
High quality solid texture synthesis using position and

index histogram matching

Jiating Chen, Bin Wang

To cite this version:

Jiating Chen, Bin Wang. High quality solid texture synthesis using position and index his-
togram matching. Visual Computer, Springer Verlag, 2010, <10.1007/s00371-009-0408-3>.
<inria-00517935>

HAL Id: inria-00517935

https://hal.inria.fr/inria-00517935

Submitted on 16 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00517935

mailto:chenjt04@gmail.com
mailto:wangbins@tsinghua.edu.cn

254 J. Chen, B. Wang

results, such as blurring, missing texture structures, intro-
ducing aberrant voxel colors, and so on. Recently, several
algorithms were proposed to generate high quality solid tex-
tures [2, 9]. However, the quality problems mentioned above
have not been solved yet.

Our algorithm focuses on generating high quality solid
textures from input samples. It is considered that high qual-
ity solid textures should be similar to the exemplars on arbi-
trary slices through the entire volume. We analyze the rele-
vant factors for further improvements of the synthesis qual-
ity, and find that directly copying pixels from the exemplar
to the solid voxels rather than blending, can avoid the prob-
lems such as blurry blending and introducing aberrant voxel
colors. Furthermore, all these pixels being copied equiprob-
ably from the exemplar can preserve most of the texture
structures well. Once these two requirements are satisfied,
high quality solid results can be obtained.

Based on an optimization framework with the k-coher-
ence search [14] and the discrete solver [6], our approach
aims at introducing the position and index histogram match-
ing methods in the re-weighting scheme, which ensure that
all the voxel colors are copied equiprobably from the ex-
emplars, thus both neighborhood matching and histogram
matching are achieved. Since we use the k-coherence search
in the nearest neighborhood search phase, the computation
time is greatly shortened. As expected, experimental results
show that our algorithm outperforms or at least is compa-
rable to the previous solid texture synthesis algorithms in
terms of the synthesis quality.

2 Previous work

Recent years have witnessed significant progress in example-
based texture synthesis algorithms. In general, they can be
classified as local ones [4, 5, 10, 15] and global ones [11,
12]. Local texture synthesis algorithms synthesize an output
texture by pixels [4, 15] or by patches [5, 10]. Global ones
evolve the output texture as a whole, and refine the entire
texture results progressively.

Some per-pixel algorithms achieve quality and speed im-
provements based on the k-coherence search [14], which
provides an efficient trade-off in both speed and quality. The
k-coherence algorithm is divided into two phases: analy-
sis and synthesis. During analysis phase, the algorithm
builds a similarity-set for each input texel. During synthe-
sis phase, the algorithm copies pixel, both the colors and
the source pixel position, from the input to the output. Since
the nearest neighborhood search is limited to a candidate-
set, which is built by taking the union of all pre-computed
similarity-sets of the neighborhood texels for each output
texel during synthesis, a shorter constant time complexity is
reached.

One problem encountered frequently in the optimization-
based texture synthesis [11] is excessive blurry blending,
which is usually introduced by the least square solver, and
may even lead to an undesirable local minima problem. Dis-
crete solver is proposed by Han et al. [6] to address the blur
issue. Instead of blending pixel colors, it selects color di-
rectly from the candidate-sets to update the result pixels,
avoiding the blurry blending problem and retaining the input
position information of each output texel, which is available
for the k-coherence search.

Example-based 2D texture synthesis methods have been
extended to synthesize solid texture. Wei [16] adapted 2D
neighborhood matching synthesis schemes to 3D volumes,
but most of the time got unfavorable results, which are
rather blurring and fail to preserve most texture structures.
Qin and Yang [13] generated solid textures by capturing
the co-occurrences of grayscale levels in the neighborhoods
of 2D images. Since the color channels are closely cor-
related, independent channel synthesis usually leads to vi-
sual artifacts, such as color smearing and bad texture struc-
tures. Jagnow et al. [8] proposed a solid texture synthe-
sis method based on stereology techniques, in which large
texture structures are effectively preserved by modeling for
different particle shapes. However, it tends to omit a num-
ber of fine structures due to the segmentation, and the col-
ors in the result are often slightly different from the ex-
emplar. Most of all, it is specialized for a class of materi-
als and does not support arbitrary examples. Kopf et al. [9]
extended 2D texture optimization techniques to synthesize
solid textures, by introducing a color histogram matching
approach to further improve the synthesized results. Dong
et al. [2] generated solid textures by limiting the synthe-
sis domain to a subset of the voxels around the object sur-
face and performing a parallel spatially deterministic syn-
thesis algorithm on GPU. Though both of them produce
impressive results in many cases, some obvious problems
have not been alleviated. For example, most fine grain de-
tails are missing, and a few distinct texture structures cannot
be well preserved. These quality problems are illustrated in
Fig. 1.

3 Overview

Our algorithm aims at generating high quality solid tex-
tures from 2D exemplars. Inspired by texture optimiza-
tion approach [9, 11], we cast our synthesis process as
an optimization problem. The interesting task here is that
why we introduce the position and index histogram match-
ing methods, and how to synthesize high quality solid
textures by using these two simple but effective meth-
ods.

In our approach, all the voxel colors are supposed to be
copied directly from the exemplars. Hence, it is necessary to

High quality solid texture synthesis using position and index histogram matching 255

Fig. 1 Some quality problems for the synthesized results generated by
previous methods. Wei’s and Aura 3D results are rather blurring and
fail to preserve texture structures. For Jagnow et al., Kopf et al. and
Dong et al.’s results, though large texture structures are preserved, a
number of fine grain details and even some obvious structures enclosed
by the red panes are missing in the synthesized results

keep the source position information for each output voxel
during synthesis process. In optimization phase, we adopt
the discrete solver [6] instead of the least square solver. Dur-
ing the copy operation, we copy not only the pixel color
value, but also the position of each copied pixel, ensuring
that k-coherence acceleration is available in search phase.
It is noted that color histogram matching is not always ef-
ficient in improving the synthesis performance, especially
for texture structures with similar colors. By taking advan-
tage of the source position information, we propose two new
kinds of histogram matching methods, position and index
histogram matching, which compute the histograms of the
source position information for all the synthesis voxels and
the nearest neighborhood indices for the neighborhoods of
the voxels. Both texture structures and color histograms are
effectively preserved synchronously by using the position
and index histogram matching methods.

4 High quality solid texture synthesis

Similarly to the approach of Kopf et al. [9], the energy func-
tion that measures the differences between the solid texture
and the exemplar is defined as

E(s, {e}) =
∑

v

∑

i∈{x,y,z}
‖sv,i − ev,i‖γ

=
∑

v

∑

i∈{x,y,z}

∑

u∈Ni(v)

wv,i,u‖sv,i,u − ev,i,u‖2 (1)

Here e denotes the input exemplar, s denotes the synthesized
solid, sv refers to a single voxel, sv,x , sv,y and sv,z are the
neighborhoods of v in the slices orthogonal to the x, y and z

axes, Ni(v) denotes the neighborhood of the voxel v in the

s0
v ← random pixel from e, ∀v ∈ s

for resolution l = 0 to L do
if l > 0 then

s0
v ← upsample from sv at l − 1

end if
for iteration n = 0 to N do

/Index histogram matching and k-coherence
search are used in search phase./
for all v ∈ s, i ∈ x, y, z do

en+1
v,i ← nearest neighborhood of sn

v,i in e

end for
/Position histogram matching and discrete solver
are used in optimization phase./
sn+1
v ← argminsE(s, {e})

if n == N − 1 then
sv ← sn

v

end if
end for

end for

Fig. 2 Our solid texture synthesis algorithm

slice perpendicular to the ith axis, and the factor γ = 0.8.
More specific issues are discussed in [9].

Our algorithm is multi-resolution and computes the out-
put solid textures from the lowest resolution to the high-
est resolution. It is achieved by solving (1). Before syn-
thesis process, our algorithm requires a preprocessing for
computing a k-coherence similarity-set for each input pixel.
The synthesis process begins with the lowest resolution vol-
ume where the initial value of each voxel is randomly cho-
sen from the exemplar. When synthesizing a higher reso-
lution, we first initialize it by upsampling from the already
synthesized lower resolution result, and then perform syn-
thesis on this level in an iterative way, alternating between
the optimization phase and the search phase, until the syn-
thesized solid achieves good quality. Figure 2 provides the
pseudocode for our solid texture synthesis algorithm.

4.1 Factors for quality improvements

As is well known, an important requirement for solid texture
synthesis is that the Markov Random Field (MRF) assump-
tions should be satisfied. In other words, the solid texture is
supposed to be similar to the exemplar on arbitrary slices
through the volume. And in order to preserve the global
statistics, several parametric approaches such as histogram
matching [1, 7] are introduced. But they are still insufficient
for synthesizing high quality results. One common prob-
lem for previous solid texture synthesis algorithms is blurry
blending, which sometimes introduces aberrant voxel col-
ors and leads to serious visual artifacts. As noted by Han
et al. [6], directly copying pixels from the exemplar to the

256 J. Chen, B. Wang

Fig. 3 Two different synthesized results and their color histograms
compared with the exemplar. Result 1 is synthesized with color his-
togram matching, while Result 2 is synthesized with the position and
index histogram matching. Since the color histograms of the results are
in line with that of the exemplar, color histogram matching is insuffi-
cient to re-weight the wu,i,v in this case

voxels can eliminate this problem. Another problem is that
some unique texture structures in the exemplar are missing
in the result. For example, in Fig. 3, an obvious structure
enclosed by the red pane is missing in Result 1 compared
with the exemplar. Kopf et al. [9] tried to preserve them by
color histogram matching, which is proved to be insufficient
in this case. Therefore, we consider that all the pixels in the
exemplar should have the same probability to appear in the
result, which would adequately preserve most of the texture
structures in the result. Once these factors mentioned above
are satisfied, most of the texture structures, including large
texture structures and fine grain texture details, can be well
preserved, reaching further improvements in synthesis qual-
ity.

4.2 Optimization phase

Kopf et al. [9] adopted the least square solver to minimize
the texture energy. The updated voxel is defined as

sv =
∑

i∈{x,y,z}
∑

u∈Ni(v) wu,i,veu,i,v∑
i∈{x,y,z}

∑
u∈Ni(v) wu,i,v

(2)

Instead, we use the discrete solver [6]. For each updated
voxel, the pixel in the set {s(v)} = {eu,i,v|i ∈ {x, y, z}, u ∈
Ni(v)} that mostly reduces the energy function is chosen for
the updated voxel. In practice, we first calculate a prospec-
tive value sv using (2), and then select a texel eu,i,v from the
set {s(v)} that is most similar to sv for the updated voxel.
Since each voxel is copied directly from the input exemplar,
the blur issue can be avoided.

4.3 Search phase

We adopt the k-coherence search in search phase. A candi-
date-set is built for each output voxel by taking the union
of all similarity-sets of the neighborhood pixels, and then
the best match for each voxel neighborhood is obtained
by searching through the candidate-sets. Initial experiments
show that it is still time consuming for the neighborhood
comparison in a full dimensional space with 8×8 neighbor-
hood. A good trade-off between the quality and speed for
the nearest neighborhood search is achieved by reducing the
full dimensionality from 192 to about 20 dimensions with a
Principal Component Analysis (PCA) algorithm.

4.4 Position and index histogram matching

Kopf et al. [9] preserved global statistics by using a re-
weighting scheme with color histogram matching in the fol-
lowing way:

w′
u,i,v

= wu,i,v

1 + ∑k
j=1 max[0,Hs,j (bj (eu,i,v)) − He,j (bj (eu,i,v))]

(3)

Hs,j and He,j denote the j th histogram of the synthesized
result and the exemplar. H(b) denotes the value of bin b in
a histogram, and bj (c) specifies the bin containing color c

in the histogram Hs,j and He,j . There are two conspicuous
limitations existing in color histogram matching. Firstly, it
works only for color but not for general structure informa-
tion, as demonstrated in Fig. 3. Both color histograms of
Results 1 and 2 keep in step with that of the exemplar, but
some obvious texture structures are missing in Result 1. Sec-
ondly, it even fails to preserve color histograms sometimes.
For example in Fig. 1, the texture structures of white color
enclosed by red panes are missing in Kopf et al.’s result.
One possible reason is that texture channels are improperly
decorrelated. For instance, the weight of a texel A(r, g, b)

expected to be kept in the re-weighting scheme, is reduced
actually according to (3) because one or two bins among
{br(A), bg(A), bb(A)} in the result histogram have a larger
count than those in the exemplar histogram.

4.4.1 Position histogram matching

We first give a primary illustration on the notion of the posi-
tion histogram. It is defined as a 2D grid, with the same size
as the exemplar. Each of the grid unit records the frequency,
appearing in the result volume, of the corresponding pixel
in the exemplar, as illustrated in Fig. 4. In the position his-
togram, the frequency grows with the increase of brightness.
In order to distinguish the place where the frequency is 0, we

High quality solid texture synthesis using position and index histogram matching 257

Fig. 4 Position histograms for two different solid textures. The his-
togram value is 0 in the red parts, and grows with the increase of
brightness in the gray parts

paint it red. In other words, in the red part the corresponding
pixels in the exemplar do not appear in the result. In Fig. 4
the black texture structures corresponding to the red part of
the position histogram are missing in the synthesized result
for Result 1. For Result 2, the frequency of most part of the
position histogram is approximately the same. Therefore, al-
most all the texture structures in the exemplar can be found
in the result volume.

Our main purpose of introducing position histogram
matching is to ensure that most of the pixels in the exem-
plar can be found in the result, and they are required to
equiprobably appear in the result. Once position histogram
matching is satisfied, color histogram matching is satisfied
spontaneously.

Similarly to (3), we modify the weight as

w′
u,i,v = wu,i,v

1 + max[0,H(p(eu,i,v)) − θ] (4)

Here p(eu,i,v) refers to the position of the pixel eu,i,v , H

is the position histogram, H(p) is the value of position p

in histogram H , and θ is the histogram value when all the
pixels from the exemplar completely evenly appear in the re-
sult. Intuitively speaking, when eu,i,v has a large weight w,
it is very likely to choose eu,i,v or a texel similar to eu,i,v for
the updated voxel. Therefore, if the histogram has a smaller
count than θ , the weight should be kept. In the contrary case
that H(p) > θ , we should reduce the weight in order to
make it harder to choose pixel p for the updated voxel, or
else it would converge to the same position, preventing the
pixels equiprobably appearing in the result.

4.4.2 Index histogram matching

Here the index histogram records the frequency of the near-
est neighborhood index corresponding to the neighborhood

Fig. 5 Two kinds of histograms: index histogram (columns 2 and 4)
and position histogram (columns 3 and 5). It can be observed that there
is a significantly positive correlation between the index histogram and
the position histogram

in the exemplar for all the neighborhoods in the result vol-
ume. Each neighborhood in the exemplar is represented by
its center pixel. Hence it is easy for each of the grid unit
to record the corresponding index frequency. This kind of
histogram is also very useful. We notice that the local min-
ima problem for the optimization-based approaches is often
incurred when most nearest neighborhood indices are gath-
ered to the same part in the exemplar. In Fig. 5, we also find
that when most indices gather to some main parts, the struc-
tures corresponding to the red part in position histogram are
missing in the result. Only if the indices distribute equiprob-
ably in the exemplar, most texture structures can be well pre-
served. Therefore, we use the index histogram matching to
restrict most of the nearest neighborhood indices to distrib-
ute equiprobably throughout the exemplar.

In practice, index histogram matching is used to restrict
the nearest neighborhood search. During the search phase,
we modify the distance between two neighborhoods as

d = wd · ‖sv,i − ev,i‖2 (5)

And the weight wd is defined as

wd = 1 + max[0,H(i(ev,i)) − φ] (6)

Here i(ev,i) refers to the nearest neighborhood index corre-
sponding to the pixel ev,i , H(i) is the histogram value of the
index i, and φ is the histogram value when all the indices
completely equiprobably distribute in the exemplar. When
the histogram value H(i(ev,i)) is larger than φ, we increase
the distance d , making it harder to choose ev,i as the near-
est neighborhood index for sv,i . Otherwise, the index would
converge to the same position in the exemplar, failing to pre-
serve the texture structures in the result.

258 J. Chen, B. Wang

Fig. 6 Why we need these two histogram matching methods: with-
out index histogram matching, the nearest neighborhood indices would
gather to some parts in the exemplar easily; and without position his-

togram matching, some fine grain details may be missing due to the
color average. High quality results could be generated when both of
them are used jointly

4.4.3 Benefits of position and index histogram matching

Both position and index histogram matching methods de-
pend on each other. We illustrate the necessity of both
of them for our histogram matching in Fig. 6. Without
the index histogram matching, the indices usually converge
to some certain parts in the exemplar, and the pixels are
also picked from those parts even using position histogram
matching. And though the nearest neighborhood indices dis-
tribute equiprobably in the exemplar by using index his-
togram matching, some fine grain details are missing with-
out using position histogram matching. Figure 6 demon-
strates that the index histogram matching is more powerful
than the position histogram matching, and high quality syn-
thesized results are obtained when both of them are used
jointly.

We notice that the index histogram matching is also ap-
plicable for most other texture synthesis methods in im-
proving the synthesis quality, since it only needs to record
the position of the nearest neighborhood index in the ex-
emplar. Once it is used in the optimization-based meth-
ods, most nearest neighborhood indices distribute equiprob-
ably in the exemplar. Hence the undesirable local min-
ima problem can be effectively avoided. Our position and
index histogram matching methods also allow synthesis
controlling. For example, some texture structures are re-
quired to appear more in the result. In this case, θ or φ

is not constant. θ(p) or φ(p) is different at different po-
sitions. The texture structures from the position p appear
more in the synthesized result, with the increase of θ(p)

or φ(p).

5 Result and discussion

We first implement our synthesis algorithm by using a three-
level synthesis pyramid, with an 8 × 8 neighborhood at the
lower two levels and a 6 × 6 neighborhood at the highest
level, and k = 5 for k-coherence search. It takes only about
5 iterations to obtain good quality results at the higher two
levels. Due to the fewer iterations and k-coherence search,
synthesizing a 1283 solid texture takes less than 10 minutes
on a 2.2 GHz CPU. Therefore, the synthesis time is shorter
than that of Kopf et al. [9], and it is independent of the size
and richness of the exemplars.

In Fig. 7, we show some of our synthesized results. It
could be seen that our technique works well for a wide
range of textures varying from isotropic to anisotropic, from
low-frequency to high-frequency, from fine-grain-detailed
to strong-large-structured, and so on. And in order to show
the consistence of the interior synthesized texture, a cutting
part of the bunny in Fig. 8 reveals a consistent stone texture
in the interior with our approach.

Figure 91 shows the comparison of our method with some
previous methods. It could be observed that, in comparison
with Kopf et al.’s [9], our results do not suffer from color
blurring, as well as most fine grain details and sparse texture

1In the top two rows, the tomatoes and caustic results of Kopf et al.
are from http://johanneskopf.de/publications/solid/textures/index.html
and then rendered by our method under the same conditions,
and it is the same to Dong et al.’s result, which is from
http://www.dongallen.com/lazysyn/lazysyn.html. The rest of images or
synthesized results generated by the previous techniques are extracted
from the corresponding papers and/or websites.

http://johanneskopf.de/publications/solid/textures/index.html
http://www.dongallen.com/lazysyn/lazysyn.html

High quality solid texture synthesis using position and index histogram matching 259

Fig. 7 Results of our high quality solid texture synthesis. Various textures are applicable, including isotropic and anisotropic, low-frequency and
high-frequency, and textures with large structures and with fine grain details

Fig. 8 An additional synthesized result. A part of the bunny is cut off
to show the consistence of the interior synthesized texture

structures are well kept. More importantly, our method pre-
serves the global statistics and global large structures bet-
ter than those by Kopf et al. [9] and by Dong et al. [2].
To be highlighted, large texture structures can be efficiently
preserved even without the aid of the feature maps by our
method, which is demonstrated in the last row. It should
be noted that while all the pixels from the exemplar are
restricted to have the same probability to appear in the re-
sult, little extra effort is made to preserve texture structures.
Therefore, we can conclude that our method does produce
high quality solid textures for a wider range of texture ex-
emplars better than previous methods.

During the synthesis process, it can be observed that most
texture structures are coarsely synthesized at the lowest res-
olution, and progressively refined at the higher two levels
by removing fine scale errors from the texture. Hence, the
neighborhood sizes at different levels can be different. At
the lowest level, the size is proportional to the feature size
of the texture patterns. And at the higher two levels, we fo-
cus on refining the texture details progressively without de-
stroying the large texture structures. Smaller neighborhood

260 J. Chen, B. Wang

Fig. 9 Comparisons with recent methods. In the first row, our results
do not suffer from blurring and our method preserves all kinds of tex-
ture structures better than Kopf et al.’s. In the second row, even the
global large structures can be effectively preserved without blurring or

broken structures, compared with Kopf et al. and Dong et al.’s results.
And in the last row, texture structures are efficiently preserved even
without the aid of the feature maps by our method

size is propitious to preserve the fine texture details. Specif-
ically, we use 8 × 8, 6 × 6, and 4 × 4 windows for the three-
level synthesis. The smaller neighborhoods cause our algo-
rithm to be much faster. In this case, synthesizing a 1283

solid texture often takes less than 5 minutes. And more fine
texture details are preserved without destroying large tex-
ture structures. In Fig. 10, with smaller neighborhood sizes
at the higher two levels, the first row shows that large tex-
ture structures are still preserved well. And the second row
shows that more fine texture details are preserved.

6 Conclusions and future work

In this paper, we present a novel algorithm for synthesiz-
ing high quality solid textures from 2D exemplars. Based

on the optimization framework, our algorithm enables most
of the pixels in the exemplars to appear in the result vol-
ume equiprobably by using the position and index histogram
matching methods. Experiments prove that our method is ef-
ficient enough to preserve not only the color histogram but
also the various texture structures in the synthesized result.
As noted, the local minima problem which often occurs in
optimization-based approaches can be avoided by the po-
sition and index histogram matching. Experimental results
demonstrate that our method outperforms or at least is com-
parable to the previous solid texture synthesis algorithms in
terms of the synthesis quality.

For future work, besides synthesizing higher quality solid
textures, we want to further improve the synthesis speed.
And our method can be extended to synthesize high quality
globally varying solid textures, since globally varying tex-

High quality solid texture synthesis using position and index histogram matching 261

Fig. 10 Different neighborhood
sizes at different levels. We use
the neighborhood sizes 8 × 8,
8 × 8, 8 × 8 in Result 1, 8 × 8,
8 × 8, 6 × 6 in Result 2, and
8 × 8, 6 × 6, 4 × 4 in Result 3.
With smaller neighborhood
sizes at the higher two levels,
more fine texture details are
preserved without destroying
large texture structures

tures [17] are becoming increasingly important in practical
applications. Using existing methods to synthesize globally
varying solid textures, random distribution instead of nat-
ural global distribution of the varying textures is generated
in the synthesized results, leading to some visual artifacts.
One possible solution is to generate a useful 3D control map,
and globally varying solid textures are synthesized under the
direction of the 3D control map.

Acknowledgements We would like to thank Fang Yang, Guidu
Chen for help on writing, and the anonymous reviewers for their valu-
able suggestions and comments. This work is supported by National
Science Foundation of China (Grant Nos. 90818011, 60773143 and
90715043), National High-Tech Research & Development Program of
China (Grant No. 2007AA040401), and National Basic Research Pro-
gram of China (Grant No. 2004CB719400).

References

1. Dischler, J.M., Ghazanfarpour, D., Freydier, R.: Anisotropic solid
texture synthesis using orthogonal 2D views. Comput. Graph. Fo-
rum 17(3), 87–96 (1998)

2. Dong, Y., Lefebvre, S., Tong, X., Drettakis, G.: Lazy solid texture
synthesis. Comput. Graph. Forum 27(4), 1165–1174 (2008)

3. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.:
Texturing and Modeling: A Procedural Approach. Morgan Kauf-
mann, San Mateo (2002)

4. Efros, A.A., Leung, T.K.: Texture synthesis by no-parametric sam-
pling. In: IEEE International Conference on Computer Vision ’99,
pp. 1033–1038 (1999)

5. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis
and transfer. In: Proceedings of SIGGRAPH 2001, pp. 341–346
(2001)

6. Han, J., Zhou, K., Wei, L.Y., Gong, M., Bao, H., Zhang, X., Guo,
B.: Fast example-based surface texture synthesis via discrete opti-
mization. Vis. Comput. 22(9), 918–925 (2006)

7. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analy-
sis/synthesis. In: Proceedings of SIGGRAPH 1995, pp. 229–238
(1995)

8. Jagnow, R., Dorsey, J., Rushmeier, H.: Stereological techniques
for solid textures. In: Proceedings of SIGGRAPH 2004, pp. 329–
335 (2004)

9. Kopf, J., Fu, C.W., Cohen-Or, D., Deussen, O., Lischinski, D.,
Wong, T.T.: Solid texture synthesis from 2D exemplars. In: Pro-
ceedings of SIGGRAPH 2007, pp. 2.1–2.9 (2007)

10. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut
textures: image and video synthesis using graph cuts. In: Proceed-
ings of SIGGRAPH 2003, pp. 277–286 (2003)

11. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimiza-
tion for example-based synthesis. In: Proceedings of SIGGRAPH
2005, pp. 795–802 (2005)

12. Qin, X., Yang, Y.H.: Basic gray level aura matrices: theory and its
application to texture synthesis. In: IEEE International Conference
on Computer Vision ’05, pp. 128–135 (2005)

13. Qin, X., Yang, Y.H.: Aura 3D texture. IEEE Trans. Vis. Comput.
Graph. 31(2), 379–389 (2007)

14. Tong, X., Zhang, J., Liu, L., Wang, X, Guo, B., Shum, H.Y.: Syn-
thesis of bidirectional texture functions on arbitrary surfaces. In:
Proceedings of SIGGRAPH 2002, pp. 665–672 (2002)

15. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured
vector quantization. In: Proceedings of SIGGRAPH 2000,
pp. 479–488 (2000)

16. Wei, L.Y.: Texture synthesis by fixed neighborhood searching.
PhD thesis, Stanford University, (2002)

17. Wei, L.Y., Han, J., Zhou, K., Bao, H., Guo, B., Shum, H.Y.: Inverse
texture synthesis. In: Proceedings of SIGGRAPH 2008, pp. 1–9
(2008)

Jiating Chen received his B.Sc.
degree from School of Software,
Tsinghua University in 2008. Cur-
rently he is a Ph.D. candidate in
Department of Computer Science
and Technology, Tsinghua Univer-
sity. His research interest is texture
synthesis.

262 J. Chen, B. Wang

Bin Wang is an Assistant Profes-
sor in School of Software, Tsinghua
University, China. He received his
B.Sc. degree in Chemistry from
Tsinghua University in 1999, and
his Ph.D. in Computer Science from
Tsinghua University, in 2005. His
research interests include computer
graphics and computer-aided de-
sign.

	High quality solid texture synthesis using position and index histogram matching
	Abstract
	Introduction
	Previous work
	Overview
	High quality solid texture synthesis
	Factors for quality improvements
	Optimization phase
	Search phase
	Position and index histogram matching
	Position histogram matching
	Index histogram matching
	Benefits of position and index histogram matching

	Result and discussion
	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

