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ABSTRACT

Tropical forests are complex ecosystems where the potential of remote sensing has not yet been fully realized.
The increasing availability of satellite metric imagery along with canopy altimetry from airborne LiDAR open
new prospects to detect individual trees.

For this objective, we optimized, calibrated and applied a model based on marked point processes to detect
trees in high biomass mangroves of French Guiana by considering a set of 1m pixel images including 1) panchro-
matic images from the IKONOS sensor 2) LiDAR-derived canopy 2D altimetry and 3) reflectance panchromatic
images simulated by the DART-model. The relevance of detection is then discussed considering: (i) the agree-
ment in space of detected crown centers locations with known true locations for the DART images and also
the detection agreement for each pair of IKONOS and LiDAR images, and (ii) the comparison between the fre-
quency distributions of the diameters of the detected crowns and of the tree trunks measured in the field. Both
distributions are expected to be related due to the allometry relationships between trunk and crown. Results
are encouraging provided that crown sizes sufficiently large compared to 1m pixels.
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1. INTRODUCTION

Monitoring tropical forest structure is a very difficult but essential objective for quantifying levels of degradation
and carbon stocks in such complex and dense vegetation ecosystems. For this, the potential of remote sensing
is to be examined in relation to the regular improvement and diversification of sensors. This is particularly true
for very high resolution (VHR) images with metric and sub-metric pixels as provided by IKONOS, QuickBird,
Geoeye, TerraSAR-X satellites and the forthcoming “ORFEO” dual Earth observation system with radar (ASI
“Cosmo-Skymed”) and optic (CNES “Pleiades-HR”) components. Also the LiDAR-derived canopy height images
are VHR data which can be useful references to assess the relevance of analyses applied to optic data.

Submitting VHR imagery to texture analysis yielded relevant information on the upper part of the forest
volume, i.e. the forest canopy [1,2], which proved correlated with important forest attributes as above-ground
biomass (AGB). In comparison, both optical and radar derived intensities are unable to represent the whole
range of structural variation observable in tropical forest, because signal is saturated at the midlevel of leaf area
index and total AGB (e.g. [3] and [4]), while for texture indices saturation was not observed up to AGB values
of more than 500 tons of dry matter per hectare (t DM ha−1).
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In this paper we explore the potential of VHR data in another direction that is characterizing individual
canopy trees in terms of locations and crown sizes. For that, we used a stochastic geometry approach based
on marked point processes (MPP) which has been successfully tested for the detection of flamingos on aerial
photographs of a colony [5]. We apply the MPP approach to optic IKONOS and air-borne LiDAR VHR images
acquired over mangrove forests and also test the method on simulated canopy images using the DART radiative
transfer model [6].

2. DATA

2.1 Forest data

Forest areas for field sampling were selected in the region of Sinnamary, French Guiana with the aim of capturing
the largest range of mangrove dynamic stages. Field measurements were carried out from 2002 to 2005 [1] and
yielded AGB values ranging from 80 to 410t DM ha−1. For this work, we selected 3 mangrove plots showing a
contrasted gradient in their canopy structure as shown in Figure 1. This gradient included three close canopy
stages: (i) young trees with small crowns (young stage: YS), (ii) adult trees with large crowns (mature stage:
MS1 and MS2) and (iii) open canopy where adult trees with large crowns were sparsely distributed (decaying
stage: DS).

2.2 Metric resolution images

This study is based on the analysis of both real-world and simulated images all sharing the same spatial resolution
(1m pixels). One panchromatic IKONOS image acquired in 2003 and a LiDAR-derived canopy altimetry image
obtained in 2004 were selected because of their overlapping over the area of study (Figure 1). The LiDAR system
includes a portable Riegl laser rangefinder (LMS6Q140i-60) mounted onboard a helicopter flying at a speed of
30ms−1 about 150m above the ground. Further information on the Lidar data acquired over the area of study is
available in [7]. For comparison with the IKONOS data, we sampled the LiDAR-derived altimetry image using
a 1m pixel.

Figure 1. From left to right, plots of young, mature and decaying stages of mangrove imaged by IKONOS (top) and by
LiDAR altimetry images (bottom).

To test and calibrate the MPP object detection process we used simulated forest canopy scenes, which
were produced by the DART (Discrete Anisotropic Radiative Transfer) model [8][6]. The forest structures were
generated to express a simple gradient of closeness/openness (Figure 2, on the left side). They include: a close
canopy consisting of uniformly distributed trees with both identical height and crown diameters equal to 10
meters (Figure 2 #1), an opened canopy in which 20% of the trees generated in the previous template are
removed (Figure 2 #2), and a more realistic template (Figure 2 #3) derived from allometric theory providing
a priori values for tree size distributions and relationships between tree dimensions [9]. DART simulations were
performed using sun and viewing angles of the IKONOS image with a pixel size of 1 meter to produce 100×100m
images of reflectance.



3. METHODS

3.1 The Marked Point Process model

Any remote sensing image of forests can be viewed as a space where positions and geometric attributes of tree
crowns are a particular realization of a marked point process noted x (see [10,11] for more details). x is also a
random variable whose realizations are random configurations of objects belonging to a state space χ = P ×M,
where P is the position space, and M the space of the marks (i.e. attributes of the objects).

The distribution of tree crowns within an image can then be represented by a marked point process of disks
(which is only an approximate shape of tree crowns) and the associated space χ is then as following:

χ = P ×M = [0, XM ]× [0, YM ]× [rm, rM ]

where XM and YM are respectively the width and the length of the image I, rm and rM , the minimum and the
maximum radius of the associated disk whose radius is considered as the mark.

The Gibbs density associated with such a marked point process of disks is defined with respect to the Poisson
measure. Thus, the mathematical issue becomes an energy minimization including a regularization term also
called the prior energy Up(x), which introduces some constraints on the objects and their interactions, and a
data term Ud(x), which shows how well the objects extracted fit to the image data.

In the case of tropical forest where tree crowns can overlap, the prior must consist in a soft penalization
of overlapping disks in order to prevent over-detection of one tree by several overlapping disks (a pair of disks
is considered as overlapping if their intersection is more than 10% of the smaller surface of the two disks):
Up(x) = γη(x), where η(x) is the number of pairs of intersecting disks in the configuration x, and γ allows
adjusting the prior energy importance compared to the data term. γ must be above 1 to penalize overlapping
(we took γ = 1.5 and results were not influenced hy variations around this value).

The data term is also defined by a sum of local energies, Ud(xi), over all the objects xi in the configuration.
The local energy is obtained from the computation of a radiometric distance between pixels in the disk and pixels
in the concentric annulus around the disk. A disk fits a tree in the image if and only if this radiometric distance
significantly exceeds a certain threshold.

3.2 The Multiple Births and Deaths process

For optimizing the model, we consider a simulated annealing based on a multiple births and deaths process
(MBD). This process has first been proposed in [12], whose algorithm is defined as follows:

1) Initialize the temperature parameter T = 1, the birth rate δ = (XM×YM )/rM of the simulated annealing.

2) Birth step: for each pixel s in the image I, if there is no disk centered in s, we add an object in s, with
a random radius between rm and rM , with probability B(s), where B(s) is proportional to δ and the data term
in s (see [5] for details)

3) Sorting step: once the birth step is finished, we compute the data term Up(xi) for each object xi in the
current configuration. Then, we sort them according to decreasing data energy.

4) Death step: for each object xi taken in this order, we compute the death rate as follows:

d(xi) = δ×a(xi|x)
1+δ×a(xi|x) where : a(xi|x) = exp

[
γ×η(xi|x)+Ud(xi)

T

]
η(xi|x) being the number of disks in x intersecting xi.

This death rate is based on the energy variation that the object xi brings to the total energy U(x) of the
model. If the addition of the object xi increases the total energy, its death is highly probable.

5) Convergence: if the process did not converge, that is if the configuration has changed during the last
iterations, then decrease T and δ and go back to step 2.



3.3 Assessing the detection performance of the MPP method

For simulated canopy images, the detection performance was evaluated by comparing detection results (crown
centers and radii) with corresponding input parameters in DART. For real-word images we compared the results
obtained from the analysis of the IKONOS and LiDAR data. For both comparisons, we implemented a likelihood
test based on the Markov Random Field modeling to obtain indices of true and false detections.

In this test, we consider two sets of disks X = xi and Y = yi, where Y is known as the reference, and X
is the disk configuration obtained using the proposed approach. We match these two sets by considering the
edges set E = X × Y , coded as a binary variable such that eij = 1 if xi is matched to yj and 0 otherwise. An
of the graphe optimization is executed based on the energy function associated with the Markov Random Field
modeling. Then, if a disk in Y is matched with a disk in X, it is considered as a successful detection, otherwise
it is a missed detection (omission error). If a disk in X is not matched with a disk in Y , it is considered as a
false detection (commission error). Results on LiDAR images were used as reference (i.e. Y set) with respect to
IKONOS.

Additionally, we used the field data,, that is tree trunk diameters at breast height (DBH) measurements
in plots (100m × 100m) , to check whether the frequency distribution of radii of the detected crowns may be
consistent with the frequency distribution of trunks DBH. Indeed the allometric theory [9] predicts that DBH is

linked to crown diameter (CD) by a power law as CD ∼ DBH 2
3

4. RESULTS

In this section, we first present the detection results on DART images that helped deduce the parameters of the
MPP algorithm to be used on the real-world images.

Figure 2 (on the right side) and Table 1 show the detections on the 3 DART images, with known values of
crown radius used in the reference templates. For the first image, with a regular forest structure as a plantation,
the detection demonstrates an exceptional performance, since almost all the trees were well detected. For the
second image where vegetation cover has been decreased of about 20% compared to the first one, the detection
became more difficult due to tree shadows. However, a majority of trees (98%) are detected with 6 (8.8%)
false detections. As to the third image, in which the complexity of a real forest is mimicked, crown sizes in
the template varied from 6m to 10m, and their shapes did not exactly correspond to disks (according to the
allometric theory, tree crowns are modeled as ellipsoids). There were thus higher difficulties in detecting (Table
1). Only 21 out of 32 trees (66%) were detected in the image, with a high rate (25%) of false detection.

Figure 2. Left side: DART-simulated reflectance images for 3 forest templates. Right side: detections on these images.

Table 1. Detection performance using DART simulations.

tree number in template detected tree number sucessful detections false detections

DART #1 100 98 98 (98%) 0 (0%)

DART #2 63 68 62 (98%) 6 (8.8%)

DART #3 32 28 21 (66%) 7 (25%)

For the IKONOS and LiDAR images, the searched radius interval was defined between rmin = 2m to rmax =
10m according to field data. Then, the detection method was applied to every image separately, and the results
are showed in Figure 3 and in Table 2.



Figure 3. Detections on pairs of IKONOS (top) and LiDAR (bottom) images.

Table 2. Compared detection performance using IKONOS and LiDAR images.

detected tree number

in LiDAR image in IKONOS image matching detections

plot YS 66 66 46

plot MS1 47 55 39

plot MS2 43 54 18

plot DS 49 42 35

Considering young stands, for which the crown diameters are of about 3m to 5m, as the plot YS in Figures
1 and 4, the spatial resolution of 1m was not sufficient to allow for an apparent space between crowns and the
detection was not successful.

For each mature (MS1, MS2) and decaying (DS) field plots, trunk DBH histograms (field measures) presented
two modes as did the histograms of crown diameters (detection on images). An example of these histograms
is on the right side of Figure 4. The relationships between the values of the modes for DBH versus modes for
crown diameters proved consistent with the order of magnitude predicted by the allometry theory, and the linear
regression line fitted for the paired histogram modes was close to the predicted allometric relationship (after
log-transformed values in Figure 4, on the left side).

Figure 4. Comparing frequency distributions (histograms) for both trunk DBH measured in the field (top) and crown
diameters detected on images (bottom). Right side: the histograms displayed two modes. Left side: scattered plots of the
observed modes with fitted regression lines and mention of the curve (solid black) predicted by the allometric theory.



5. DISCUSSION

The results obtained in this study are rather encouraging for the application of the MPP crown detection method
on VHR optical or LiDAR images from natural forests.

However, the sun angle plays an important role in image acquisition. Thanks to the DART model, we could
analyze the different optical images obtained under variable acquisition parameters (as sun zenithal angle and
sun to remote sensor angle). For the optical images taken over the French Guiana forest, the sun angle above
the horizon varies often between 45◦ and 75◦ [2]. When this angle tends to 45◦, tree shadows become more
important in the images, and this perturb the detection (results not shown). In this study, we fixed the sun
angle above the horizon at 70◦ for DART simulations, so the detection was not the most difficult. Nevertheless,
the tree shadows disturbed the detection and determined many false detections, and future developments of the
method should integrate the influence of acquisition parameters and derived shadowing.
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