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Abstract

A growing interest emerges for the application of plant
functional-structural models to study the influence of topo-
logical development on plant growth. This kind of study is
classically done through virtual experiments on simulated
plants to analyze the effects of architectural changes on the
model outputs. In this paper, we take advantage of the mathe-
matical formalism developped for describing plant structure
and growth in the GreenLab model to perform a theoretical
analysis of the importance of topological development for
plant functioning. Using the basic formulation of the model,
it is possible to solve analytically the equation giving the
limit biomass production under stable environment and to
estimate the sensitivity of this limit value to the parameters
of topological development. Reciprocally, we analyze the
conditions under which plants with different architectures
can have the same trajectory of biomass production in
models based on Beer-Lambert-like formulations.

1. Introduction

It is a current scientific challenge to understand and ana-
lyze the potentialities of the different architectural models of
plant structure [1]. The ongoing development of functional-
structural tree models (FSTM) [2], [3] opens new ways to
study plant growth and more particularly to investigate the
complex interactions between tree structure and physiolog-
ical processes. Most of them represent the tree topology or
geometry as a set of basic units, phytomers [4].

These models are useful tools to integrate the current
biological knowledge at different scales, even for organisms
as complex as trees (see for instance [5], [6]). Virtual
experiments can be performed to investigate the effects
of changes in plant architecture on different phenomena
(e.g. simulations of horticultural strategies, such as prun-
ing fruit trees [7], [8], interception of solar radiation [9]–
[11], plant-pathogens interactions [12],...). However these
models are often formulated as complicated flowcharts with
a high number of parameters, including many processes

and interactions. On the other hand, models such as the
GreenLab model [13], [14] consider only simplified versions
of biological processes so that they can be formulated in the
form of dynamic systems.

Although writing a model under a mathematical form is
sometimes done at the expense of its biological relevance
(some phenomena are neglected), it offers some possibilities
compared to mere simulation black boxes. In his review
of structure modelling, Prusinkiewicz [15] presents the ad-
vantages of representing the topological development of
plants using a language, and more particularly L-systems,
to reduce the programming effort, to describe the plant
structure in a compact and precise manner and to facilitate
model comparisons. A further step is to exploit the properties
that naturally stem from the use of L-systems rules, such
as structural factorization [14], computation of moments of
numbers of organs [16] and generating functions [17]. Kurth
[18] presents additional arguments in favour of the use of an
explicit formalism to describe plant architectures. Equations
are more elegant and condensed than a complicated algo-
rithm or flowchart that must be analyzed to understand the
model. The model gets a higher level of transparency and of
universality when an exact specification language, designed
for that purpose, is used. It allows applying general theories
that have been previously developed in other disciplines.

In this approach, there is a search for simplicity and for
extracting the minimal set of variables necessary to simulate
the growth of plants at the organ scale. In GreenLab, the
minimal set of processes that has been identified represents
the plant development, biomass production and biomass
allocation to each organ. The associated variables are linked
through recurrence equations. In the current versions of the
model, biomass production is computed according to the
active blade surface through an equation of the form of
the Beer-Lambert law. In this study, we take advantage
of this formalism to study theoretically the influence of
topology on biomass production in GreenLab. In particular,
we show that the biomass production stabilizes as time goes
to infinity and we determine the conditions under which
this limit value is non-zero. We define an index based on



the topological parameters of the model to evaluate the
potentialities of different architectural models to reach high
values of limit biomass production. We show that under
particular conditions, plants with different topological de-
velopments can have exactly the same trajectory of biomass
production over time. This last property helps bridging the
gap between process-based models and functional-structural
models, as it shows that under the appropriate assumptions,
the topological development has no influence on the plant
prodution.

2. Limit production of biomass according to its
topological model

The limit behaviour of a model is defined as the limit of
its state variables when times tends to infinity with constant
input parameters and under stable control variables. In this
paper, we focus more particularly on the limit biomass
production when the number of growth cycles increases to
infinity.

2.1. The growth equation of the GreenLab model

Botanical analyses of tree architecture have shown that
trees exhibit a hierarchical organization and repetitive se-
quences of the same structures [19]. Therefore, axes in a
plant can be sorted according to their morphological or
functional propoperties and indexed thanks to the notion of
physiological age of the apical meristem. In the GreenLab
model, plant development is simulated using a dual-scale
automaton [20] whose states and transition rules are based
on that index of physiological age. As shown in [?], [16], this
method is analogous to writing a growth grammar, as done in
simulations based on L-Systems [21]. The rules defining the
plant development can be either deterministic [13], stochas-
tic [22] or mechanistic [23]. The alphabet of GreenLab is
introduced in [14], [24]: it is used to recursively describe
tree structure (concept of structural factorization) and to
define morphisms representing operations on the plant, e.g.
the growth morphism. Another interesting application is the
possibility to analytically compute the number of organs
appearing at each growth cycle in the deterministic and
mechanistic versions of GreenLab [14] and the moments or
generating functions of numbers of organs in the stochastic
case [?], [16].

As is the case for development, the evolution of the
physiological variables can be expressed using dynamics
equations. As the model considered here is based on dis-
crete time steps (called growth cycles), the computation of
biomass production at a given cycle can be explicitly written
according to the state variables of the model at the previous
cycles.

Assuming that the resistivities of internodes and petioles
are negligible, the biomass production is supposed to only

depend on the plant total blade area. The plant development
influences the value of S(t), as blades have to compete with
other organs to get their biomass. Detailed presentations
of the GreenLab model can be found in [13], [14], [23],
[25]. We present here the generic recurrence equation of
GreenLab, linking the production of biomass Q(t) at cycle
t to the state variables of the system at the previous growth
cycles:

∀t ≥ ta, Q(t) = E(t)µSp1− exp

−k
eSp

ta∑
i=1

Na
t−i+1

i∑
j=1

φa
jQ(t− i+ j − 1)
D(t− i+ j − 1)


(1)

where E(t) is the environmental factor during cycle t, e
denotes specific blade mass, µ is a parameter of biomass
conversion efficiency, k is the Beer coefficient of light
extinction, Sp is a characteristic surface related to the
ground projection of the plant, ta is the duration of blade
photosynthetic activity and Na(t− i+ 1) is the number of
leaves appearing at cycle t−i+1. Blade sinks are defined by
their sink variation functions φa(j). For the sake of clarity,
we present here the case when blades of every physiological
age have the same sink strength, equal to 1. Note that if
different sink values P a

k for blades have to be taken into
account, the term Na(t− i+1) simply needs to be replaced
by
∑Pm

k=1N
a
k (t − i + 1)P a

k , Pm being the maximal index
of physiological age in the plant and Na

k (t − i + 1) the
number of blades of physiological age k appeared at cycle
t − i + 1. The domain of definition of the sink variation
function of every organ o, φo : j 7→ φo(j), is {0, . . . , ta}
although the expansion duration texp can be shorter than its
time of activity. The function takes the value 0 in the interval
{texp, . . . , ta}.

This expression shows that the plant development in-
fluences the production through the demand (that includes
numbers of organs appearing at each growth cycle) and the
numbers of blades.

The limit production of the model is defined as the
production of the plant when the number of growth cycles
t goes to infinity. We investigate under which conditions
the plant production can reach a stable non-zero phase. Of
course the notion of infinite number of growth cycles is
purely theoretical but in practice the stable regime can be
reached after a phase of growth establishment. In this stable
regime, the plant production is equal (or tends to) the limit
production. If the limit production is zero, it means that the
simulated plant does not survive. Therefore it is interesting to
compare the performances of different architectural models.



2.2. Calculation of limit biomass production

Due to the exponential term, the production is always
bounded:

∀t, Q(t) ≤ E(t)µSp (2)

.
Let us first consider the case of a plant with a fixed

deterministic development (GL1) with no or negligible
ring compartment growing under constant environmental
conditions or at least under conditions that tend to stabilize
(limt→∞E(t) = E∞). Thus the notion of topological
development only refers to the number of organs appearing
at each cycle. According to the fixed point theorem, the
iterated function sequence, if it converges, tends to the
solution of the equation:

x = A ·
(
1− e−B·x) (3)

where:
A = E∞µSp

B =
−k
eSp

ta∑
i=1

i∑
j=1

φa(j)
(
Na

D

)
∞

with
(

Na

D

)
∞ = limt→∞

Na(t)
D(t) . Its value depends on the

plant development. It can be proved that this limit exists
in the deterministic case [26], [27] but in the mechanistic
case (GL3), there can be emergence of periodic oscillations
of this ratio [28] so only majorations of plant production
can be written. Hereafter we consider that B converges and
reaches its limit.

The function f : R→ R as: f(x) = A(1− e−Bx) admits
a non zero solution if and only if f ′(0) > 1, i.e. AB > 1.
Therefore, the condition to reach a positive limit value of
biomass production is:

E∞µk

e

ta∑
i=1

i∑
j=1

φa(j)
(
Na

D

)
∞
> 1

Corless et al [29] (see also [30]) has proved that in that
case, the solution of this equation is:

Q∞ = A+
1
B
·W

(
−AB · e−AB

)
(4)

where W is the Lambert function. The Lambert function,
also called the omega function, is the inverse function of h
defined by h(w) = wew. It means that W (x) is solution of
the equation:

W (x)eW (x) = x (5)

As h is non injective, W is multivalued: on the interval

[−1
e
; 0), W (x) takes two values, as shown in Figure 1.

As AB > 1 ⇒ −AB · e−AB ∈ (−1
e
; 0), there are two

possible values for W in equation 4. One of these solutions
is W (x) = −AB, wich is lower than −1 and gives the

Figure 1. Lambert function for x ≥ −1
e

. There are two

branches on the interval [−1
e
; 0) [29]. The continuous

line represents the principal branch W0.

solution Q∞ = 0. The other solution is given by the second
value of W (x), that must be read on its principal branch,
denoted as W0 [29]. It is the non-dotted part of the curve
represented in Figure 1. Therefore the unique strictly positive
solution f(x) = x is given by:

Q∞ = A+
1
B
·W0

(
−AB · e−AB

)
(6)

Moreover, Q∞ is an attractive fixed point of f :

|f ′(Q∞)| =
∣∣W0

(
−AB · e−AB

)∣∣ < 1

since

−AB · e−AB ∈ (−1
e
; 0) for AB > 1.

As, in addition, f is continuously differentiable, this proves
that there is linear convergence of the sequence Q(t) to Q∞.

The value of this fixed point belongs to the following
interval:

0 < A− 1
B
< Q∞ < A

Good approximations of the values of W0(x) can be com-

puted thanks to its Taylor serie [31], converging for |x| < 1
e

(d’Alembert ratio test):

W0(x) =
∞∑

n=1

(−n)n−1

n!
xn (7)



2.3. A criterion to assess the potential of an archi-
tectural model for limit production

Q∞ is an increasing function of A. This is coherent with
the interpretation of A (= E∞µSp): increasing the envi-
ronmental variable E, the coefficient of biomass conversion
efficiency µ or the maximal ground surface projection of
blades naturally results in increasing the limit production.

Using the first term of this development of W0, we
can see that Q∞ is also an increasing function of B.
Therefore calculating the value of B for different topological
parameters provides a criterion to evaluate the performance
of different architectural models.

In application, we give the expression of B for two
particular architectural models: Corner and Leeuwenberg
models, as represented in Figure 2. The case of the Roux
model can be found in [30].

Figure 2. Corner and Leeuwenberg architectural mod-
els: comparison of biomass productions. The simulated
values are consistent with the numerical results found
after solving eq. 3 as shown in fig. 3.

No fruits are considered and all organs are of the same
physiological ages. P a and P i represent respectively blade
and internode sink strength while φa and φi are sink
variation functions.
• Corner model: there is one more metamer at each

growth cycle.

∀t ≥ 1, Na(t) = N i(t) = 1

∀t ≥ texp, D(t) =
texp∑
j=1

P a · φa(j) + ·P i · φi(j)

B =
kP a

eSp

ta∑
n=1

n∑
j=1

φa(j)

texp∑
j=1

P aφa(j) + P iφi(j)

If ta = 1, B does not depend on the sink variation
coefficients and the condition for a strictly positive limit
production (AB > 1) can be further simplified to:

E∞µk

e

P a

P a + P i
> 1

A numerical value of the limit production is given in
the example of Figure 3.

• Leeuwenberg model: each apical bud gives birth to M
new metamers:

∀t ≥ 1, Na(t) = N i(t) = M t−1

∀t ≥ texp, D(t) =
texp∑
j=1

M t−j+1
(
P aφa(j) + P iφi(j)

)
B =

kP a

eSp

ta∑
n=1

n∑
j=1

φa(j)
texp∑
j′=1

M j−j′(P aφa(j′) + P iφi(j′))

Figure 3. Graphical resolution of Eq.3: Q∞ = A(1 −
e−B·Q∞) for Corner and Leeuwenberg (M=2) archi-
tectural models. The parameter values are given in
table 1. Numerically (eq. 7), the limit productions are:
Q∞ Corner = 33.79 and Q∞ Leeuwenberg = 40.16

Table 1. Parameter values of simulations of Fig. 3.

ta=3 Sp = 500 E=1 k=1 e=0.06 µ=0.1
texp=3 Pa, P i = 1 φa, φi = 1

It gives: A = 50

BCorner =
k · Pa

e · Sp

2

Pa + P i
= 0.033

BLee =
kPa

e · Sp(Pa + P i)

(
3M2 + 2M + 1

M2 +M + 1

)
= 0.04

In the illustration presented in Figures 2 and 3, the limit
production for the Leeuwenberg model is higher than that
of the Corner model. In that case (Texp = 3), it can be shown
that as soon as its number of buds per metamer is M > 1, the



limit production of a Leeuwenberg model is necessary higher
than that of a Corner model. As all functional parameters
are chosen identical, this difference is purely related to the
architectural model that develops. However, this trend would
be likely to change if hydraulic resistances of axes were
considered as there are more internodes in the Leeuweberg
tree. Note that the seed biomass (initial condition of the
system) has no effect neither on the limit production nor on
the condition (AB > 1) to reach a stable positive value.

3. Invariances of biomass production

To analyze the importance of architecture on plant func-
tioning, it is also interesting to study the cases when, con-
trary to the cases presented above, topological development
has no influence on biomass production. In fact, it can
be shown that under some conditions, plants with different
topologies have the same biomass production at every cycle
of their growth (not only the limit production of the steady
state).

Hereafter we consider the case when all organs have the
same physiological age (Pm = 1) and there is no ring
compartment in the demand.

3.1. Case 1: immediate expansion of organs

Under these assumptions (Texp = 1), the recurrence
equation of biomass production (Eq 1) is:

Q(t) = EµSp

[
1− exp

(
−kP

a

eSp

ta∑
i=1

Na
t−i+1

Q(t− i)
D(t− i)

)]
(8)

In that case, there is a linear relationship between the num-
bers of organs and leaves with the proportionality constant
ko. Thus the demand of the shoot part is the sum of the
demand of new organs only (internodes with sink P i and
fruits or flowers with sink P f ):

D(t) = (P a + ki · P i + kf · P f ) ·Na(t+ 1)

where Na(t+ 1) is the number of new leaves at GC t+ 1
(the demand is calculated at end of GC so D(t) account
for the new organs appearing at the following GC). As the
number of blades Na(t + 1) is a factor of this equation,
the ratio in equation 8 simplifies. Therefore the recurrent
equation giving the biomass production at GC t, Equation
(1), can be written as :

Q(t) = EµSp

[
1− exp

(
− k

eSp

P a ·
∑ta

i=1Q(t− i)
P a + kiP i + kfP f

)]
(9)

Thus, if the initial condition (biomass of the seed Q0)
is fixed, the sequence (Qt)t∈N is fixed. It means that two
plants verifying these assumptions and having leaves with
the same functioning duration produce exactly the same

Figure 4. Simulation of plant growth with different
topologies but same biomass production (Case 1:
texp = 1, Pm = 1,Dring = 0). The functional parameters
are: ta = 5, P a = 1, P i = 1.5, µ = 0.1, e = 0.06,
Sp = 500.

biomass amount at each GC, whatever their topologies are.
Figure 4 shows some simulation illustrations with Corner
and Leeuwenberg models (GL1) and with a plant simulated
with the GL3 version. The same arguments remain valid if
there are several physiological ages in the plant (Pm > 1)
but with a constant proportionality between sinks of organs
of each PA, i.e. under the following condition:

∃ko, ∀p ∈ 1 . . . Pm, P
o
p ·No

p (t) = ko · P a
p ·Na

p (t)

The same calculations apply also for the case (purely
theoretical) where there is immediate expansion (Texp = 1)
of all organs with only one physiological age (Pm = 1)
and ring demand depending on the number of leaves with a
constant number of leaves all along its life.

3.2. Case 2: expansion duration of several G.C.
(texp ≥ 1) with same shape of sink variation
function for all organs

Again, the number of internodes is proportional to the
number of leaves so we can write:

D(t) = (P a + ki · P i)
Min(t,texp)∑

i=1

Na(t− i+ 1)φa(i)

Intuitively, it would seem possible to simplify the recurrent
equation for the biomass production, as the same sink
variation coefficients and numbers of leaves appear in the
ratio of the exponential factor. In fact it is not always
true (and this can be checked from the examples of Figure
2). More precisely, after several rearrangements, the above



equation can be written under the form:

Qt = EµSp

[
1− exp

(
−kP a

eSp(P a + kiP i)
· C
)]

with C =
∑ta

i=1

Qn−i

ta−i+1∑
j=1

Na(t− i− j + 2)φa(j)

texp∑
j=1

Na(t− i− j + 2)φa(j)

(10)
One can see that the ratio does not simplify as the number of
terms in the sums are different. The residual terms are due
to the fact that when a leaf dies, its whole biomass ceases
activity regardless of the time it was allocated to the leaf.

3.2.1. Residual term due to leaf senescence. An alternative
possibility would be to consider progressive senescence of
leaf. The amount of leaf biomass allocated at GC t would
cease activity at GC t + ta. In that case, equation 10
simplifies to:

Q(t) = EµSp

[
1− exp

(
−kP a

∑ta

i=1Q(t− i)
eSp(P a + kiP i)

)]
(11)

Figure 5. Leaf senescence (in white): in the current
version of GreenLab, leaf activity ceases abruptly: it
generates a residual term in the recurrent equation of
biomass production. An alternative choice would be to
consider that leaf senescence is progressive: every unit
of leaf biomass would remain active during ta growth
cycles.

Thus with this modelling of leaf senescence, it is possible
to find plants with different topological development but
similar sequences of biomass production. Note that Equation
11is the same than Equation 9: expansion durations and
sink variation shapes have no influence on the sequences
of biomass production.

3.2.2. Case of infinite functioning duration of leaves.
Apart from this question, the simplification can also be
done when the functioning duration of leaves (ta) is infinite.
Indeed in this case, leaves never become senescent. Figure

6 presents some example of simulated plant growth with
the same biomass production and allocation to leaf and
internode compartments.

Figure 6. Examples of simulated plants with same
biomass production and allocation to blade and in-
ternode compartments. Leaf functioning time is infinite.
Expansion is immediate or infinite. For each plant, all
organ kinds have the same shape of sink variation.

To conclude, similar production sequences can be found
for plants with different topological developments as soon
as they respect one of the following conditions:
• Immediate expansion (texp = 1), one physiological age

(Pm = 1), no rings (or ring demand proportional to the
number of leaves and a constant number of leaves)

• Expansion duration for several cycles (texp ≥ 1), one
physiological age (Pm = 1) and same sink variation
shape for all organs, provided that one of the following
conditions is verified:

– Leaf functioning duration is infinite (at least equal
to the plant chronological age)

– Leaf senescence is progressive: every unit of leaf
biomass remains active during exactly ta growth
cycles.

In other cases, there is no simplification of the ratio of
number of leaves to the total demand and therefore the topo-
logical development of the plant influences its production.

4. Discussion and conclusion

This paper presents a limit state and behaviour analysis
of the GreenLab model. It has highlighted the interest of
models to assess the performances of different topological
developments to maximize the plant potential production. An
index defining the plant potential performance was presented
and would allow comparing different strategies of develop-
ment. It seems logical that the number of organs appearing at



each cycle has an effect on plant biomass production during
the establishment phase. However, once biomass production
stabilizes, the increase of blade surface has no impact on
the production. Therefore it was not clear whether the
influence of architecture remained important. This question
is particularly crucial for process-based models where only
compartments of biomass are usually considered [32]–[35].
The results of our analysis show that in most cases, the
number of organs is determinant for the value of limit
biomass production. The conditions under which it is pos-
sible to get similar sequences of biomass productions with
different topological developments revealed themselves to
be mainly theoretical and are hardly encountered in nature.
Indeed, as soon as the root compartment is considered, the
simplifications of the equations presented above no longer
hold. Moreover, similar study should be done including the
underground part: for instance, Fitter et al [36] analysed the
influence of root architecture for soil exploitation efficiency
using simulations. However, using sensitivity analysis to
further study the distance between different plants as far
as their potential limit production is concerned would bring
more detailed insights.

The limit state analysis can provide clues to discriminate
between several modelling choices. For instance in [26],
the effect of the calculation mode for ring demand on
limit biomass production in GreenLab was studied. It was
shown that one of the expressions proposed (ring demand
proportional to total biomass production) induces lower limit
production values than the two other ones (ring demand
proportional to the number of leaves or ring demand pro-
portional to the ratio of biomass supply to demand). By
comparison with the qualitative biological knowledge, these
properties can be criteria to guide modeller’s choice.

Studying invariants in a model can be interesting before
beginning the procedure of parametric identification. Here
we showed that several architectures can produce the same
trajectory of biomass production. Although the conditions
found to get invariant biomass production imply that these
cases are purely theoretical, it is likely that it exists real cases
when the difference engendered by two different sequences
of topological development is low. Therefore if the only
data available is biomass, there might be several appropriate
solutions when one aims at estimating the parameters driving
the topological development [37]. This case could be en-
countered if data collected at the level required for process-
based models (i.e. at compartment level) were used to fit
a functional-structural model. In that case, more a priori
knowledge should be incorporated: for instance, a default
topology can be defined based on the botanical study of
the corresponding species. Then parameters can be fitted to
drive the variations of this potential topology according to
the plant internal state of trophic competition and in relation
with environmental constraints.
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thesis, Ecole Centrale Paris, France, 2008, rapport de projet
scientifique.
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