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Introduction

Plants usually show intricate structures whose representation and management are an important
source of complexity of models. Yet plant structures are also repetitive: although not identical, the
organs, axes, and branches at different positions are often highly similar. From a formal perspective,
this repetitive character of plant structures was first exploited in fractal-based plant models (Barnsley,
2000; Ferraro et al., 2005; Prusinkiewicz and Hanan, 1989; Smith, 1984). In particular, L-systems have
extensively been used in the last two decades to amplify parsimonious rule-based models into complex
branching structures by specifying how fundamental units are repeatedly duplicated and modified in
space and over time (Prusinkiewicz et al., 2001). However, the inverse problem of finding a compact
representation of a branching structure has remained largely opened, and is now becoming a key issue
in modeling applications as it needs to be solved to both get insight into the complex organization
of plants and to decrease time and space complexity of simulation algorithms. The idea is that a
compressed version of a plant structure might be much more efficient to manipulate than the original
extensive branching structure. For instance, Soler et al. (2003) have shown that the complexity of
radiation simulation can be drastically reduced if self-similar representations of plants are used. Unfor-
tunately, strict self-similarity has a limited range of applications, because neither real plants nor more
sophisticated plant models are exactly self-similar. Consequently, we propose in this paper an algorithm
that exploit approximate self-similarity to compress plant structures to various degrees, representing a
tradeoff between compression rate and accuracy. This new compression method aims at making possible
to efficiently model, simulate and analyze plants using these compressed representations.

Representing plant architecture

In many applications of plant modeling, detailed geometric representations of plant architecture are
used (Godin, 2000). This comprises a description of both topology and geometry of the plant structure.
Topology is usually represented as a graph where each plant component is represented by a vertex
in the graph. Edges between vertices denote the adjacency relationship between the corresponding
components in the plant. The resulting graph is an unordered tree graph (i.e. a graph with no cycles
and a specified root vertex and such that no ordering is considered on the set of siblings of any vertex).

To represent plant geometry, a first simple solution consists in using a geometric primitive for each
plant component and defining its actual position and orientation in space. Primitives can be cylinders,
cone frustums, polygons or more complex geometric models, possibly resized to represent each particular
plant component. As an alternative to this absolute definition of the plant geometry, the geometry of
each component can be recursively defined relatively to the reference frame of its parent component
in the plant. This relative definition scheme is the basis of the turtle geometric interpretation in L-
systems (Prusinkiewicz and Lindenmayer, 1990). Here, the definition of a topological structure of plant
components is required in order to define the parent relationship. Let us denote p(x) the parent of a
component x, gx its geometric primitive and Mx/p(x) the transformation defining the scaling, location
and orientation of the primitive representing the geometry of x with respect to the reference frame of
its parent p(x). To position the primitive of x in space, we must apply the series of transformations to



each point P of gx to get a corresponding point P ′ correctly located in the 3D space. If h(x) denotes
the height of x in the tree, we thus have:

P ′ = Mx/p(x)Mp(x)/p(p(x))...Mp(h(x)−1)(x)/ph(x)(x)P

In this relative definition, the plant geometry is thus defined by a set of triples {p(x), gx,Mx/p(x)}x∈P

made for each component x of its parent component, its geometric primitive and its transformation
relative to its parent reference frame. If the topology of the plant is specified by a tree graph, we can
assume that each edge from p(x) to x in the graph bears the transformation Mx/p(x) while each vertex
bears the component primitive gx.

Let us consider a plant with N components encoded using machine addresses (pointers) to represent
the linking relation that exists between nodes. If we assume that the size of a pointer to a parent
component is a constant 4 p, that the size of the primitive representing a segment is a constant s, and
that the transformation has a size t, without any compression the amount of memory required to store
the plant topology and geometry so far is N × (p + s + t) bytes.

Exact compression

The problem of constructing a compression of a tree structure has been raised in the early 1970’s.
For ordered trees (trees in which an order between children of any nodes has been defined), previous
algorithms have been proposed to allow the reduction of a tree with complexities ranging in O(n2) to
O(n) (Busatto et al., 2008; Chen and Reif, 1996).Mondet et al. (2009) show also the interest of model
compression for data transmission over the web. In there case, a purely geometric compression scheme
is proposed where branches are encoded only as differences to a template, simply defined as average
geometry of a group of branches with similar complexities. In the case of unordered trees and their
applications to plant architecture, only a few attempts to quantify self-redundancy of plants have been
made in the last ten years (Boudon et al., 2006; Ferraro et al., 2005; Prusinkiewicz, 2004). In a more
recent work (Godin and Ferraro, 2009), we introduced the notion of plant self-nestedness that makes it
possible to formally trade accuracy vs. compression rate in the representation of any branching system.
In this first approach, the similarity between branching systems was considered to be purely structural.
In order to propose a more complete compression method for plants, we extend this notion to take into
account geometry and quasi-isomorphisms between trees.

Self-nested trees are such that all their subtrees of a given height are isomorphic. This notion has
been derived from the possibility to compress unlabeled unordered trees without loss of information
as more compact Directed Acyclic Graphs (DAGs). In any given tree, isomorphisms between subtrees
(i.e. subtrees with exactly the same topological structure) can be exploited to compress the tree by
suppressing completely the related redundancies of tree structure (Godin and Ferraro, 2009). If roots of
isomorphic subtrees are merged, the resulting equivalent structure is a DAG, more compact but strictly
equivalent to the original tree. The topological compression is thus said to be exact.

To extend this exact compression scheme in order to integrate geometry, let us consider the relative
definition of geometry introduced above. We shall now say that two branching structures are isomorphic
if they have both the same structure and the same geometric attributes on all their vertices and edges.
In the relative definition of plant geometry, we can observe that this may be readily exploited. Although
the position and orientation of two branching systems A and B can be different, their geometric models
can be identical, and then, can be represented only once in the plant architecture representation. It
suffices to store the respective transformations in the corresponding edges in the DAG, but keep only
one copy of the entire branching system topology and geometry.

The evaluation of the amount of memory required to store this new data structure is trickier and it
basically depends on the number of nodes and edges of the DAG. As an illustration, let us consider to
simplify a perfect sympodial tree with B branches at each branching point and where all the subtrees

4. In usual implementation, p is generally setup to 4 bytes, however in order to optimized space, p
should be proportional to log2 N



of height h have the same geometry (except for the position and orientation in space). Let us denote
H the height the topological tree. Then the number of vertices in the tree is N = BH − 1. The
size of the memory required for the classical representation of the tree is thus (BH) × (p + s + t)
bytes. Now, if we compress the tree as described above, we obtain a linear DAG (Godin and Ferraro,
2009). The size of the representation is now H × (p + s + B × t). For a dichotomic tree of height
10 (containing N = 210 = 1024 vertices), and typical values of s = 8 bytes, p = 4 bytes, and t = 16
bytes, we reduce the size of the tree representation in memory from 1024 × 13 = 28672 bytes to
10 × (4 + 8 + 16 × 2) = 440 bytes. The quality of a compression scheme is usually expressed using the

compression ration: cr =
size of the output stream
size of the input stream

.

Therefore, for our theoretical perfect dichotomic tree, the compression factor is equal to cr = 0.2%
meaning the DAG uses only 0.2% of the storage space of the original encoding.

Approximate compression

In real plants, branching structures are not perfectly isomorphics and may be isomorphic only
to some degree. Interestingly, tree edit-distances can be used to carry the identification of quasi-
isomophisms in (ordered or unordered) trees (Ferraro and Godin, 2000; Pinter et al., 2008; Zhang,
1996). The complexity of these algorithms is kept polynomial by the use of bottom-up recursion and
dynamic programming. A null distance between two trees (or subtrees) denotes the existence of an
isomorphism between the two structures. In our context, the key idea is to use these algorithms to
compute the distance from a tree T to itself. Obviously the resulting distance is null, but as a by-
product, all the distances between any two subtrees of T are computed recursively in close to quadratic
time. Since a null distance between two subtrees denotes isomorphic structures, these algorithms can be
exploited to build the compression graph of T (Godin and Ferraro, 2009). More generally, a non-null,
but small distance between any two subtrees denotes a quasi-isomorphism between these subtrees. We
thus extended the perfect compression scheme by gathering quasi-isomorphic subtrees into p classes of
equivalence according to an agglomerative clustering method (Ward, 1963).

For each class, an average subtree was determined. Its topology was chosen among the most
represented topology into the class. Its geometry was infered by averaging the geometry of the subtrees
of the class (mean diameter, mean length and mean insertion angle) with regards to their parents. This
made it possible to define a lossy, approximate, DAG compression of T .

The time complexity of the whole process in O(|T |2deg(T ) log deg(T )) is finally due to the tree
comparison algorithm.

a. b.

Figure 1. a. A model Lilac and its compression such that cr = 0.58. b. The original digitalized
Walnut and its compression with a compression ratio of cr = 0.66.

Applications to digitized and simulated plants

The above approach was tested on different plant architectures. We present here results corre-
sponding to the analysis of a model of inflorescence of common lilac Syringa vulgaris (Fig. 1.a), already
described in (Ferraro et al., 2005; Prusinkiewicz et al., 2001) and a digitized walnut tree (Sinoquet



et al., 1997) (Fig. 1.b). On both figures, the left image represent the original plant in which length,
diameter, and orientations of each internodes has been stored as well the topology. Right images show
respectively a compression ratio of 58% and 66% of the storage space but have little noticeable loss of
details or visible artifacts. The lilac inflorescence has been modeled using the notion of branch mapping
(Prusinkiewicz et al., 2001): given two branches of the same order, the shorter branch is identical (up
to the effects of tropisms) to the top portion of the longer branch. This assumption allows building
perfectly self-nested plants and then reaching better compression factors. However, once a certain
threshold of compression is passed, compressed plants show increasingly visible defects.

The compression method presented in this paper is based on suppressing the redundancy embed-
ded in branching systems. This technique is complementary to more geometric oriented compression
techniques such as developed in (Mondet et al., 2009), where the geometric models of branches them-
selves are compressed. Both techniques could in principle be combined and lead to extremely efficient
compression schemes of plant architectures. For instance, an optimized pointer size of DAG encodings
would reduce the compression ratio of both models showed in Fig. 1 to respectively 10% and 28%.
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