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Fig. 1. The given curve t(a) (solid) and the circle (dashed).
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Fig. 2. r(q) and its first three derivatives.
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Let

qK1 Z tgK1 ðPK1ÞyKOy

ðPK1ÞxKOx

����
����

� �
Z 0:580;

q0 Z tgK1 ðP0ÞyKOy

ðP0ÞxKOx

����
����

� �
Z 0:203

and

q1 Z tgK1 ðP1ÞyKOy

ðP1ÞxKOx

����
����

� �
Z 0:206

be the unsigned angles between the x-axis and the line

segments OPK1, OP0 and OP1, respectively.
Table 1

Comparison of the new results with the results in [1]

Lines Results in [2]

4 P1Z ð5:511; 1:454Þ

6 lZ2.645

7 bK1Z
ðPK1Þy

ðP0ÞxKðPK1Þx
Z1:57

8 b0Z
ðPK1Þy

ðP0ÞxKðP1Þx
Z1:18

9 40ZpKb0Kb1Z0:393

14 R000ðQÞZ ½minKqK%q%qC
rðqÞ; maxKqK%q%qC

rðqÞ�

15 r000 is monotonically increasing

16 R 000(Q)4[0.00434,0.00509]

18 ðQCqKÞQðQKqCÞZ ½0:251;0:233�

20 [r0L,r0R]Z[3.585,3.589]

22–23 A fat curve of width 3.589K3.585Z0.004
We build a new polar coordinate system with the center

point being O and the pole axis being the ray starting from O

and passing through the point P0. Under the new polar

coordinate system, the curve t(a) becomes r(q), where the polar

radius is equal to the distance from t(a) to the new center point

O, i.e.

rðaÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0:2ð2pCaÞcosðaÞKOx

� �2
C e0:2ð2pCaÞsinðaÞKOy

� �2q
;

and the polar angle is:

qðaÞZ tgK1 e0:2ð2pCaÞsinðaÞKOy

e0:2ð2pCaÞcosðaÞKOx

� �
Cq0:

Let

qKZ qK1Kq0 Z 0:377 and qCZ q0 Cq1 Z 0:408:

Then the parametric domain of the curve segment r(q) from

PK1 to P1 is:

QZ ½KqK;qC�Z ½K0:377;0:408�:

Thus, we have:

ðQCqKÞQðQKqCÞZ ½K0:252;0:233�:

For convenience, let r 0(q), r 00(q) and r 000(q) be the first, the

second and the third derivatives of r(q) with respect to q,

respectively. Similarly, let r 0(a), r 00(a) and r 000(a) be the first,

the second and the third derivatives of r(a)with respect to a,

respectively, and let q 0(a), q 00(a) and q 000(a) be the first, the

second and the third derivatives of q(a) with respect to a,

respectively. We have

r 0ðqÞZ
r 0ðaÞ

q0ðaÞ
;

r 00ðqÞZ
r 00ðaÞ

ðq0ðaÞÞ2
K

r 0ðaÞq00ðaÞ

ðq0ðaÞÞ3
;

and
New results

P1Z ð3:511;1:454Þ

lZ2.745

bK1Z tgK1 ðP0ÞyKðPK1Þy
ðP0ÞxKðPK1Þx

��� ���� �
Z1:18

b0Z tgK1 ðP0ÞyKðP1Þy
ðP0ÞxKðP1Þx

��� ���� �
Z1:57;

40ZpKb0KbK1Z0:393

R000ðQÞZ ½minKqK%q%qC
r 000ðqÞ; maxKqK%q%qC

r 000ðqÞ�

r 000(q) is increasing at the beginning, and then decreasing for the

rest part of the curve

R 000(Q)Z[0.586,0.796]

ðQCqKÞQðQKqCÞZ ½K0:252;0:233�

[r0L,r0R]Z[3.554,3.618]

A fat curve of width 3.618K3.554Z0.064
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r 000ðqÞZ
r 000ðaÞ

ðq0ðaÞÞ3
K

3r 00ðaÞq00ðaÞ

ðq0ðaÞÞ4
K

r 0ðaÞq000ðaÞ

ðq0ðaÞÞ4

C
3r 0ðaÞðq00ðaÞÞ2

ðq0ðaÞÞ5
;

which are shown in Fig. 2(b–d), respectively.

As shown in Fig. 2(d), r 000(q) is increasing only at the

beginning, and then monotonically decreasing for the rest part

of the curve, rather than monotonically increasing for the

whole curve segment as declared in [2]. Hence, the range of

r 000(q) from PK1 to P1 is:

R000ðQÞZ ½0:586;0:796�:

Therefore, the radius range of the fat arc is

½r0L;r0R�Z r0 C
1

3!
R000ðQÞðQCqKÞQðQKqCÞ

Z ½3:554;3:618�

according to Formula (11) in [2], and the width of the radius

range is 3.618K3.554Z0.064 rather than 0.004 given by [2].

The comparison of the above results with those in [2] is

summarized in Table 1. In Table 1, the numbers in the ‘Lines’

column are the line numbers of the corresponding results in the

left column of Page 971 of [2].
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