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Abstract. Bayesian modelling is fluently employed to assess natwsabrgces. It is associated
with Monte Carlo Markov Chains (MCMC) to get an approximatf the distribution law of
interest. Hence in such situations it is important to be ablproposeN independent realiza-
tions of this distribution law. We propose a strategy for mgkV parallel Monte Carlo Markov
Chains interact in order to get an approximation of an indegent/N-sample of a given target
law. In this method each individual chain proposes candiddor all other chains. We prove
that the set of interacting chains is itself a MCMC methodffierproduct ofV target measures.
Compared to independent parallel chains this method is rntiore consuming, but we show
through example that it possesses many advantages. Thisambpwill be applied to a forest
dynamic model.

1 Introduction

In many models arising in environment (ecology, populatgnamics, renewable resource
management etc.), measuremsnts. . , yr are collected yearly or monthly so that the real-time
constraint is not relevant even if the underlying law feasua temporal structure. State-space
modeling of these data consists in proposing a Markov pecesy;);—:..7, Where the state
process; is not observed ang, are the associated observation process. This processyusual
depends on some unknown paraméteiith given a priori law. The goal of the Bayesian infer-
ence is to determine the a posteriori law(xf.r, #) given the measuremengsr. In the case of
general state-space modeling, we need to utilize apprdiamprocedures. The success of the
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Bayesian inference is mainly due to the development of efiicMonte Carlo approximation
techniquesl[6]. Among them, MCMC methods allow us to sammfalmost any prescribed
distribution law [3]. Still high dimensional or “tricky” ditribution laws are barely tackled by
these techniques and should be approached with realigt@ctations. Together with numerical
Bayesian inference, hidden Markov models for general Spéee have been recently used in
environment sciences and ecology, see &lg. [5]

MCMC algorithms [6] allow us to draw samples from a probadpililistribution 7 (x) dx
known up to a multiplicative constant. This consists in sadially simulating a single Markov
chain whose limit distribution is(z) dz. There exist many techniques to speed up the conver-
gence toward the target distribution by improving the miqomoperties of the chain.

In practice one however can make use of several chains idlgdar#t is then tempting
to exchange information between these chains to improvenmigroperties of the MCMC
samplers. A general framework of “Population Monte Carlas been proposed in this context
[2]. In this paper we propose an interacting method betweeallel chains which provides
an independent sample from the target distribution. Conti@ papers previously cited, the
proposal law in our work is given and does not adapt itselh&ogrevious simulations. Hence,
the problem of the choice of the proposal law still remains.

2 Paralléel/interacting Metropoliswithin Gibbs (MwG) algorithm

Let 7(z) be the probability density function of a target distributatefined or{ IR", B(IR")).
For/ =1,...,n, we define the conditional laws:

To(ze|r-) E 7(2100) /) [ 7(2100) dg (1)

where—¢ £ {m =1 :n;m # ¢}. When we know to sample frorl(1), we are able to use the
Gibbs sampler. Itis possible to adapt our interacting nektbgarallel Gibbs sampler. But very
often we do not know how to sample frofd (1) and therefore wesictan proposal conditional
densitiesr);”(z,) defined for all¢. In this case, we use MwG algorithm.

One iterationX — Z of the parallel/interacting MwG method consists in updatime com-
ponentsX, successivelyfof = 1,... ,n,i.e.[X1.,] — [Z1Xom] — [Z12X34] -+ [Z1n1X0] —
[Z1.,]. For eacly fixed, the subcomponenfs; are updated sequentially for= 1 : N in two
steps:

1. Proposal stepWe sample independently candidateéfj € IR according to:

Y]~ (e[ 2, X XD de,  1<j<n

Z7]

Z} T

def £

Where[[ngvx]]% = leﬁfl 5 XZJrl:n

L i _

We also use the following lighter notatiomfjj‘?""’(ﬂf’) = wf;]‘?””(f\ 1Z,¢, X]5).

2. Selection stepThe subcomponert; could be replaced by one of thé candidated’;'"Y
or stay unchanged according to a multinomial sampling, ¢iselting value is called?,
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le.:
Y} with probability & o) (X7, Y}!)
Zi N N 4
£ ¥~ with probability L oV (X, YY),
X} with probability pi (X}, YY)
where:
£,prop ’
, ef (&' X" T (€l ~i 7 : e > %
a (¢, €)= - g|‘X1 )) ‘?’Jprop(mg) AL, BuXLYEN)E1- 4 ZJ Lo (XYY
1,]

Proposition Let P(X, dZ) the Markov kernel o™ associated with the MwG algorithm,
the measurél(dX) = 7(X1) dX*---7(X"Y)dX" is invariant for the kerneP, i.e. TIP = II.
The proof is detailed ir_[1].

3 Numerical tests

Our aim is to show that making parallel samplers interactccspeed up the convergence
toward the stationary distribution.

An hidden Markov model. We apply the parallel/interacting MwG sampler to a toy peobl
where a good estimateof the target distribution is available. Consider
Ser1 — &Sy + Wy, =bs,+ vy

for ¢ = 1---n, wheres; ~ N (5,Q1), wi.,, andvy,, are centered white Gaussian noises
with variancess? andc?. Suppose thab is known anda = 6 is unknown with a priori
law N (119, o2). We also suppose that.,, vi.,, sy andd are mutually independent.

The state variable is.,, .1 = (51 ., #) and the target law is(sy.,,, J) dsy., dV « law (s1.,, O]y1.0 =
y1.n). We will perform two algorithms:i§ N parallel/interacting MwG samplers and) (N par-
aIIeI/independent MwG samplers For methadlad (i) we performN = 50 parallel samplers

so we compute™ ande'™, ) is an indicator which must decrease and remain close to d smal
value when convergence toward the stationary distribudtmurs.
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Figure 1:Left: Evolution of the indicators(*) for the parallel/independent MWG sampler (- -), astl for the
parallel/interacting MH sampler (-)Right: Evolution of the indicatoe(*) for the parallel/independent MWG
sampler (- -). After 5000 sec. CPU time, the convergenceisfritethod is still unsatisfactory.
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) is based on thé' errors betweett and the kernel density estimates of the target density
based on the final values of methoydr (i) (seelll] for details).

To compare fairly the parallel/independent MwG algorithma ghe parallel/interacted MwG
algorithm, we represent on Figurke 1 the indicatdsande™) not as a function of the iteration
number of the algorithm but as a function of the CPU time. ulre1 (left) we see that even if
one iteration of algorithmi] needs more CPU than one af)( still the first algorithm converges
more rapidly than the second one. This shows the inefficiehpgrallel/independent MwG on
this simple model.

Real case study: atropical forest. Forest dynamics models have emerged to assess the sus-
tainability of the management of tropical forest. Amongeas types of models, matrix models
rely on a description of the forest stand by a discrete dianastribution. The state of a tree
corresponds to its belonging to a diameter class and thes $lo one class to another occur

by discrete time step. Matrix model of forest dynamics retyfour hypotheses (sekl [4] for
details) of which Markov’s hypothesis. So the paralle#naicted MwG algorithm can be used

to calibrate a matrix model. An illustration on a data setot#d from experimental forest plots

in a tropical rain forest of French Guiana will be presented.

4 Conclusion

This work showed that making parallel MCMC chains interamild improve their conver-
gence properties. We presented the basic properties of @d@®Imethod, we did not prove
that the proposed strategy speeds up the convergence.ifficiglidhoint is related to the prob-
lem of the rate of the convergence of the MCMC algorithms. oligh simple examples we
saw that the MwG strategy could be a poor strategy. In thimgtdn our strategy improved the
convergence properties.
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