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Abstract. In this article, Functional Structural Plant growth Models (FSPMs)
with stochastic organogenesis are described in the framework of Jump Markov Mod-
els. A Bayesian approach is adopted to estimate uncertain ecophysiological param-
eters. In particular, two estimation procedures are detailed: the Rao-Blackwellized
Particle Filter and the Convolution Particle Filter. These methods are then applied
and compared throughout a particular FSPM: the GreenLab model with stochastic
organogenesis.
Keywords: Functional Structural Plant growth Model, Jump Markov Model,
Rao-Blackwallised Particle Filter, Convolution Particle filter.

1 Introduction

Functional-Structural Plant growth Models (FSPMs) aim at describing the
structural development of individual plants in interaction with their ecophys-
iological functioning, see Sievänen et al. [1]. The complexity of the biological
phenomena involved when modeling such sophisticated systems has some-
times led to the development of very heavy simulation models, capitalizing
an important amount of biological knowledge but very difficult to calibrate on
experimental data. This is often due to a large number of uncertain parame-
ters that cannot be measured directly and should (therefore) be estimated by
inverse methods. However, recent efforts have been made to implement some
FSPMs in the framework of dynamic systems, both in the deterministic case
(Cournède et al.[2]) and also when organogenesis (structural development)
is stochastic (Kang et al.[3]). Estimation methods of the Generalized Least
Squares type were devised [4] to estimate the functional parameters. Even if
(potentially) such methods could lead the modeler to a good model fitting,
statistical inference based on these fitting results is rather limited. This is
due to simplistic assumptions in the structure of the covariance matrix of
the error model (heteroscedastic but diagonal in Cournède et al. [4]), even
more when the underlying organogenesis is stochastic. In such a context,
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the objective of this paper is to propose a new mathematical formalism of
FSPMs with stochastic organogenesis based on Jump Markov Models (An-
drieu et al.[5]) and to adapt Bayesian estimation methods to this framework,
namely Rao-Blackwell Particle Filtering (RBPF, Doucet et al.[6]) and Con-
volution Particle Filter (CPF, Campillo and Rossi[7]). In Section 2, we recall
the definition of Jump Markov Models and the principles of the above-cited
filtering techniques. Then, in Section 3, we show how functional-structural
models with stochastic organogenesis can be described in this framework,
and in Section 4, we apply and compare the two aforementioned Bayesian
methods in a particular plant growth model of this kind (GreenLab with
stochastic organogenesis, Kang et al.[3]). Finally, the obtained results and
some possible generalizations are discussed.

2 Bayesian parameter estimation for Jump Markov
Models

We introduce here the necessary mathematical notations. Random vectors
are denoted by capital letters and their realizations by the same letter in
a lower-case format. Let Z be a generic random vector. For notational
simplicity, if Z admits a probability density (with respect to the Lebesgue
measure), it is denoted by p(z), and if Z is discrete, its probability function is
denoted by P (z). We typically use this convention for vectors Zn of a generic
stochastic process {Zn}n∈N.

Let us consider a discrete dynamic system characterized by a hidden state
sequence {Xn}n∈N and an observed state sequence {Yn}n∈N, which are de-
fined on a common probability space (Ω,F ,P). We assume that they take
values respectively in (X ,B(X )) and (Y,B(Y)) (B stands for Borel). In the
context of our application we restrict our attention to the case that X ,Y are
Euclidean subsets, even if the results could be extended to Polish spaces as
well. The aforementioned processes are both dependent on a third state se-
quence (Cn)n∈N with values in a discrete state space C and are both affected
by noise.

2.1 Jump Markov Model

Now, we give a formal definition of the class of models that we consider.

Definition 1. Let {Cn}n∈N be a (generally non-homogeneous) Markov chain
with values in a discrete state space C, initial probabilities P (c0) and transi-
tion probabilities P (cn+1|cn). A Jump Markov Model (JMM) is a dynamic
system characterized by the following state equations :X0 ∼ p(x0)

Xn+1 = fn+1(Xn, Cn+1,Wn+1, Θ), n ≥ 0,
Yn = gn(Xn, Cn, Θ) + Vn, n ≥ 0,

(1)



where fn, gn are Borel functions, {Vn}n≥0 (measurement noise) and {Wn}n≥0
(process noise) are mutually independent sequences of i.i.d. random vectors,
and Θ is a parameter vector with values in P ⊂ Rdim(Θ). In addition, the pro-
cess {Cn}n∈N is independent of both the state noise and of the measurement
noise.

Our objective is to estimate the parameter vector Θ from observations

(Y0, . . . , Yn)
def
= Y0:n, where n corresponds to the observation length. For this

purpose, we propose a Bayesian approach. Θ is considered as a random vector
and is incorporated into the hidden state vector. If Θn denotes the vector
of parameters at step n, then, for all n, Θn = Θn+1 since Θn is constant.
The corresponding augmented state vector is denoted by Xa

n = (Xn, Θn)
(X a = X × P denotes the associated state space).

2.2 Bayesian methods

The following methods aim at giving an estimate p̂(xan|y0:n) of p(xan|y0:n).
The augmented hidden state vector Xa

n will be estimated by a minimum
mean squared error estimator x̂an :

x̂an = E[Xa
n|Y0:n] ≈

∫
Xa

xanp̂(x
a
n|y0:n)λ(dxan) (2)

where λ denotes the Lebesgue measure on Rdim(Xa). Two particle filtering
based methods are briefly introduced (see the corresponding references for
more details): Rao-Blackwellized Particle Filtering (RBPF, Doucet et al.[6])
and Convolution Particle Filter (CPF, Campillo and Rossi[7]).
• Rao-Blackwellized Particle Filtering: this method is a classical one in
the framework of JMM and has already been extensively applied (see Andrieu
et al.[5]). It is based on the following decomposition:

p(xan|y0:n) =
∑

c0:n∈Cn+1

p(xan|c0:n, y0:n)P (c0:n|y0:n).

Therefore, the estimation of p(xan|y0:n) can be separated into two steps: i)
approximate P (c0:n|y0:n) thanks to a Particle Filtering approach (see Doucet
et al.[6]) and ii) approximate p(xan|c0:n, y0:n) by a Gaussian probability den-
sity function with one step of an Unscented Kalman Filter (UKF, see Julier
and Uhlmann[8]). After the n-th step of the procedure, we have a set of

M particles {(c̃(i)n , x̃an
(i), Σx

n
(i)) i = 1, . . . ,M} where Σx

n
(i) is the covariance

matrix associated to the state vector x̃an
(i). Let us denote by w̃

(i)
n the weight

of the i-th particle at step n. The algorithm associated to the RBPF method
is thus the following (x0 and Σx

0 are supposedly known initial conditions):

• Initialization:
– Sample c̃

(i)
0 ∼ P (c0), i = 1, . . . ,M



– Set the predicted state vector as x0 and the associated covariance
matrix as Σx

0 for each particle i, i = 1, . . . ,M

– Compute the predicted observation ỹ
(i)
0 and the corrected predicted

state vector x̃a0
(i) and their corresponding covariance matrices Σy

0
(i)

and Σx
0
(i) with one step of UKF, i = 1, . . . ,M

– Set w̃
(i)
0 ∼ N (y0; ỹ0

(i), Σ̃y
0
(i)), i = 1, . . . ,M

• Iteration (we have a set of particles {(c̃(i)n−1, x̃an−1(i), Σx
n−1

(i)), i = 1, . . . ,M} ) :

– Sample c̃
(i)
n ∼ P (cn|c̃(i)n−1), i = 1, . . . ,M

– Compute the predicted observation ỹ
(i)
n|n−1 and the corrected pre-

dicted state vector x̃an
(i) and their corresponding covariance matrices

Σy
n|n−1

(i) and Σx
n
(i) with one step of UKF, i = 1, . . . ,M

– Set w̃
(i)
n ∼ w̃(i)

n−1N (yn; ỹan|n−1
(i), Σ̃y

n|n−1
(i)), i = 1, . . . ,M

– Resampling (if needed)

N (yn; ỹan|n−1
(i), Σ̃y

n|n−1
(i)) denotes the probability density function associ-

ated to a Gaussian law N (ỹan|n−1
(i), Σ̃y

n|n−1
(i)) with yn as input. At the end

of the n-th step, the estimate p̂(xan|y1:n) is given by:

p̂(xan|y0:n) =

M∑
i=1

w̃(i)
n N (xan; x̃an

(i), Σ̃x
n
(i)).

• Convolution Particle Filter: this method relies on a convolution ker-
nel approximation technique. At the n-th step, the estimate p̂(xan|y1:n) is

built from a set of M particles {(c̃(i)n , x̃an
(i), ỹ

(i)
n−), i = 1, . . . ,M} and the cor-

responding set of weights {w̃(i)
n , i = 1, . . . ,M}. Let us denote by KC

hM
, KXa

hM

and KY
hM

the Parzen-Rozenblatt kernels associated respectively to Cn, Xa
n

and Yn. hM > 0 is the bandwidth parameter. Therefore, the procedure works
as follows:

• Initialization:
– Sample c̃

(i)
0− ∼ P (c0), i = 1, . . . ,M

– Sample x̃a0−
(i) ∼ p(xa0 |c0), i = 1, . . . ,M

– Sample ỹ
(i)
0− ∼ p(y0|c̃

(i)
0− , x̃

a
0−

(i)), i = 1, . . . ,M

– Set w̃
(i)
0 ∼ KY

hM
(y0 − ỹ(i)0−), i = 1, . . . ,M

– Set p̂(c0, x
a
0 |y0) =

M∑
i=1

w̃
(i)
0 KC

hM
(c0 − c̃(i)0−)KX

hM
(xa0 − x̃

(i)
0−)

– Sample (c̃0
(i), x̃a0

(i)) ∼ p̂(c0, xa0 |y0)

• Iteration (we have a set of particles {(c̃(i)n−1, x̃an−1(i), ỹ
(i)
n−1), i = 1, . . . ,M} ) :

– Sample c̃
(i)
n− ∼ P (cn|c̃(i)n−1), i = 1, . . . ,M

– Sample x̃an−
(i) ∼ p(xan|c̃

(i)
n− , x̃

a
n−1

(i)), i = 1, . . . ,M

– Sample ỹ
(i)
n− ∼ p(yn|c̃(i)n− , x̃

a
n−

(i)), i = 1, . . . ,M



– Set w̃
(i)
n ∼ KY

hM
(yn − ỹ(i)n−), i = 1, . . . ,M

– Set p̂(cn, x
a
n|y0:n) =

M∑
i=1

w̃(i)
n KC

hM
(cn − c̃(i)n−)KX

hM
(xan − x̃

(i)
n−)

– Sample (c̃n
(i), x̃an

(i)) ∼ p̂(cn, xan|y0:n)

At the end of the n-th step, the estimate p̂(xan|y0:n) is given by:

p̂(xan|y0:n) =

M∑
i=1

w̃(i)
n KX

hM
(xan − x̃

(i)
n−).

3 FSPMs with Stochastic Organogenesis as Jump
Markov Models

The aim of this section is to set a suitable statistical model allowing the esti-
mation of functional parameters (denoted by Θ) in functional-structural plant
model with stochastic organogenesis (for example, the GreenLab 2 model of
Kang et al.[3]). For the sake of clarity, we only consider here models with
immediate expansion and we suppose that leaves are only active for one step
(this model applies to most temperate trees). We assume that the organo-
genesis parameters are already determined by using a symbolic approach (see
Loi et al.[9])

3.1 Description of the model

Plants can be seen as discrete dynamic systems. At each time step, two
processes shall be considered: organogenesis, corresponding to structural de-
velopment, and biophysical functioning, corresponding to the production of
biomass and its allocation among organs. The organogenesis is the creation
of new organs by buds. Let us denote by Tobs the time when the plant is
observed, B the set of symbols representing the different botanical types of
buds and O the set of all types of other organs composing plant structure
(leaves, internodes, fruits ...), potentially grouped into categories. For all
n ∈ {1, . . . , Tobs}, let Na

n be either the number of active leaves at step n
if a ∈ B or the number of organs of type a created at step n if a ∈ O.
Nn = (. . . , N b

n, . . . , N
o
n−1, . . .)b∈B,o∈O is called the organogenesis vector at

step n. By convention, N0 denotes the vector whose components are all equal
to zero except the one corresponding to the seed which is equal to 1 (N0 is
thus known). In this article, we consider plant models in which (Nn)n∈N is a
Galton-Watson multitype branching process (see Loi and Cournède[10], the
transition probabilities are supposed known in the sequel).

The biomass contained in the seed is represented byQ0 (supposed known).
For n ≥ 1, Qn is the biomass produced at step n by photosynthesis and it is
determined by the production equation:

Qn = Φ(Qn−1, Nn−1, En, Θ)(1 +Wn) n ≥ 1 (3)



where En is the environmental input (generally global radiations) and Θ a
vector of endogenous parameters to estimate. The process {Wn}n∈N refers to
the process noise modelling the uncertainties arising from the biomass pro-
duction and it is assumed to be a white gaussian noise with Wn ∼ N(0, Jn).
When dealing with the GreenLab growth model, the production equation is
:

Qn = EnµSp

1−exp

− kbN
l
n−1Pl

e
∑
o∈O

No
n−1Po

Qn−1


 (1 +Wn)

where l ∈ O is representing leaves. The vector of parameters Θ contains µ,
Sp and Po with o ∈ O \{l}. The parameter Pl is fixed to avoid identifiability
issues and kb and e are botanical parameters supposed known.

The biomass Qn is then fully distributed to organs which appeared at
step n. The amount of biomass allocated to an organ of type o ∈ O at step
n depends not only from its type o but also from the vector Nn (the biomass
is distributed by taking into account the number of all organs competing for
it). It is denoted by Alon(Qn, Nn, Θ). Since the organs of the plants consume
biomass only once, the mass Mo

n of an organ o appeared at step n is then
given by:

Mo
n = Alon(Qn, Nn, Θ).

In the GreenLab model, the allocation function is given by :

Mo
n = Alon(Qn, Nn, Θ) =

Po∑
o∈O

No
nPo

Qn.

3.2 Associated Jump Markov Model

The vector of endogenous parameters Θ is generally unknown. In order to
estimate it, the previous model of plant growth is formulated as a JMM.
By doing so, the Bayesian methods of Section 2.2 can be used. Let us first
describe the observations of the system. At a given growth step Tobs, the
plant is cut up and a number of organs are weighted. Let M̄o

n be the mean
of all weighted organs of type o created at step n. The observation sequence
of vectors {Yn}n∈N is thus defined as follows:

Yn =
(
. . . , M̄o

n, . . .
)
o∈O + Vn, n ≥ 1.

The process {Vn}n∈N refers to the measurement noise and it is assumed to
be a white gaussian noise independent from {Wn}n∈N with Vn ∼ N(0, Rn).

We prove hereafter that FSPMs with stochastic organogenesis can be de-
scribed by a JMM. The biomass created by photosynthesis is chosen as state
variable. Therefore, Xn = Qn for n ≥ 0. Given that Mo

n = Alon(Qn, Nn, Θ),



(
. . . , M̄o

n, . . .
)
o∈O can be rewritten as a function gn with Qn, Nn and Θ as

inputs. The observation equation becomes:

Yn = gn(Qn, Nn, Θ) + Vn = gn(Xn, Nn, Θ) + Vn, n ≥ 1. (4)

Let Cn be the random vector defined as follows:{
C0 = (0, N0),
Cn = (Nn−1, Nn), ∀n ≥ 1.

Given that (Nn)n∈N is a multitype branching process, (Cn)n∈N is a Markov
chain whose transition probabilities P (cn+1|cn) are entirely determined by
the ones of (Nn)n∈N. Since N0 is known, the initial state C0 is fixed and is
equal to (0, N0). Therefore, the dynamic system associated to FSPMs can
be written as follows:X0 = Q0,

Xn+1 = Φ(Xn, Cn+1, En+1, Θ)(1 +Wn+1), n ≥ 1,
Yn = gn(Qn, Cn, Θ) + Vn, n ≥ 0.

(5)

Therefore, according to Definition 1, the previous system is a JMM.

4 Analysis and comparision of the statistical methods

In this section, the Bayesian methods are applied to a specific FSPM (the
GreenLab model with stochastic organogenesis) and then compared. The
objective is to estimate the vector of parameters Θ = (µ, Sp, . . . , P

o, . . .)o∈Or{l}

by using simulated data. We assume that the parameters of the process and
measurement noises are known. The observation time is Tobs = 28.

Both methods give good results in estimating the parameters (see Table
1). The parameters µ and Sp are slightly biased due the limited number of
observations.

Parameters True value CPF estimation RBPF estimation

µ 3.40 × 10−3 3.44 × 10−3 3.53 × 10−3

Sp 70 65.79 63.80
P p 0.3 0.2971 0.2988
P i1 3 2.9981 3.0273
P i2 2 1.9992 2.0401

Table 1. Estimation results. The superscripts p, i1 and i2 are types of organs and
stand for petiols, internode of type 1 and internode of type 2.

Both methods are also pretty good at estimating the biomass created at each
step (i.e. the hidden state, see Figure 1). They are also convergent and
robust if the number of particles is sufficient (at least 200 for RBPF and
5000 for CPF). As far as convergence time is concerned, their behaviour is



Fig. 1. Estimation of the biomass created at each step.

quite different. The CPF method is a particle filtering method. Since a great
number of particles is required to have convergence, a step of the algorithm
can last long. This is not the case for RBPF because fewer particles are
needed and a step of UKF is quick. However, CPF needs fewer iterations of
the entire algorithm (i.e. from step 0 to Tobs) than RBPF to get convergence.
Finally, by taking into account these two points, it appears that CPF is
slightly faster than RBPF. CPF can also be applied to a wider class of models
since the hypotheses needed to use the method are quite loosed contrary to
RBPF which needs the model to be conditionally Gaussian given the process
{Cn}n∈N.

5 Conclusion

We proposed a JMM framework for FSPM with stochastic organogenesis
where the expansion is immediate and the leaves are active only for one step.
The theoretical extension to the general case is simple and only necessitates
to modify the hidden state vector by incorporating the created biomass from
the previous steps. This framework enables the use of Bayesian methods
(CPF and RBPF) to estimate the endogenous parameters. Both methods
are quite effective. CPF appears to be slightly better because it runs faster
and can be applied to a wider class of models. Since the estimation of the
hidden states is good, these methods can also be used to determine confidence
intervals for the estimated parameters (using bootstrap or the distributions
given by the particle weights).
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