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Abstract. Bayesian modelling is fluently employed to assess natural ressources. It is associated
with Monte Carlo Markov Chains (MCMC) to get an approximation of the distribution law of
interest. Hence in such situations it is important to be ableto proposeN independent realiza-
tions of this distribution law. We propose a strategy for makingN parallel Monte Carlo Markov
Chains interact in order to get an approximation of an independentN-sample of a given target
law. In this method each individual chain proposes candidates for all other chains. We prove
that the set of interacting chains is itself a MCMC method forthe product ofN target measures.
Compared to independent parallel chains this method is moretime consuming, but we show
through example that it possesses many advantages. This approach will be applied to a forest
dynamic model.

1 Introduction
In many models arising in environment (ecology, populationdynamics, renewable resource

management etc.), measurementsy1, . . . , yT are collected yearly or monthly so that the real-time
constraint is not relevant even if the underlying law features a temporal structure. State-space
modeling of these data consists in proposing a Markov process (xt, yt)t=1···T , where the state
processxt is not observed andyt are the associated observation process. This process usually
depends on some unknown parameterθ with given a priori law. The goal of the Bayesian infer-
ence is to determine the a posteriori law of(x1:T , θ) given the measurementsy1:T . In the case of
general state-space modeling, we need to utilize approximation procedures. The success of the
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Bayesian inference is mainly due to the development of efficient Monte Carlo approximation
techniques [6]. Among them, MCMC methods allow us to sample from almost any prescribed
distribution law [3]. Still high dimensional or “tricky” distribution laws are barely tackled by
these techniques and should be approached with realistic expectations. Together with numerical
Bayesian inference, hidden Markov models for general state-space have been recently used in
environment sciences and ecology, see e.g. [5]

MCMC algorithms [6] allow us to draw samples from a probability distributionπ(x) dx
known up to a multiplicative constant. This consists in sequentially simulating a single Markov
chain whose limit distribution isπ(x) dx. There exist many techniques to speed up the conver-
gence toward the target distribution by improving the mixing properties of the chain.

In practice one however can make use of several chains in parallel. It is then tempting
to exchange information between these chains to improve mixing properties of the MCMC
samplers. A general framework of “Population Monte Carlo” has been proposed in this context
[2]. In this paper we propose an interacting method between parallel chains which provides
an independent sample from the target distribution. Contrary to papers previously cited, the
proposal law in our work is given and does not adapt itself to the previous simulations. Hence,
the problem of the choice of the proposal law still remains.

2 Parallel/interacting Metropolis within Gibbs (MwG) algorithm
Let π(x) be the probability density function of a target distribution defined on(IRn,B(IRn)).

For ℓ = 1, . . . , n, we define the conditional laws:

πℓ(xℓ|x¬ℓ)
def
= π(x1:n)/

∫

π(x1:n) dx¬ℓ . (1)

where¬ℓ
def
= {m = 1 : n; m 6= ℓ}. When we know to sample from (1), we are able to use the

Gibbs sampler. It is possible to adapt our interacting method to parallel Gibbs sampler. But very
often we do not know how to sample from (1) and therefore we consider proposal conditional
densitiesπprop

ℓ (xℓ) defined for allℓ. In this case, we use MwG algorithm.

One iterationX → Z of the parallel/interacting MwG method consists in updating the com-
ponentsXℓ successively forℓ = 1, . . . , n, i.e. [X1:n]→ [Z1X2:n]→ [Z1:2X3:n] · · · [Z1:n−1Xn]→
[Z1:n]. For eachℓ fixed, the subcomponentsX i

ℓ are updated sequentially fori = 1 : N in two
steps:

1. Proposal step:We sample independentlyN candidatesY j
ℓ ∈ IR according to:

Y j
ℓ ∼ πℓ,prop

i,j (ξ|JZ, X i
ℓ, XKi

ℓ) dξ , 1 ≤ j ≤ n
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We also use the following lighter notation:πℓ,prop

i,j (ξ|ξ′) = πℓ,prop

i,j (ξ|JZ, ξ′, XKi
ℓ).

2. Selection step:The subcomponentX i
ℓ could be replaced by one of theN candidatesY 1:N

ℓ

or stay unchanged according to a multinomial sampling, the resulting value is calledZ i
ℓ,
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i.e.:

Z i
ℓ ←
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where:

αi,j
ℓ (ξ, ξ′)

def
=

πℓ(ξ
′|Xi

¬ℓ
)

πℓ(ξ|X
i
¬ℓ
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π
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= 1− 1

N

∑N

j=1 αi,j
ℓ (X i

ℓ, Y
j
ℓ ) .

Proposition Let P (X, dZ) the Markov kernel onIRn×N associated with the MwG algorithm,
the measureΠ(dX) = π(X1) dX1 · · ·π(XN) dXN is invariant for the kernelP , i.e. ΠP = Π.

The proof is detailed in [1].

3 Numerical tests
Our aim is to show that making parallel samplers interact could speed up the convergence

toward the stationary distribution.

An hidden Markov model. We apply the parallel/interacting MwG sampler to a toy problem
where a good estimatêπ of the target distributionπ is available. Consider

sℓ+1 = a sℓ + wℓ , yℓ = b sℓ + vℓ

for ℓ = 1 · · ·n, wheres1 ∼ N (̄s1, Q1), w1:n and v1:n are centered white Gaussian noises
with variancesσ2

w
and σ2

v
. Suppose thatb is known anda = θ is unknown with a priori

lawN (µθ, σ
2
θ). We also suppose thatw1:n, v1:n, s1 andθ are mutually independent.

The state variable isx1:n+1
def
= (s1:n, θ) and the target law isπ(s1:n, ϑ) ds1:n dϑ

def
= law(s1:n, θ|y1:n =

y1:n). We will perform two algorithms: (i) N parallel/interacting MwG samplers and (ii ) N par-
allel/independent MwG samplers. For methods (i) and (ii ) we performN = 50 parallel samplers
so we computeǫ(i) andǫ(ii). ǫ(·) is an indicator which must decrease and remain close to a small
value when convergence toward the stationary distributionoccurs.
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Figure 1:Left: Evolution of the indicatorsǫ(ii) for the parallel/independent MwG sampler (- -), andǫ(i) for the
parallel/interacting MH sampler (–).Right: Evolution of the indicatorǫ(ii) for the parallel/independent MwG
sampler (- -). After 5000 sec. CPU time, the convergence of this method is still unsatisfactory.
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ǫ(·) is based on theL1 errors between̂π and the kernel density estimates of the target density
based on the final values of method (i) or (ii ) (see [1] for details).

To compare fairly the parallel/independent MwG algorithm and the parallel/interacted MwG
algorithm, we represent on Figure 1 the indicatorsǫ(i) andǫ(ii) not as a function of the iteration
number of the algorithm but as a function of the CPU time. In Figure 1 (left) we see that even if
one iteration of algorithm (i) needs more CPU than one of (ii ), still the first algorithm converges
more rapidly than the second one. This shows the inefficiencyof parallel/independent MwG on
this simple model.

Real case study: a tropical forest. Forest dynamics models have emerged to assess the sus-
tainability of the management of tropical forest. Among various types of models, matrix models
rely on a description of the forest stand by a discrete diameter distribution. The state of a tree
corresponds to its belonging to a diameter class and the shifts from one class to another occur
by discrete time step. Matrix model of forest dynamics rely on four hypotheses (see [4] for
details) of which Markov’s hypothesis. So the parallel/interacted MwG algorithm can be used
to calibrate a matrix model. An illustration on a data set obtained from experimental forest plots
in a tropical rain forest of French Guiana will be presented.

4 Conclusion
This work showed that making parallel MCMC chains interact could improve their conver-

gence properties. We presented the basic properties of the MCMC method, we did not prove
that the proposed strategy speeds up the convergence. This difficult point is related to the prob-
lem of the rate of the convergence of the MCMC algorithms. Through simple examples we
saw that the MwG strategy could be a poor strategy. In this situation our strategy improved the
convergence properties.
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