), it is inefficient to start with a large number of5

sampled state sequences Mk. They recommended increasing Mk as the current approximation6

moves closer to the true maximizer.7

4. Application to Corsican pine growth8

The use of semi-Markov switching linear mixed models is illustrated here by an analysis9

of forest tree growth. The data set comprised four sub-samples of Corsican pines planted10

in a forest stand in the “Centre” region (France): 31 6-year-old trees, 29 12-year-old trees11

(first year not measured), 30 18-year-old trees (first year not measured) and 13 23-year-old12

trees (three first years not measured). Tree trunks were described by annual shoot from the13

top to the base where the length (in cm) was recorded for each annual shoot (Figure 1).14

The annual shoot is defined as the segment of stem established within a year. The trees15

were chosen in order to cover the entire range of behaviors and were not subject to any16

silvicultural interventions.17

[Figure 1 about here.]18

We applied the practical approach discussed in Guédon et al. (2007) for determining the19

number of growth phases i.e. the number of states of the underlying non-ergodic semi-Markov20

chain. A “left-right” three-state semi-Markov switching linear mixed model composed of two21

successive transient states followed by a final absorbing state was estimated. Since the last22

year of measurement is arbitrary with regard to tree development, the length of the last23
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growth phase is assumed to be systematically right-censored and cannot be modeled. In1

temperate regions, rainfall can have a one-year-delayed effect (on the number of leaves) or an2

immediate effect (on shoot elongation) depending on whether it occurs during organogenesis3

or elongation. We chose to use an intercept and the centered cumulative rainfall (in mm)4

during a period covering one organogenesis period and one elongation period as fixed effects5

for each linear mixed model. The linear mixed model attached to state j is:6

Given state Sa,t = j, ya,t = βj1 + βj2Xt + τjξa,j + ǫa,t,

ξa,j ∼ N (0, 1), ǫa,t |Sa,t = j ∼ N (0, σ2
j ),

where ya,t is the length of the annual shoot for individual a at time t, βj1 is the intercept,7

Xt is the centered cumulative rainfall at time t (E(Xt) = 0), βj2 is the cumulative rainfall8

parameter and ξa,j is the random effect for individual a in state j. Because of the centering9

of the climatic covariate, the intercept βj1 is directly interpretable as the average length of10

successive annual shoots in state j.11

[Figure 2 about here.]12

The MCEM-like algorithm was initialized with parameters π, P , d, β and σ2 estimated13

without taking the random effects into account (hence, ξ = 0). Once the random effects had14

converged, the convergence of the algorithm was monitored by the difference between two15

consecutive iterations of the observed data log-likelihood given the random effects (Equation16

10). The plot of the values against the iteration rank showed that the estimation algorithm17

converged rapidly by, say, about 70 iterations with Mk = k state sequences sampled for each18

tree at the kth iteration (Figure 2). It should be noted that various strategies were tested19

for increasing the number of sampled state sequences: linearly (McCulloch, 1994), in stages20

(McCulloch, 1997) and geometrically (Caffo et al., 2005). For the Corsican pine data set, the21

parameter estimates were not sensitive to the selected strategy.22
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The MCEM-like algorithm was initialized with a “left-right” model such that πj > 0 for1

each state j, pij = 0 for j 6 i and pij > 0 for j > i for each transient state i. The fact2

that states 1 and 2 are the only possible initial states (with π1 = 0.95 and π2 = 0.05 at3

convergence) and that state 2 cannot be skipped (i.e. p13 = 0 at convergence) is the result of4

the iterative estimation procedure; see Figure 3. The estimated transition probability matrix5

is thus degenerate i.e. for each transient state i, pi i+1 = 1 and pij = 0 for j 6= i + 1. This6

deterministic succession of states supports the assumption of a succession of growth phases.7

It should be noted that the estimated state occupancy distributions for states 1 and 2 are8

far from geometric distributions in terms of shape and relative dispersion; see Figure 3. This9

is an a posteriori justification of the semi-Markovian modeling of the growth phases.10

The state occupancy distributions estimated for a Gaussian hidden semi-Markov chain11

(GHSMC) (i.e. without taking into account the effect of climatic covariates and inter-12

individual heterogeneity) and for a semi-Markov switching linear mixed model (SMS-LMM)13

were compared. When the effect of climatic covariates and inter-individual heterogeneity were14

taken into account, this rendered the growth phases more synchronous between individuals;15

see the estimated state occupancy distributions, in particular their standard deviations, for16

the two models in Table 1 and Figure 3.17

[Figure 3 about here.]18

At convergence of the MCEM-like algorithm, the median predicted random effects were19

computed for each individual based on the random effects predicted for each state in each20

sampled state sequence. The most probable state sequence given the median predicted21

random effects was computed for each observed sequence using a Viterbi-like algorithm22

(Guédon, 2003). This restored state sequence can be viewed as the optimal segmentation of23

the corresponding observed sequence into sub-sequences, each corresponding to a given state.24

The optimal segmentations of the observed sequences were used, in particular, to compute25
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the mean centered cumulative rainfall and the average cumulative rainfall effect in each state1

(see below).2

The marginal observation distribution of the linear mixed model attached to state j is the3

Gaussian distribution N (µj, Γ
2
j) with µj = βj1 + βj2Ej(X) and Γ2

j = τ 2
j + σ2

j where Ej(X)4

is the mean centered cumulative rainfall in state j. The marginal observation distribution5

represents the length of the annual shoots in state j. The marginal observation distributions6

for the different states are well separated (little overlap between marginal observation dis-7

tributions corresponding to two successive states); compare the mean difference µj+1 − µj8

between consecutive states with the standard deviations Γj and Γj+1 in Table 1. The fixed9

part of the three linear mixed models (i.e. βj1 + βj2Xt for each state j) for 18-year-old and10

23-year-old trees is shown in Figure 4. This confirms that the states are well separated with11

little overlap and correspond to a growth increase.12

[Table 1 about here.]13

The average cumulative rainfall effect (i.e. the average amplitude of the climatic fluctua-14

tions) was computed as βj2 ×madj(X) for each state j where madj(X) is the mean absolute15

deviation of the centered cumulative rainfall in state j. The effect of cumulative rainfall was16

weak in the first state (of slowest growth) while it was stronger in the last two states (a17

little less in the second state than in the third state); see Table 1. The proportion of inter-18

individual heterogeneity, defined by the ratio between the random variance τ 2
j and the total19

variance Γ2
j in state j, was greater in early plant life (first two states with approximately20

55%) and decreased slightly in the last state (approximately 47%).21

[Figure 4 about here.]22

The correlation coefficient between the predicted random effect in state 1 and the predicted23

random effect in state 2 was 0.28 while the correlation coefficient between the predicted24

random effect in state 2 and the predicted random effect in state 3 was 0.61. Hence, the25
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behavior of an individual is quite strongly related between the last two states but only1

loosely related between the first two states. A 95% prediction interval (Hulting and Harville,2

1991) was computed to check whether the influence of the predicted random effect for each3

state is significant:4

[−t0.975(N − 1)
σξj√
N

; t0.975(N − 1)
σξj√
N

]

where σξj
is the empirical standard deviation of the predicted random effects for state j.5

Of the 103 Corsican pines, 50 had a significant random effect in each state and of these6

50 individuals, 29 showed a common behavior over all growth phases (i.e. growing either7

more rapidly or slowly than the “average tree” in all growth phases) but 21 showed different8

behaviors between growth phases. Hence, the more general assumption of individual state-9

specific random effect models (linear mixed model (2)) compared to individual random effect10

models (linear mixed model (1)) is more representative of Corsican pine behavior.11

Complementary biological results concerning Corsican pine and sessile oak growth can be12

found in Chaubert-Pereira et al. (2009).13

5. Concluding remarks14

In the proposed MCEM-like algorithm, the conditional restoration step for state sequences15

given random effects relies on simulations while the conditional restoration step for random16

effects given state sequences is deterministic. In this latter case, an alternative solution would17

be to sample random effects applying a Metropolis-Hastings algorithm; see McCulloch (1997).18

The estimation algorithms proposed in this paper can be directly transposed to other19

families of hidden Markov models such as, for instance, hidden Markov tree models; see20

Durand et al. (2005) and references therein. Another interesting direction for further research21

would be to develop the statistical methodology for semi-Markov switching generalized linear22

mixed models to take into account categorical or count response variables (for instance, apex23
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death/life, non-flowering/flowering character, number of growth units per annual shoot in1

the plant architecture context). Since the conditional expectation of random effects given2

state sequences cannot be derived analytically, the proposed MCEM-like algorithm for semi-3

Markov switching linear mixed models cannot be transposed to semi-Markov switching4

generalized linear mixed models, and other conditional restoration steps, for instance based5

on a Metropolis-Hastings algorithm, have to be derived for the random effects.6
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(b) 12 years old
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(c) 18 years old
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(d) 23 years old
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Figure 1. Length of successive annual shoots along Corsican pine trunks: (a) 6-year-old
trees, (b) 12-year-old trees, (c) 18-year-old trees, (d) 23-year-old trees.
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Figure 2. Difference of observed data log-likelihood given random effects between succes-
sive iterations (Equation 10) for the estimated semi-Markov switching linear mixed model
with individual state-specific random effects.
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Figure 3. Estimated underlying semi-Markov chain. Each state is represented by a vertex
which is numbered. Vertices representing transient states are edged by a single line while the
vertex representing the final absorbing state is edged by a double line. Possible transitions
between states are represented by arcs (attached probabilities always equal to 1 are not
shown). Arcs entering in states indicate initial states. The attached initial probabilities are
noted nearby. The occupancy distributions of the nonabsorbing states are shown above the
corresponding vertices. The dotted lines correspond to occupancy distributions estimated for
a Gaussian hidden semi-Markov chain (GHSMC) and the point lines correspond to occupancy
distributions estimated for a semi-Markov switching linear mixed model (SMS-LMM).
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Figure 4. Fixed part of the three observation linear mixed models (i.e. βj1 + βj2Xt for
each state j; ◦: state 1, ∗: state 2, △: state 3) represented by point lines and observed annual
shoot lengths (points): (a) 18-year-old trees, (b) 23-year-old trees.
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State j

1 2 3

Occupancy GHSMC P(1, 1.88) NB(1, 4.36, 0.5)
distributions (year) 2.88, 1.37 5.31, 2.93

mean, sd
SMS-LMM B(2, 4, 0.37) NB(1, 73.29, 0.94)

2.73, 0.68 5.56, 2.20
Regression Intercept βj1 (cm) 7.09 25.79 50.25
parameters (s.e.) (0.14) (0.3) (0.39)

(SMS-LMM)
Cumulative rainfall

parameter βj2 cm.mm−1 2.7 10−3 16.5 10−3 30.9 10−3

(s.e.) (1.2 10−3) (2 10−3) (2.4 10−3)

Average cumulative
rainfall effect

βj2 × madj(X) (cm) 0.23 1.71 3.76
Variability Random variance τ 2

j 5.79 49.89 69.39
decomposition (s.e.) (2.23) (2.14) (2.37)
(SMS-LMM)

Residual variance σ2
j 4.74 39.95 76.86

(s.e.) (0.38) (2.48) (4.61)

Total variance Γ2
j 10.53 89.84 146.25

Proportion of inter-
individual heterogeneity 54.99% 55.53% 47.45%

Marginal GHSMC 6.97, 3.26 26.30, 9.12 54.35, 11.39
observation

distribution (cm)
µj, Γj SMS-LMM 6.99, 3.24 25.88, 9.48 50.32, 12.09

Table 1

Comparison of the estimated Gaussian hidden semi-Markov chain (GHSMC) parameters (i.e. where the influence of
covariates and the inter-individual heterogeneity are not taken into account) with the estimated semi-Markov

switching linear mixed model (SMS-LMM) parameters (state occupancy distributions and marginal observation
distributions). The regression parameters, the cumulative rainfall effect and the variability decomposition are given

for each observation linear mixed model. Standard errors are given in brackets.


