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Fig. 1. Three examples of a test point and a polygon with subdivision dimension 20�20.

Table 1
Process of CBCA for test point in Fig. 1.

Example The cell containing p The edges crossing the cell The closest point Test result

Fig. 1a Cell(2, 2) v2v3, v3v4, v4v5 q2 In

Fig. 1b Cell(2, 1) v4v1 q4=v4 In

Fig. 1c Cell(2, 2) v4v5, v5v1 q4=q5=v5 In or Out

Note: the position of a cell is represented by Cell(row, column), and the edges are directed.
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presented an efficient algorithm for the point-in-polygon pro-
blem. In some cases, however, the algorithm can give incorrect
answers (see Fig. 1 and Table 1). The purpose of this paper is to
present the criteria for the point-in-polygon tests against possibly
concave polygons, and moreover, to resolve the singularity of a
test point on an edge within a user-defined tolerance.
2. Related work and our improvements

To efficiently obtain the inclusion property, the algorithm
named CBCA in (Zalik and Kolingerova, 2001) preprocesses a
polygon by subdividing its bounding rectangle into uniform-sized
cells. In addition, the preprocessing steps include recording each
edge of the polygon into the cells crossed by the edge and
classifying the empty cells as inside or outside the polygon. Let p

be a test point and Cell(p) be the cell containing p. If Cell(p) is
empty, the inclusion property of p is obtained directly from that of
Cell(p); otherwise CBCA employs the orientation method to
determine the inclusion property, this is, it finds the closest edge
(or vertex) of p to the edges stored in Cell(p), and then determines
the inclusion property from the orientation of p with respect to
the closest edge (or the convexity property of the closest vertex).
As shown in Fig. 1 and Table 1, CBCA may produce incorrect result
when the closest point is out of Cell(p) or the adjacent edges of the
vertex are nearly collinear.

In Fig. 1a, q2 is not the closest point of p to all the edges, and more
importantly, the line segment pq2 can intersect v5v6 so that the
orientation of p with respect to v2v3 is unrelated to the inclusion
property of p. In Fig. 1b, q4 is not the closest point of p to the edges
crossing Cell(v4), so the convexity property of v4 is unrelated to the
inclusion property of p as well. In Fig. 1c, v5 is the closest point in the
direction from p to v5, but it is difficult to determine the convexity
property of v5 in the presence of rounding errors; especially, v5 is not
the closest point of p to all the edges because at least the distance
between p and v2 is smaller than that between p and v5. It can be seen
that finding the closest point in any direction is more expensive than
in a certain direction. Underlying these observations are the needs for
finding such a parameter that it is not only suitable for the orientation
method but also easy to be evaluated through the neighboring cells of
a test point, and avoiding the use of the convexity property of a vertex
when its adjacent edges are nearly collinear.
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Fig. 2. Closest points from a point to edges of a polygon. Among them, q1, q2, and

q4 are quasi-closest points.
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In this paper, we define a quasi-closest point to represent the
closest point in a certain direction, and then present the criteria for
obtaining an inclusion property from the quasi-closest point without
using the convexity property of a vertex when its adjacent edges are
nearly collinear. In Section 3, the definition and criteria are given in a
mathematical way so that the orientation method can be applied to
the point-in-polygon tests against possibly concave polygons. Based
on the uniform subdivision method, Section 4 presents the
algorithm for obtaining the quasi-closest point. Especially, if the
point obtained by the algorithm is within the neighborhood of a test
point for a user-defined tolerance, it is the closest point in any
direction. By the minimum distance, the algorithm for an inclusion
query does deal with the singular case that a test point is on an edge.
Section 5 illustrates the preprocessing steps of point-in-polygon
tests for a large number of test points, where the criteria are
employed to obtain the inclusion property of an empty cell. The
experimental tests as well as the case study in GIS are demonstrated
in Section 6. These results exhibit the characteristics of the new
method, for example,
�
 it works as efficiently as other similar algorithms do;

�
 it handles the singular case that a point is on an edge; and

�
 it can be applied to GIS operations such as point-in-polygon

overlay.

3. The criteria for point-in-polygon test based on a quasi-
closest point

Following the rule in (Zalik and Kolingerova, 2001), we assume
that the polygons are simple ones and oriented, e.g. counter-
clockwise. For a simple polygon, the line segment is called edge,
and the point where each pair of adjacent segments intersect is
called vertex (O’Rourke, 2000).

3.1. A quasi-closest point

Denote by d(p1, p2) the distance between two points p1 and p2.
Let p be a point and ei (1r irn) be an edge of a polygon P. Then
the distance from p to ei is defined by

dðp; eiÞ ¼minfdðp; qÞ9qAeig:

If qAei and d(p, q)=d(p, ei), q is called the closest point from p to ei

and denoted by Q(p, ei).
The closest point from p to ei, say q=Q(p, ei), is called a quasi-

closest point from p to P if for the line segment pq,
(i)
 pq\ek=| for 1rkrn, ka i; or

(ii)
 pq\ek=| for 1rkrn, ka i, j, and q=Q(p, ej).
In Fig. 2, q1 and q4 are quasi-closest points for they meet the
condition (i), whereas q5 and q6 are not; q2 is a quasi-closest point
for it meets the condition (ii), whereas q3 is not. Note that for a
test point, there may be several quasi-closest points and one of
them is the closest point to all the edges. For convenience, the
quasi-closest point meeting the condition (i) is denoted by Q(p, ei,
P), and the one meeting the condition (ii) by Q(p, ei, ej, P), where ei

and ej are adjacent edges (since P is a simple polygon) and the
order of ei and ej agrees with the direction of P.

3.2. Left/right side

For a triangle nv0v1v2, its signed area can be computed as

Aðnv0v1v2Þ ¼ ððx1 � x0Þðy2 � y1Þ � ðy1 � y0Þðx2 � x1ÞÞ=2;
where vi=(xi, yi) for i=0,1,2. The signed area possesses the
following properties:
(i)
 If A(nv0v1v2)40, then A(nv1v2v0)40.

(ii)
 If A(nv0v1v2)40, then A(nv1v0v2)o0.
(iii)
 If A(nv0v1v2)40, then A(nv0v1p)40, where pAv1v2\{v1}.
For a directed edge e0=v0v1 and a point p, the point is on the left
side of the edge if A(nv0v1p)40, while the point is on the right
side of the edge if A(nv0v1p)o0. For e0 and its adjacent edge
e1=v1v2, e1 is on the left side of e0 if A(nv0v1v2)40, while e1 is on
the right side of e0 if A(nv0v1v2)o0.

Denoted by +v0v1v2 the smaller angle formed by v0v1 and
v1v2. Obviously, 0o+v0v1v2rp. For v1=Q(p, e0, e1, P), the
relationship between +v0v1v2 and the orientation of p with
respect to e0 and e1 can be stated as follows:

Theorem 1. Let v1=Q(p, e0, e1, P) and pav1 (see Fig. 3). If
+v0v1v24p/2, then p is on the same side of e0 and e1.

Proof. We wish to show that v0 and v2 are on different sides of
v1p. For v1=Q(p, e0, e1, P) and pav1, we have +v0v1pZp/2 and
+pv1v2Zp/2. Suppose that +v0v1p=p. It follows that +v0v1p=
+v0v1v2++pv1v24p, contrary to the hypothesis. Therefore,
p/2r+v0v1pop; by a similar proof, p/2r+pv1v2op. If v0

and v2 are on the same sides of v1p, it follows that +v0v1v2op/2,
which contradicts the statement that +v0v1v24p/2. So there are
two cases:

(1) If A(nv1pv0)40 and A(nv1pv2)o0, it follows that

A(nv0v1p)40 due to the property (i), and A(nv1v2p)40 due to

the property (ii). This means that p is on the left side of both e0

and e1.
(2) If A(nv1pv0)o0 and A(nv1pv2)40, it follows that

A(nv0v1p)o0 and A(nv1v2p)o0. This means that p is on the
right side of both e0 and e1. &

3.3. Point-in-polygon test based on a quasi-closest point
Theorem 2. Let p be a point, P be a simple polygon, and q be a
quasi-closest point from p to P. Assume that P is oriented
counterclockwise and paq. Then p is inside P if one of the
following conditions holds:
(i)
 p is on the left side of ei for q=Q(p, ei, P).

(ii)
 p is on the left side of both ei and ej for q=Q(p, ei, ej, P).
(iii)
 ej is on the right side of ei for q=Q(p, ei, ej, P).
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Fig. 3. Illustration for the proof of Theorem 1 (p is on same side of e0 and e1 for +v0v1v24p/2).
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Fig. 4. Illustration for the proof of Theorem 2. (a) q=Q(p, ei, P); (b) q=Q(p, ei, ej, P).
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Proof. Since paq, we can choose a point p0Apq\{p, q} such that p0

is close enough to q (see Fig. 4). Indeed, by the definition of quasi-
closest point, pp0\ek=| (1rkrn). If p0 is inside P, then p is inside
P due to the property of Jordan closed curve.
(i)
Fo
center
C is co
that i
conne
conne
have p

orient
with t
From the property (iii) of the signed area, since q=Q(p, ei, P)
and p is on the left side of ei, p0 is on the left side of ei. As a
result, p0 is inside P by noting that P is oriented counter-
clockwise and p0 is close enough to q.

r q=Q(p, ei, ej, P) and qap, ei\ej={q}. Let C be the circle
ed at q with the radius d(p0, q), {pi}=C\ei and {pj}=C\ej. Then
mposed of two circular arcs whose endpoints are pi and pj,

s, C=L(pi, pj)[R(pi, pj), where L(pi, pj) is the circular arc
cting ei from its left side and R(pi, pj) is the other one
cting ei from its right side. Since q=Q(p, ei, ej, P) and qap, we
0e{pi, pj}. If p0AL(pi, pj), then p is inside P by noting that P is

ed counterclockwise and the direction from pi to q agrees
hat of P. We now prove that p0AL(pi, pj).
(ii)
 For p is on the left side of ei, A(npiqp)40. Suppose p0AR(pi, pj).
It follows that pj is inside the triangle formed by ei and p.
Using the properties of the triangle signed area, we obtain
A(npjqp)40, A(nqpjp)o0. This means that p is on the right
side of qpj, which contradicts the statement that p is on the
left side of ej. Hence it holds that p0AL(pi, pj).
(iii)
 Since ej is on the right side of ei and ei\ej={q}, there exists a
triangle formed by ei and ej. Suppose p0AR(pi, pj). By
hypothesis, p0 is inside the triangle so that the vertex q is
not the closest point from p0 to ei and ej. This contradicts the
statement that q is the closest point from p0 to ei and ej due
to q=Q(p, ei, ej, P). So it holds that p0AL(pi, pj). &
A similar proof holds for the following theorem:
Theorem 3. Let p be a point, P be a simple polygon, and q be a
quasi-closest point from p to P. Assume that P is oriented
counterclockwise and paq. Then p is outside P if one of the
following conditions holds:
(i)
 p is on the right side of ei for q=Q(p, ei, P).

(ii)
 p is on the right side of both ei and ej for q=Q(p, ei, ej, P).
(iii)
 ej is on the left side of ei for q=Q(p, ei, ej, P).
To use the two theorems, we find first a quasi-closest point.
Then, the condition (i) is checked if the quasi-closest point does not
coincide with any polygon vertex; otherwise, the conditions (ii) or
(iii) is checked sequentially. Due to Theorem 1, the condition (iii) is
checked only when the adjacent edges are far from co-linearity.
Therefore, the theorems give the criteria for point-in-polygon test,
which does not need a tolerance to determine the convexity
property of a vertex. Furthermore, the advantage of the criteria is
that only the sign of the area is required.

It is worth noting that the two theorems can be applied to the
region enclosed by a finite number of simple polygons no matter
whether there are holes or not. In such case, the polygons should be
oriented so that the interior region always lies on the same side of
its edges (see Zalik and Kolingerova, 2001). The proof of Theorem 2
also indicates that for a test point, an identical query result can be
obtained from different quasi-closest points. In the following, the
process of obtaining the result of point-in-polygon test from a
quasi-closest point is simply called an inclusion query, and we will
focus on finding a quasi-closest point neighboring to a test point.
4. Finding a quasi-closest point

Let P be a polygon and R(P) be the bounding rectangle of P.
Then R(P) can be subdivided into a grid of sub-rectangles with
uniform size. In the following, the sub rectangle is called the cell
of subdivision.

For a point pAR(P), we use Cell(p) to denote the cell containing
p. Fig. 5 illustrates Cell(p), its eight neighboring cells, and the cells
overlapped by the d-neighborhood of p (which will be simply
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called the d-neighborhood cells). In particular, if a cell contains a
subset of points of an edge, we say that the cell is crossed by the
edge. For convenience, we use Cells(e) to denote the cells crossed
by the edge (or line segment) e, and Edges(C) to denote the edges
crossing the cell C. If a cell is not crossed by any edge, we say that
the cell is empty.

Based on the subdivision, a quasi-closest point can be obtained
from the following result:

Theorem 4. Let pAR(P) and q=Q(p, ei). Then q is a quasi-closest
point if q is the closest point from p to the edges crossing the cells
Cells(pq), that is,

d(p, q)=min{d(p, q0)9q0Ae, eAEdges(C), CACells(pq)}.

Proof. This result is trivial if p=q. For paq, suppose that there
exists an edge ej(ja i) such that pq\ej={qn}. It follows that
Cell(qn)ACells(pq) due to qnApq. Noting the condition, we have
q=Q(p, ej).
(a)
Fig.
neig

of p
If qaqn, it follows that d(p, qn)od(p, q), contrary to the
condition. Hence we obtain pq\ek=| (1rkrn, ka i).
(b)
 If q=qn, it follows that q is the vertex connecting ei and ej due
to that P is a simple polygon. As a result, pq\ek=| (1rkrn,
ka i, j).
By the definition of a quasi-closest point, we obtain the

result. &

From Theorem 4, an algorithm is developed for obtaining a
quasi-closest point; from Theorem 2 and 3, the algorithm of an
inclusion query is presented in the following as well:

Algorithm: Finding aquasi-closest point.

Input: a point p, a set of cells initcells (composed by one or

several cells neighboring to p)
C4 C3 C2

C5 Cell (p) C1

C6 C7 C8

p

5. Illustration for a test point p, the cell Cell(p) containing p, and eight

hboring cells of Cell(p). Among these cells, cells overlapped by d-neighborhood

are indicated in grey color.
Output: a quasi-closest point q

0: curcells’initcells

1: Find the closet point of p to the edges crossing curcells, say q

2: Set a flag for each of curcells to indicate that it has been used
3: If each of Cells(pq) has been used, then return q

4: curcells’Cells(pq), go back to step 1

Algorithm: Perform an inclusion query (for a user-defined

tolerance d).

Input: a point p, a quasi-closest point q

Output: IN, OUT or ON

1: If d(p, q)rd, return ON

2: If q=Q(p, ei , P) then
3: If p is on the left side of ei, return IN

4: Else if q=Q(p, ei , ej , P) then
5: If p is on the left side of both ei and ej, return IN

6: If p is on the right side of both ei and ej, return OUT

7: If ej is on the right side of ei, return IN

8: End If
9: return OUT

Now, we make some remarks on the algorithm for finding a
quasi-closest point.
(1)
 The initial cells of the algorithm are either one of the non-
empty neighboring cells or the d-neighborhood cells for a
user-defined tolerance d. The former is used in the preproces-
sing stage to determine the inclusion property of an empty
cell, and the latter is used in the processing stage to determine
the inclusion property of a test point. Note that the latter is
used only when some of the d-neighborhood cells are non-
empty. As a result, for a test point p and the quasi-closest
point q, q is the closest point of p to all the edges if d(p, q)rd.
From the distance d(p, q), the algorithm of an inclusion query
can resolve the singularity that a test point is on an edge.
(2)
 The algorithm really returns a quasi-closest point and its
corresponding edge(s), which will be used for the inclusion
query.
(3)
 The loop of the algorithm would terminate in a finite number
of steps because the initial cells are composed of one or
several of the neighboring cells.
(4)
 The average-case time complexity depends on the average
number of the edges crossing a non-empty cell. In the real
applications of GIS, the average number is almost a constant
independent of the number of the polygon edges. Thus, the
time complexity can be regarded as a constant.
Combining the two algorithms, we obtain a new method for
point-in-polygon test based on a quasi-closest point. For con-
venience, the method is named QCPM (abbreviated for Quasi-
Closest Point Method). QCPM requires two parameters, that is, a
test point and initial cells; its result will indicate the location of
the point such as on an edge, inside or outside a polygon. In
particular, whether a point is on an edge is determined by the
minimum distance.
5. Point-in-polygon tests for a large number of points

To accelerate the point-in-polygon tests for a large number of
points, we preprocess a polygon using the method of Zalik and
Kolingerova (2001). First, the bounding rectangle of a polygon is
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subdivided into uniform-sized cells. Let n be the number of the
polygon edges, W and H be the width and height of the bounding
rectangle, respectively. Then the dimension of a cell is determined
by

Sizex ¼
W

NoOfCellx
; Sizey ¼

H

NoOfCelly
;

where

NoOfCellx ¼ 2
W

ffiffiffi
n
p

H

� �
; NoOfCelly ¼ 2

H
ffiffiffi
n
p

W

� �
:

Next, each edge of the polygon is stored in the cells crossed by
its corresponding line segment. The crossed cells can be
enumerated by a variant of the traversing algorithm (Bresenham,
1965; Fujimoto and Iwata, 1983; Cleary and Wyvill, 1988; Zalik
et al., 1997). In addition, we add a flag variable for each cell to
indicate whether it has been used.

Finally, the empty cells are classified as inside or outside a
polygon. Here, QCPM is used for the classifications when
necessary. As shown in the following algorithm, when an empty
cell does not neighbor to any cell already classified or out of the
bounding rectangle, QCPM is employed with the center point of
the empty cell as its test point and one of the non-empty
neighboring cells as its initial cells.

Algorithm: Classify the empty cells for the bounding rectangle
R(P).

For each cell C of R(P)
If C is empty

If one of the eight neighboring cells of C is out of R(P)
Label C with OUT

Else If one of the eight neighboring cells of C has been
labeled

Label C with the inclusion property of the labeled cell
Else //some of the neighboring cells of C are non-empty

Find the quasi-closest point for the center point of C

with one of non-empty neighboring cell as the initial cells
Label C with the result obtained by an inclusion query

End If
End If

End For

Based on the preprocessing result, the inclusion properties of a
large number of test points can be determined efficiently. For a
test point p and a user-defined tolerance d, if all the d-
neighborhood cells are empty, the property of p is obtained
directly from that of Cell(p); otherwise, the property is determined
by QCPM with the d-neighborhood cells as the initial cells.
Therefore, the two classifications, one for an empty cell and the
other for a test point, are united in this method.
6. Experiments

The algorithms proposed in this paper have been implemented
in Visual C++ language, and the experiments were performed on a
PC with 512 M RAM and a Pentium CPU (2.93 GHz).

6.1. Experimental tests

We perform the point-in-polygon tests with 1000�1000 points
evenly distributed in the bounding rectangle of polygon(s). As shown
in Fig. 6, an artificial polygon is used for the first set of experiments,
which give counterexamples to the method proposed by (Zalik and
Kolingerova, 2001). The counterexamples come from the two areas
emphasized in Fig. 6c, where the closest point found by the algorithm
is either outside the cell containing the test point or coincident with a
polygon vertex. Fig. 6d shows the results from the new method with a
larger user-defined tolerance, and among the 1,000,000 test points,
133,119 points are lying on an edge. The comparative experiment
shows that the new method appears to offer stability over a similar
method and moreover consistently deals with the case of a test point
on an edge.

In the second set of experiments, we investigate the performance
of the new method. Fig. 7 shows the polygons presented by (Zalik and
Kolingerova, 2001). The running time of the point-in-polygon tests
performed on these polygons is listed in Table 2. Besides, Table 2 also
lists the two factors that affect the performance of the new algorithm,
where l is the ratio of the non-empty cells to all the cells, and k is the
average number of the edges stored in a non-empty cell. The same
experiments are also performed on the artificial polygons (see Fig. 8
and Table 3), which are randomly generated in the method described
by Li et al. (2007). From the data in Tables 2 and 3, we observe that for
the edge number n, as n goes larger in Table 2, l becomes smaller and
the processing time lessens; as n goes larger in Table 3, k becomes
larger and the running time increases. Obviously, the data in Table 2
simulate the real applications whereas the data in Table 3 hardly arise
in reality. Anyway, these experiments confirm that the factor k can be
regarded as a constant independent of n, and on average the
preprocessing time is linear with n. In particular, the processing
time is a constant independent of n, that is, an inclusion test requires
constant time.

In the final set of experiments, we compare the running time of
different algorithms. Table 4 lists the running time of two
algorithms, where Zalik’s algorithm comes from (Zalik and
Kolingerova, 2001) and its program is downloaded from the
website http://www.iamg.org/index.php? option=com_content&
task=view&id=175&Itemid=165. Note that the cell number of
rows or columns is limited to 100. Although the new algorithm
runs faster, we believe that the difference comes from the
different implementations. Nevertheless, the results show that
the efficiency of the new algorithm is comparable with that of a
similar algorithm.

6.2. Case study

The new method can be applied to point-in-polygon overlay in
GIS. The point-in-polygon overlay is a spatial operation in which
points from one feature dataset are overlaid on the polygons of
another to determine which points are contained within the
polygons (see Fig. 9).

The case study uses two shape files. The shape file for polygons
includes 23266 edges as well as 61 polygons (two of them are
holes), and the shape file for spots includes 1377 points. The aim
of the study is to test the capability of the method to identify
which region contains a test point in a map. The overall workflow
is illustrated as follows:
1.
 Read the map from a shape file.

2.
 Form the administrative boundaries into oriented polygons.

3.
 Preprocess the map by subdividing its bounding rectangle into

grid cells, recording the borderlines into the cells, and
identifying the region to which each empty cell belongs.
4.
 Read the spots from a shape file.

5.
 Identify the region to which each spot belongs.

At step 2, it is straightforward to represent the administrative
regions in oriented polygon because the polygons in shape file
dataset are already oriented. However, the polygons of a map are

<!--ti-->http://www.iamg.org/index.php? option=com_content&amp;task=view&amp;id=175&amp;Itemid=165<!--/ti-->
<!--ti-->http://www.iamg.org/index.php? option=com_content&amp;task=view&amp;id=175&amp;Itemid=165<!--/ti-->
<!--ti-->http://www.iamg.org/index.php? option=com_content&amp;task=view&amp;id=175&amp;Itemid=165<!--/ti-->
<!--ti-->http://www.iamg.org/index.php? option=com_content&amp;task=view&amp;id=175&amp;Itemid=165<!--/ti-->
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Fig. 6. Point-in-polygon test results (Red-inside, Green-outside, Black-on edge) (a) an artificial polygon; (b) cells of uniform subdivision; (c) test results from (Zalik and

Kolingerova, 2001); (d) test results from new method for a larger user-defined tolerance.

Fig. 7. Polygons and the subdivision from (Zalik and Kolingerova, 2001).

Table 2
Running time on polygons in Fig. 7.

Polygon Edge number Cell number l k Running time (s)

Preprocess Process

a 10 48 0.67 1.375 0.000044 0. 972392

b 149 684 0.42 1.575 0.000414 0. 801133

c 1248 5060 0.31 1.921 0.003410 0.722073

d 28012 112,992 0.12 3.097 0.054073 0.581358
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generally connected, so we have to merge the coincident edges
such that the two sides of the merged edge belong to different
regions. In Fig. 9, the merged edges are indicated in blue color, and
the edges in red color indicate that one of its sides is out of the
whole country. Especially, two numbers are assigned to each edge
for identifying the regions on the left and right sides.

Now, we revise the algorithm for an inclusion query so that the
revised algorithm can return a number for identifying the region
on the left or right side. For a quasi-closest point such as Q(p, ei, P)
or Q(p, ei, ej, P), the identification number can be obtained directly
from the edge ei. If a quasi-closest point is coincident with a
vertex connecting more than two edges, we have to select two
edges for the inclusion query. In Fig. 10, for example, we select the
two edges adjacent to Region 1 if p is a study spot. For the study
spot p and its quasi-closest point q, the selection can be
accomplished by evaluating the angles between pq and the
connected edges. Thus, we obtain the revised method for
identifying the polygon to which a test point belongs.

At step 3, the bounding rectangle of the map is subdivided into
a group of grid cells, and each borderline of the map is recorded
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Fig. 8. Polygons randomly generated.

Table 3
Running time of polygons in Fig. 8.

Polygon Edge number Cell number l k Running time (s)

Preprocess Process

a 50 224 0.50 1.770 0.000203 0.888035

b 500 2116 0.58 3.423 0.002139 1.157722

c 1001 4224 0.65 4.683 0.005793 1.412953

d 5000 20448 0.68 9.856 0.049777 2.145732

Table 4
Running time of different algorithms (in seconds).

Polygon(s) in Fig. 7 Edge number Cells of subdivision k Zalik’s algorithm The new algorithm

Preprocess Process Preprocess Process

a 10 6�8 1.375 0.000055 2.555309 0.000044 0.972392
b 149 18�38 1.575 0.000645 1.839879 0.000414 0.801133
c 1248 46�100 1.988 0.004844 1.707092 0.002827 0.740552
d 28,012 100�100 9.200 0.042282 7.483888 0.024614 1.205676
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into the cells crossed by the borderline. Then, the revised method
is used to identify the region to which an empty cell belongs, and
correspondingly, an identification number of the region is stored
in each empty cell.

At step 5, the revised method is also employed to identify the
region to which a spot belongs when necessary. The results are
visualized in Fig. 9, where the spots in different regions are
indicated by different colors. For the case with 1377 spots and 61
regions, the revised method is used 1377 times. Other methods,
such as the ray crossing number method or the sum of angles
method, can answer the point-in-polygon problem, but cannot
directly answer such problems as to which polygon a point
belongs. Using these methods, we can identify the polygon
by point-in-polygon test for each polygon of the map; however,
for the overlay operation, such tests need to be performed
1377�61/2 times on average.
7. Conclusion

This paper has presented a robust solution to the point-in-
polygon problem. The solution employs a quasi-closest point that
can be locally found by the uniform subdivision cells. Based on the
quasi-closest point, an inclusion query obtains its result from the
sign of triangle signed area, and avoids using a dubious tolerance
to identify the convexity property of a polygon vertex. Although
obtaining a quasi-closest point requires a little more time than
finding the closest point from an individual cell, the extra time
cost is rewarded with the correct answer to the point-in-polygon
problem as well as the consistent treatment of the singular case
that a test point is on an edge.

In this paper, the two classifications (one in the preprocessing
stage and the other in the processing stage) are achieved by the
inclusion query based on a quasi-closest point. This simplifies the
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Fig. 10. Quasi-closest point connecting more than two edges.

Fig. 9. Point-in-polygon overlay on map of Germany.
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task of programming and distinguishes from the majority of other
approaches.

The present study demonstrates the feasibility of the point-in-
polygon test based on a quasi-closest point. In the future, we will
apply the method to an inclusion test for the planar region enclosed
by the curves such as circular arcs and free-form curves.
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