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Fluid flow estimation with multiscale ensemble fil-

ters based on motion measurements under location

uncertainty

Sébastien Beyou1, Thomas Corpetti2, Sai Gorthi1 and Etienne Mémin1∗

1 INRIA / FLUMINANCE, 35042 Rennes Cedex, France
2 CNRS/LIAMA, Institute of Automation, PO Box 2728, Beijing 100190, PR China

Abstract. This paper proposes a novel multi-scale fluid flow data assimilation approach,

which integrates and complements the advantages of a Bayesian sequential assimilation

technique, the Weighted Ensemble Kalman filter (WEnKF) [27]. The data assimila-

tion proposed in this work incorporates measurement brought by an efficient multiscale

stochastic formulation of the well-known Lucas-Kanade (LK) estimator. This estimator

has the great advantage to provide uncertainties associated to the motion measure-

ments at different scales. The proposed assimilation scheme benefits from this multi-

scale uncertainty information and enables to enforce a physically plausible dynamical

consistency of the estimated motion fields along the image sequence. Experimental

evaluations are presented on synthetic and real fluid flow sequences.

Key words: Data assimilation, stochastic filter, particle filters, fluid motion estimation.

1. Introduction

The analysis of geophysical fluid flows is of the utmost importance in domains such

as oceanography, hydrology or meteorology for applications of forecasting, studies on cli-

mate changes or for monitoring hazards or events. The forecasting of such flows requires

the precise knowledge of an initial condition which may be only accessible through the

measurements of the system’s state variables such as pressure, temperature, or fluid flow

velocity. These data may be provided through dedicated probes or Lagrangian drifters

launch in the ocean or in the atmosphere. However, the coverage of such measurements is

usually irregular and sometimes very sparse in underdeveloped regions or across oceans.

At the opposite orbital or geostationary satellites provide a huge amount of image data,

with a still increasing spatial and temporal resolution. Compared to in situ measurements

(i.e. measure with local probes located inside the flow), satellite images provide a much

more denser observation field. However they unfortunately offer only an indirect access to

the physical quantities of interest, and give rise consequently to difficult inverse problems

to estimate characteristic features of the flow such as velocity fields or vorticity maps.

These kinematical information can be estimated from image sequences through mo-

tion estimation techniques. Motion estimation is an old problem in computer vision and a
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huge number of techniques has been proposed to estimate the motion on the image plane

of a 3D scene. The best state-of-the-art approaches perform efficiently for the recovery

of rigid scene motions [28, 31]. They are generally built on strong photometric and mo-

tion hypothesis which prevent them to be sufficiently accurate for deformation metrology.

Several motion estimators dedicated to the measurement of specific phenomenon such as

fluid flows have been proposed in the literature (see [16] for a detailed overview). These

estimators differ mainly on the smoothness prior they are handling: first order penaliza-

tion [29], second order div-curl regularization [6,33], data-dependent [3,7,24] or power

law auto-similarity principles [14,15]. These methods provide accurate instantaneous dis-

placements as they generally implement additional constraints imposed by the physics, as

in [6, 11] and most of them are embedded into a multiscale formalism that enables cap-

turing efficiently the large scales deformations [16]. However, those techniques generally

still exhibit difficulties for mid to small scales measurements. Such artifacts may reveal

particularly pronounced in regions with poor photometric contrasts where the smoothing

prior takes the lead in the solution elaboration. In those regions the data come into play

only at the boundary. Bad estimations or instabilities on the boundary vicinity are imme-

diately echoed on inside such regions. For large regions this may reveal problematic and

constitutes a potential factor of instabilities along time of the estimates.

Dynamical consistency of the velocity measurements can be enforced by embedding the

estimation problem within an image based assimilation process. Variational assimilations

of image information have been recently considered for the estimation of fluid motion

fields [5, 26]. Those optimal control methods, though efficient, constitute batch methods,

which requires forward and backward integrations of the dynamical system and the adjoint

of the tangent linear dynamics respectively. The latter relies implicitly on a linearization

of the dynamics and is adapted in practice for short time horizon. The constitution of this

adjoint dynamics may turn out quite tedious in practice for complex dynamical models.

Stochastic filters are also well known alternative techniques for data assimilation. Op-

posite to the variational data assimilation framework, stochastic filtering has the great

advantage to couple noisy data and a stochastic dynamics incorporating the unavoidable

uncertainties we have on the system evolution. Such filters are also generally set up in a

recursive way and through a Markovian property of the dynamics, they are at least theo-

retically less dependent on the initial condition. This relative independency with respect

to the initial condition and their recursive structure along time are two important advan-

tages. Obviously those filters require a precise modeling of the conditional distribution of

the data given the true state, which is not always an easy task. Besides, the constitution of

sound stochastic dynamics is in itself a difficult research problem for which no general the-

ory exists. This filtering problem is in practice implemented either through particle filters

or ensemble Kalman filters. The latter performs efficiently for linear systems but does not

converge toward the true filtering distribution for nonlinear likelihood or dynamics [20].

As for the former, it has the advantage to deal with complex dynamics but is in its basic

version limited to state spaces of moderate dimension [30], typically inferior to 100 and

in any case three or four orders of magnitude lower than the dimension we are facing

(corresponding to the image dimension e.g. ∼ [105, 106]). Recently, a data assimilation
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procedure with the attempt of coupling the advantages of both filters has been proposed in

embedding an Ensemble Kalman filter (EnKF) [10] into the particle filter (PF) framework.

The approach is referred as Weighted Ensemble Kalman filter (WEnKF) [27]. The objective

of this work consists to specify such a procedure from local noisy velocity measurements

and their uncertainties and to define a multiscale extension of the filter.

To that end, we organize the paper as follows: Section 2 introduces the stochastic

formulation of a local motion estimator based on the Lucas and Kanade technique [22]

and referred as SLK in the rest of the paper. This modified version supplies the motion

measurement at specific scale/resolution, along with their corresponding uncertainties. In

Section 3, we present the Weighted Ensemble Kalman Filter (WEnKF) based fluid flow

assimilation, relying on Navier-Stokes state dynamics and a linear observation model that

uses SLK observations and uncertainties. Our novel multi-level WEnKF scheme, which is

based on the same dynamical model but assimilates the observations at different scales, is

proposed in section 4. Some experimental validation and comparisons with the state-of-art

fluid flow estimators are brought out in section 5 and finally, section 6 concludes the paper

with a discussion to future directions.

2. Stochastic Lucas-Kanade Estimator

Many possibilities are available to derive motion estimates from image data. This task,

commonly named “optical flow”, has been widely studied over the past three decades and

huge amount of techniques are available. The reader can refer to [16] for a recent review

on estimators dedicated to fluid flows and more generally to [1, 2, 12] for presentation

and comparative performance evaluations of some state-of-the-art techniques in computer

vision. Interested readers may also refer to [3,7,24], which provide recent trends for data

based adaptive deformation estimation schemes.

Apart from some very specific applications where the observation process can be mod-

eled in a precise way, almost all existing approaches are based on the well-known “optical-

flow constraint equation” (OFCE), assuming a global conservation of the image luminance:

d f (x, t)

d t
=
∂ f (x, t)

∂ t
+ v(x, t) · ∇ f (x, t) = 0, (2.1)

where x = (x , y) corresponds to the spatial coordinates, ∇ is the gradient operator in the

x and y directions and f denotes the luminance function.

2.1. Lucas-Kanade estimator

From relation (2.1), the seminal works of Horn and Schunck [17] and Lucas and

Kanade [22] have been proposed. In the former method, the solution is obtained by min-

imizing a global energy functional. This functional combines the OFCE with a first-order

spatial regularizer that promotes smooth motion fields over the whole image domain. The

Lucas and Kanade technique is at the opposite a local approach that assumes a locally con-

stant velocity on neighborhoods centered at each location x of the image domain. At each
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point, the velocity is estimated through a local least squares formulation:

I (x) =
�
∂ f (x, t)

∂ t
+ v(x, t) · ∇ f (x, t)

�2

and v= min
v=(u,v)T

∫

Ω

[gλ(·) ∗ I (·)](x)dx, (2.2)

where Ω is the image domain, gλ is an isotropic Gaussian windowing function of standard

deviation λ in which the velocity v is assumed to be homogeneous. Solving the Euler-

Lagrange equations associated to cost function (2.2), one gets (see appendix A for details):

v= −
�

gλ ∗
�

f 2
x fx f y

fx f y f 2
y

��−1

gλ ∗
�

fx ft

f y ft

�
, (2.3)

where f• = ∂ f /∂ •. To guarantee a good conditioning of the previous matrix to invert,

the spatial gradients must not vanish or be identical. The gaussian smoothing of the OFCE

aims in fact at alleviating such a bad conditionning by capturing the spatial information

at a scale related to λ. It is important to outline that the estimated velocity is hence

intrinsically related to this scale λ.

From Horn & Schunck and Lucas & Kanade estimators, a huge number of methods

based on diverse variations of these approaches has been proposed in the literature. Among

them, the techniques focused first on the design of new regularization terms (able for

instance to deal with occlusions, discontinuities or relying on physical grounds [16]) and

second on the application of advanced minimization strategies. Surprisingly, apart for some

specific applications devoted to some particular types of imagery (fluid, biology, infrared

imagery, tomography, IRM, ...), only very few authors have worked on a generic alternative

to the classical brightness consistency assumption, and this despite to the fact it plays a

crucial role in the motion estimation process.

In this paper, instead of relying on the OFCE to derive local motion measurements, we

propose to formulate the motion estimation upon a stochastic version of the image lumi-

nance variation and to embed it in a local least squares formulation similar to the Lucas

& Kanade technique. This leads naturally to a continuous multiresolution formulation and

enables not only to extract the motion fields at different resolutions but supplies uncertain-

ties of those estimates as well. This is presented in the next sections.

2.2. Luminance variation with uncertainties

We first write the image luminance as the function of a stochastic process related to

the position of image points. If one assumes, as illustrated in figure 1, that the velocity v

to be estimated transports from time t − 1 to time t the grid of 2D points Xt−1 ∈ R2m to

Xt ∈ R2m up to an isotropic Brownian motion, we can write:

Xt = Xt−1 +

∫ t

t−1

v(s)ds+

∫ t

t−1

Σ
1/2(s)dBs, (2.4)

where Bs = (B
1
s , ...,Bm

s )
T is a multidimensional standard Brownian motion of R2m, Σ a

(2m × 2m) covariance matrix-valued function and Xt ,Xt−1 represents the grid positions
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Initial image grid

Displaced grid

Velocity field

Isotropic uncertainty area

(a) (b)

Figure 1: Displacement of the grid of points. The initial grid at time t − 1 (white) is transported by
the velocity field v to reach the configuration at time t represented (black), up to some uncertainties
(dashed lines).

at time t − 1 and t. Let us note the second right-hand integral has to be interpreted in

a stochastic sense as Brownian motion is almost nowhere differentiable. In this work we

shall rely on the Itô interpretation of such integral.

The luminance function f usually defined on spatial points (x , y) at time t is now de-

fined on the grid as a map from R2m × R+ into Rm and is assumed to be C1,2(R2m,R+).

Its differential is obtained following the differentiation rules of stochastic calculus (the

so called Itô formulae) that gives the expression of the differential of any continuous de-

terministic function of an Itô diffusion of the form 2.4 (see [25] for an introduction to

stochastic calculus):

df(Xt , t) =
∂ f

∂ t
d t +

∑

i=(1,2)

∂ f(Xt , t)

∂ x i

dX i
t +

1

2

∑

(i, j)∈(1,2)×(1,2)

∂ 2f(Xt , t)

∂ x i∂ x j

d <X i
t ,X

j
t > . (2.5)

The term < X i
t ,X

j
t > denotes the joint quadratic variations of X i and X j defined as the

limit in probability over a partition {t1, . . . , tn} of [0, t] with t1 < t2 < · · · < tn, and

where denoting δt i = t i− t i−1, the partition spacing defined as |δn|=max
i
δt i is such that

|δn| → 0 when n→∞:

<X i
t ,X

j
t >=

P

lim
|δn|→0

∑

tk≤t

(X i
tk−1
− X i

tk
)(X

j
tk−1
− X

j
tk
), for n→∞.

For Brownian motion, this quantity can be evaluated through the expectation of the right-

hand sum, an almost sure convergence is then obtained from the strong law of large num-

bers (which implies convergence in probability). We have then the following identities:

<Bi ,B j >= δi j t a.s.

< h(t), h(t)>=< h(t), dBi >=< B j , h(t)>= 0 a.s. ,
(2.6)
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where δi j is the Kronecker symbol (δi j = 1 if i = j, δi j = 0 otherwise), and h(t) is

a deterministic function. Compared to classical differential calculus, new terms related

to the Brownian random terms have been introduced in this stochastic formulation. In

this work the stochastic part of (2.4) is defined as an isotropic uncertainty variance map

σ(Xt , t) : R2m×R+→ Rm

Σ
1/2(Xt , t) dBt = diag(

p
σ(Xt , t))⊗ I2 dBt , (2.7)

where I2 is the (2×2) identity matrix, and ⊗ denotes the Kronecker product. Applying Itô

formula (2.5) to the isotropic uncertainty model yields a luminance variation defined as:

df(Xt , t) =

�
∂ f(Xt , t)

∂ t
+∇f(Xt , t) · v(Xt , t) +

1

2
σ(Xt , t)∆f(Xt , t)

�
d t

+
p
σ(Xt , t)∇f(Xt , t) · dBt .

(2.8)

It is straightforward to remark that the standard brightness consistency assumption is ob-

tained from (2.8) using zero uncertainties (σ = 0). This stochastic formulation enables

thus to introduce a softer constraint that takes into account an inherent motion measure-

ment due to the discrete grid representation for instance. In this simple model the set

of grid points locations at time t are thus conditionally independent with respect to their

position at time t − 1.

From relation (2.8), the conservation of the image luminance can be quite naturally

expressed from the conditional expectation E
�
df(Xt , t)|Xt−1

�
between t − 1 and t. To

compute this term, we exploit the fact (as shown in appendix B) that the expectation of

any function Ψ(Xt , t) of a stochastic process dXt (as in (2.4)) knowing the grid Xt−1 reads:

E(Ψ(Xt , t)|Xt−1) =
�eΨ(·, t) ∗ gσ(·)

�
(Xt−1), (2.9)

where gσ(Xt) ∼ N (Xt ,Σ) is a multidimensional Gaussian centered in Xt with covariance

Σ(Xt , t)† and eΨ(Xt , t) = Ψ(Xt + v, t). Relation (2.9) indicates that the expectation of a

function Ψ(Xt , t) knowing the location Xt−1 up to a Brownian uncertainty of variance σ

is obtained by a convolution of Ψ(Xt−1 + v, t) with a Gaussian kernel of mean Xt and

covariance Σ.

Assuming σ known, our new luminance variation model E(df(Xt , t)|Xt−1) is hence

defined as (removing the indexes (Xt , t) for sake of clarity):

E
�
df(Xt , t)|Xt−1

�
= gσ ∗

�
∇f · v+

∂ f

∂ t
+

1

2
σ∆f

�
. (2.10)

Instead of using the OFCE as the basis constraint in the motion estimation process, we

prefer to build our least squares estimator upon relation (2.10), which constitutes an OFCE

model under location uncertainty. In the next section, we present a way to estimate such

uncertainties σ(Xt , t).

†Let us note that as the covariance Σ depends on the scalar σ(Xt , t), we note the Gaussian function as gσ to

lighten the notation.



7

2.3. Uncertainty estimation

Assuming an observed motion field vobs that transports the luminance is accessible (we

will describe in the next section an incremental framework involving such a motion), it is

possible to estimate the uncertainty σ(Xt , t) by computing the quadratic variation of the

luminance function df between t − 1 and t. Using the identities in (2.6), this yields:

d


f(Xt , t), f(Xt , t)

�
= σ(Xt , t)‖∇f(Xt , t))‖2 . (2.11)

This quadratic variation can also be approximated from the luminance f by:

d


f(Xt , t),f(Xt , t)

�
≈
�
f(Xt , t)− f(Xt−1, t − 1)

�2
. (2.12)

As convergence in probability implies convergence in distribution, the conditional expec-

tation of both previous terms should be identical, and one can estimate the variance by:

σ(Xt , t) =
E

��
f(Xt , t)− f(Xt−1, t − 1)

�2
�

E
�
‖∇f(Xt , t))‖2

� . (2.13)

The expectation in the numerator and denominator are then computed at the displaced

point Xt−1 + vobs(Xt−1) through the convolution of variance Σ(Xt−1, t − 1). A recursive

estimation process is thus emerging from equation (2.13). Before entering into the details

of the complete framework in section 2.6, let us now rewrite the Lucas-Kanade estimation

associated to our OFCE model under location uncertainty (2.10).

2.4. Stochastic Lucas-Kanade estimator

A local motion estimator relying on the new observation model defined in (2.10) can be

now expressed as the following minimization problem (dropping the coordinates (Xt , t)):

min
v

gλ ∗ gσ ∗
�
∇f · v+

∂ f

∂ t
+

1

2
σ∆f

�2

. (2.14)

In a similar way to the standard Lucas and Kanade estimator (see appendix A) this yields

the following relation, for the velocity estimate of a given grid point:

�
gλ∗gσ∗

�
f2
x fx fy

fx fy f2
y

��
v= −gλ ∗ gσ ∗(

1

2
σ∆f+ft)

�
fx

fy

�
. (2.15)

In this model the Gaussian windowing function gλ of mean Xt and covariance λI2m can be

interpreted as the distribution of a new isotropic constant uncertainty term related to the

grid resolution and independent of the motion uncertainties depending on the image data.

Let us note otherwise that the data model (2.14) introduces a Laplacian diffusion with

a minus sign (antidiffusion effect). This numerically unstable effect is however counter-

balanced by the Gaussian smoothing gσ with a variance that is twice the antidiffusion coef-

ficient. The supplementary filtering due to the Gaussian windowing function gλ introduced
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to counter the illposed nature of the brightness consistancy assumption, further stabilizes

the process. In practice, the choice of the convolution kernel standard deviation λ is cru-

cial: a large value of λ will remove all details whereas a small value is likely to be unstable

and may lead in an extreme case to an illposed problem. In addition, such motion esti-

mation procedure, based on a linearized version of the displaced frame difference, leads

to inaccurate measurements of large displacements when the linear assumption of the

brightness consistency breaks (high photometric gradients and/or large displacements).

To prevent such limitations many authors have proposed to embed such estimation proce-

dures within a pyramidal setup. However, a pyramidal representation requires Gaussian

filtering, sampling and interpolation of the input data which introduce potential artifacts

that may spoil the estimation. Interpreting the windowing function convolution as associ-

ated to the computation of the expectation of a grid uncertainty random term will allow us

defining an original continuous multiresolution framework. This is presented in the next

paragraph.

2.5. Multiresolution version

A multiresolution scheme consists in redefining the problem on a grid Xℓ which can

be viewed as a coarse representation of the initial grid X0 = X with a Brownian isotropic

uncertainty of constant variance λℓ: from the initial pixel grid X0 = X, which corresponds

to the whole image domain, the problem is redefined on a grid Xℓ associated to a coarse

representation of X. This reads

Xℓ = X0+
p
λ
ℓ

I2dBt . (2.16)

The motion v(Xℓt−1, t − 1) on this grid should minimize the expectation E(df2(Xℓt , t)|X0)

which is equivalent (see appendix B) to a convolution of df2(·, t) with the isotropic gaus-

sian N (0,λℓ). Therefore, one gets exactly the system in (2.14) which is solved locally

by inverting the system in (2.15). The main advantage of such a formulation of the mul-

tiresolution setup is to naturally get rid of the use of a pyramidal image representation.

Instead of dealing with successive decimations of factor 2 of the initial image to fix the

different multiresolution levels, the evolutions of the levels ℓ are much flexible here. This

framework may be interpreted as a scale space representation of the extended brightness

consistency assumption [21] stemming in our case rigorously from an uncertainty analysis

of the point location. Let us note the heat equation, which correspond to the backward Kol-

mogorov equations associated to (2.16), constitutes formally the connection point between

the traditional scale space representation and this multiresolution setup.

From the Stochastic Lucas-Kanade normal equations (2.15), the estimation of uncer-

tainties from σ of relation (2.13) and the above multiresolution framework, one can define

a complete incremental framework presented in the next section.
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2.6. Incremental framework

The local estimator proposed here comprises a specific multiresolution scheme where

at each level, an incremental framework is defined to estimate as accurately as possible the

uncertainties. The overall scheme is figured in algorithm 2.1.

Algorithm 2.1 Stochastic Lucas-Kanade: incremental framework

1. Initializations :

• Fix an initial resolution level ℓ= L

• Define f̃(Xt−1, t) := f(Xt−1, t) ; v= 0;

2. Estimation for the level ℓ

(a) Initializations :

• n= 1; v0 = 0;

• Fix an initial σ0

(b) Estimate σn by relation (2.13)

(c) Find vn by local inversions of the system (2.15)

(d) Update motion field : v := v+ vn

(e) Warp the image f(Xt , t) : f̃(Xt−1) = f(Xt−1+ v, t)

(f) n := n+ 1

(g) Loop to step (b) until convergence (|vn|< ε);

3. Decrease the multiresolution level : λℓ = αλℓ+1 where α < 1 is fixed by the user;

4. Loop to step 2 until convergence (λℓ < λℓmin).

This framework is a natural and simple implementation of a local motion estimation

technique using the proposed isotropic uncertainty model for the evolution of the lumi-

nance. The values σ provide us a spatial distribution of the motion estimate uncertainties.

These uncertainties constitute a very usefull piece of information when coping with the fil-

tering of noisy motion measurements. Let us now turn to the presentation of the stochastic

filter considered in this work.

3. Monte Carlo implementation of stochastic filtering with the

Weighted-Ensemble Kalman Filter

In this section we briefly review the main principles driving the construction of the

Weighted Ensemble Kalman filter, proposed in [27], and discuss its advantages and limi-

tations in the context of fluid flow analysis. This technique is a particle implementation of
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a nonlinear stochastic filtering problem build upon an ensemble Kalman update stage. Let

us first introduce basic elements of stochastic filtering.

3.1. Stochastic filtering, filtering distribution

Stochastic filters aim at estimating the posterior probability distribution p(x0:k|y1:k) of

a state variable trajectory x0:k starting from an initial state x0 ∈ Rn up to the current time

k given a complete measurements trajectory y1:k. The state variable trajectory is obtained

through the integration of a dynamical system:

xt =M(xt−δt) +ηt , (3.1)

where M denotes a deterministic linear/nonlinear dynamical operator, corresponding to

a discrete representation (through numerical integration with time step δt) of a physical

conservation law describing the state evolution. Parameter ηt is usually a white Gaus-

sian noise of covariance Qδt , that accounts for the uncertainties in the deterministic state

model. However, as the true initial state is unknown, observation yk ∈ Rm of the state oc-

curring at discrete instants are assumed to be available. These observations and the state

variable are linked through a measurement equation:

yk = H(xk) + γk, (3.2)

where γk, the observation noise, is a white Gaussian noise with covariance matrix R, and

operator H stands for the linear/nonlinear mapping from the state variable space to the

observation space. We note that the (integration) time step used for the state variable

dynamics δt is usually much smaller (about 10-100 times), than the latency δk between

two subsequent measurements. A sequence of measurements or observations from time 1

to k will be denoted by a set of vectors of dimension m as: y1:k = {yi , i = 1, . . . , k} where

the latency between two successive measurements is arbitrarily set to δk = 1.

A recursive expression of the filtering distribution p(x0:k|y1:k), describing the distri-

bution of the unknown hidden Markov process conditioned upon the whole set of past

observations y1:k, can be obtained from Bayes’ law and the assumption that the measure-

ments depend only on the current state (e.g. p(yk|x0:k,y1:k−1) = p(yk|xk)):

p(x0:k|y1:k)p(yk|y1:k−1) = p(x0:k,yk|y1:k−1)

= p(yk|x0:k,y1:k−1)p(x0:k|y1:k−1)

= p(yk|xk)p(xk|x0:k−1,y1:k−1)p(x0:k−1|y1:k−1)

from Markoviannity of the dynamic system, we finally get the sought recursive expression:

p(x0:k|y1:k) = p(x0:k−1|y1:k−1)
p(yk|xk)p(xk|xk−1)

p(yk|y1:k−1)
. (3.3)

For linear models, this recursive equation can be solved through the Kalman filter. This is

described in the next section.
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3.2. Linear Gaussian models and the Kalman Filter

For a Gaussian initial distribution, additive Gaussian noises, linear dynamics and lin-

ear measurement operator, denoted by M and H respectively, the distribution p(xk|y1:k)

remains a Gaussian distribution whose first and second moment, xa
k
= E(xk|y1:k) and

Pa
k
= E((x − xa

k
)(x − xa

k
)T |y1:k), can be explicitly computed from the well known recur-

sive Kalman equations [18]:

x
f

k
=Mxa

k−1, P
f

k
=MPa

k−1MT +Qk, (3.4)

and

Kk = P
f

k
HT (HP

f

k
HT +R)−1, (3.5)

xa
k
= x

f

k
+Kk(yk −Hx

f

k
), (3.6)

Pa
k
= (I−KkH)P

f

k
, (3.7)

here superscripts f and a on state variable expectation and covariance denote the respec-

tive quantities before and after analysis (update) at time k, respectively. The prediction

or forecast step (3.4) brings forward the first two moments of the state vector, from its

previous time step k− 1, through the dynamical model parameters, while the analysis or

the correction step (3.7) provides the first two moments of the state characterizing the

Gaussian filtering distribution at time k. The matrix Kk is referred to as the Kalman gain

matrix and defines the weighting between the forecast state and the innovation brought

by the observation : yk −Hx
f

k
.

In the case of nonlinear models, it is possible to approximate the posterior distribution

with a set of particles. This is presented in the next section.

3.3. Particle implementation of the nonlinear filtering

For nonlinear dynamics or nonlinear measurement equation, a direct sampling from

the filtering distribution is impossible since it would require the complete knowledge of the

filtering distribution – which is in the general case a non Gaussian multimodal distribution

– at a previous time.

Particle filtering techniques introduce a discrete approximation of the sought density

as a sum of N weighted Diracs:

p(x0:k|y1:k)≈
N∑

i=1

w
(i)

k
δx0:k

�
x0:k

�
, (3.8)

centered on hypothesized locations of the state space sampled from a proposal distribution,

π, (also called the importance distribution) approximating the true filtering distribution

p(x0:k|y1:k). Each sample is then weighted by w
(i)

k
, accounting for the ratio between the

two distributions. A great variety of importance functions can be chosen (with the only

restriction that its support contains the filtering distribution one). Obviously the closer it
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is to the targeted filtering distribution the better the results. Under a weak hypotheses

assuming a recursive factorization form of the importance function, the importance ratio

can be recursively defined as:

w
(i)

k
∝ w

(i)

k−1

p(yk|x(i)k
)p(x

(i)

k
|x(i)

k−1
)

π(x
(i)

k
|x(i)

0:k−1
,y1:k)

. (3.9)

By propagating the particles from time k−1 through the proposal densityπ(x
(i)

k
|x(i)

0:k−1
,y1:k),

and by weighting the sampled states with w
(i)

k
, a sampling of the filtering law is obtained.

When the proposal distribution π is set to the prior (i.e. π(x
(i)

k
|x(i)

0:k−1
,y1:k) = p(x

(i)

k
|x(i)

k−1
),

the weights updating rule (3.9) simplifies to the data likelihood p(yk|x(i)k
). This particular

instance of the particle filter is called the Bootstrap filter or sequential importance resam-

pling (SIR) filter [13]. Due to its simplicity it is the most commonly used particle filter.

Nevertheless, such an importance function does not take into account the current observa-

tion and depends only weakly on the past data through the filtering distribution estimated

at the previous instant. High dimensional probability distribution spaces being excruciat-

ingly difficult to sample, it is very important to devise an importance function that enables

focusing on the most meaningful areas of the state space. To that end it is essential to con-

sider proposal distributions that take into account more significantly the past and current

measurements. Along this idea, the weighted ensemble Kalman filter defines the proposal

distribution from the sampling mechanisms of ensemble Kalman filtering techniques.

3.4. Ensemble Kalman Filtering

The Ensemble Kalman filter [9] can be interpreted as a Monte Carlo implementation

of the Kalman filter recursion for the propagation of the two first moments. The Ensemble

filter relies hence intrinsically on a Gaussian approximation of the filtering distribution.

More precisely, let us assume that we have sampled N members from the initial filtering

distribution p(x0|y0), denoted by x
(i)

0 , i = 1, ..., N . Propagating these samples, iteratively,

through the Kalman prediction and correction steps, provides us the Gaussian approxima-

tions of the prediction and filtering distributions.

The prediction step consists in propagating the ensemble members x
a,(i)

k−1
and their as-

sociated uncertainties (noise) through the state dynamics in order to obtain a predicted

particles or forecast ensemble as:

x
f ,(i)

k
=

k−δt∑

t=k−1

�
M(x

f ,(i)
t ) +η

(i)

t+δt

�
, x

f ,(i)

k−1
= x

a,(i)

k−1
. (3.10)

From this, the empirical mean, x
f

k
, of the forecast ensemble and the corresponding em-

pirical forecast covariance matrix P
fe

k
are computed. Using this ensemble based forecast

covariance, an ensemble based Kalman gain matrix Ke
k

can be computed. With this Kalman
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gain and the observation model the forecast ensemble members are then corrected towards

the current observation.

This correction consists to update the forecast ensemble members x
f ,(i)

k
, through the

Kalman update equations (3.4 to 3.7), with a set of perturbed observation yk + γ
(i)

k
ob-

tained from samples of the observation noise {γ(i)
k

, i = 1, ..., N}. This supplies an analysis

ensemble members {xa,(i)

k
, i = 1, ..., N} defined as:

x
a,(i)

k
= x

f ,(i)

k
+Ke

k

�
yk + γ

(i)

k
−Hx

f ,(i)

k

�
. (3.11)

Here, we note that, in the Kalman gain or in the update stage, computation of the high

dimensional covariance matrix or pseudoinverse of the n× n covariance term, (HP
fe

k
HT +

R)−1, are never explicitly computed nor stored. Rather, Kalman gain and update are effi-

ciently implemented by defining and employing matrices with ensemble of perturbations.

In most of the geophysical applications, the size n of the state vector related usually to

temperature, pressure or velocity fields is of much higher dimension than the number of

samples N used in EnKF. i.e., n>> N . Thus, handling the perturbation matrices (instead of

the actual corresponding covariance matrices) approximately brings down the number of

operations from O(n2) to O(nN). The inverse needed in the Kalman gain can be efficiently

computed through the singular value decomposition of a n× N matrix [10].

3.5. Weighted EnKF

Starting from the descriptions of the previous section, a hybrid filtering procedure that

takes advantage of both the particle filter and the EnKF can be devised. We briefly describe

the approach proposed in [27].

The importance sampling principle indicates that a wide range of proposal distributions

can be considered. We will experimentally show that a proposal distribution defined by the

EnKF procedure constitutes an efficient proposal mechanism for particle filter techniques

in high dimensional spaces.

Relying on the usual assumption of the EnKF (i.e. considering the dynamics as a dis-

crete Gaussian system), the conditional distribution p(xk|x(i)k
,yk) can be approached by a

Gaussian distribution of respective mean and covariance [27]:

µ
(i)

k
= (I−Ke

k
H)

k−∆t∑

t=k−1

M(x
f ,(i)
t ) +Ke

k
yk, Σe

k
= (I−Ke

k
H)P

fe

k
. (3.12)

This distribution provides us a natural expression for the proposal distribution. In order to

make the estimation of the filtering distribution exact (up to the sampling), each member of

the ensemble must be weighted at each instant, k, with appropriate weights, w
(i)

k
, defined

from (3.9). For high dimensional systems represented on the basis of a very small number

of particles, the weights simplify as [27]:

w
(i)

k
∝ p(yo

k
|x(i)

k
), and

N∑

i=1

w
(i)

k
= 1. (3.13)
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Therefore, the Weighted ensemble Kalman filter (WEnKF) procedure can be simply summa-

rized by the algorithm 3.1. The next section presents the way we combine SLK (Stochastic

Algorithm 3.1 The WEnKF algorithm, one iteration.

Require: Ensemble at instant k− 1: {x(i)
k−1

, i = 1, . . . , N}
observations yk

Ensure: Ensemble at time k: {x(i)
k

, i = 1, . . . , N}
EnKF step: Get x

(i)

k
from the assimilation of yo

k
with an EnKF procedure;

Compute the weights w
(i)

k
according to (3.13);

Resample: For j = 1 . . . N , sample with replacement index I( j) from discrete probability

{w(i)
k

, i = 1, . . . , N} over {1, . . . , N} and set x
( j)

k
= x

I( j)

k
;

Lucas Kanade introduced in section 2) observations with WEnKF to perform multiscale

fluid motion estimation.

4. Multiscale WEnKF assimilation of SLK observations

In what follows, we first detail the dynamical model, the observation model and the

strategy we adopt to incorporate the uncertainties supplied by the SLK estimator. In a

second step, the section 4.2 presents its multiscale extension to extract consistent fluid

motion estimates.

4.1. Models and uncertainties

The objective being to estimate velocities related to 2D incompressible fluid flows, we

prefer to depict the velocity v = [u, v]T by the scalar ξ = ∂ v/∂ x − ∂ u/∂ y = vx − uy

that represents the vorticity. For such incompressible flows, the velocity field can easily be

recovered from its vorticity using the Biot-Savart kernel: v=∇⊥G ∗ξ where G denotes the

Green kernel (G = 1

2π
ln(|x |)) associated to the Laplacian operator.

Dynamical model: As in this work we considered only 2D incompressible fluid flows,

we will rely for the dynamics on the vorticity-velocity formulation of the Navier-Stokes

equation with a stochastic forcing function:

dξ= −∇ξ · vd t + ν∆ξd t +ηdBt , (4.1)

where ν is the kinematic viscosity and ηdB is a random forcing term (introduced later in

this section). The numerical simulation of this dynamical model is detailed in [27]. We will

note ξk ∈ R|Ω| the finite dimentional state vector describing at instant k the vorticity map

over the spatial domain Ω and v(ξk) will denote the corresponding velocity field (where

an explicit dependance on the vorticity is emphasized to indicate the nonlinear nature of

dynamics (4.1) ).
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Observation model: The measurements on which we will rely on are set directly as the

curl map (i.e. vorticity) of the SLK velocity estimates (cf section 2). Assuming the obser-

vation is a corrupted version of the true vorticity map (state), we define the observation

model as:
eξk = ξk + γk, (4.2)

where γk is a Gaussian random field whose variance is fixed to the spatially varying uncer-

tainties associated to the measurements. The constitution of the random fields associated

to the dynamics and measurement noises are detailed in the next sections.

Noise and uncertainties: To simulate the random forcing term dB in the dynamics (4.1)

and the random field of the observation model (4.2), homogeneous Gaussian fields, cor-

related in space but uncorrelated in time, are used. Their covariance have a general form

given by:

Q(r,τ) = E[dB(x, t)dBT(x+ r, t +τ)] = gλ(r)d tδ(τ), (4.3)

where gλ(r) describes the spatial correlation structure with cutoff parameter λ beyond

which two points are uncorrelated and δ denotes the Dirac distribution (indicating the

random fields are temporally uncorrelated). These random fields are in practice sampled

in the Fourier domain or on wavelet basis [8,23].

Dynamics noise More precisely, for the noise associated to the dynamics, we consider a

divergence free random field that mimics real turbulent flows. This is done by exhibiting

within an inertial range of scales an energy spectrum defined as a power law model ‖x‖
ζ

2

with an exponent 0< ζ < 2. The covariance tensor associated to this random field, usually

refered in the litterature as Kraichnan model [19], can be written more conveniently in

terms of its spectral representation:

E(ηdBt(x)ηdBs(y)
T) = δ(t − s)

d t

(2π)d

∫

R
d

e
ik(x−y)bQ(k)dk, (4.4)

where the spectral correlation tensor in dimension d is defined as:

bQ(k)i j = C2
ζ |k|
−ζ−d(δi j −

kik j

|k|2 )(
Óψκγ)2.

In the previous relation, Cζ corresponds to a dissipative constant fixed on dimensional

considerations and function ψ
γ
κ defines a band-pass cut-off function, allowing to keep only

a given range of scales, corresponding to the so-called inertial scale range defined between

the short dissipative scale ℓD = 1/κ and the large integral scale L = 1/γ at which the

forcing takes place. The variance of this homogeneous random field is

C2
ζ

d t

(2π)d

∫

R
d

|k|−ζ−d(δi j −
kik j

|k|2 )(
Óψγκ)2dk, (4.5)
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which is constant. For a pass-band filter Óψκγ defined as a box filter: 1I[γκ](k) = k if k ∈
[γ,κ], 1I[γκ](k) = 0 otherwise, this is given by

d tCζ

(2π)d

d − 1

d

∫ κ

γ

 ∫

kr=‖k‖
|k|−ζ−d dk

!
dkrδi j =

d tCζ

(2π)d

d − 1

d

2πd/2

Γ( d

2
)
ζ−1(L − ℓD)δi j .

The constant Cζ has a dimension of ℓ1− ξ
2 /t which follows from dimensional analysis (the

energy transfer rate ε= E(u2

t
)∼ ℓ2

t3 and ε∼ C2
ζ
ℓξ

t
). The value of the exponent can be fixed

either from theoretical considerations or from experimental values.

Measurement noise As for the observation noise involved in relation(4.2), it is defined

from the the final uncertainty supplied by the local motion estimator of section 2 (eq.

2.13). The random field is specified as γk(x) = σk(x)ηk(x) where ηk is a Gaussian random

field with an exponential covariance gλ(x − x′) = exp
−(x−x′)2

λ2 , and σk(x) is defined by

the uncertainties associated to the motion measurements at each point x. To mitigate the

effect of outliers, a Gaussian smoothing with a low variance value is considered. This

smoothing avoids the apparition of sharp discontinuities on the uncertainty map. The

additive uncertainty γk is hence a Gaussian random field with non-stationary variance

R(x,x) = σ2
k
(x), and covariance R(x,x′) = σk(x)σk(x

′)gλ(x− x′).
Let us now turn to the description of the WEnKF implementation corresponding to our

application.

WEnKF implementation: The knowledge of the dynamics and observation models to-

gether with the corresponding uncertainties we have previously set up constitute all the

ingredients needed for the implementation of the WEnKF. The following steps summarize

the successive stages of the method:

• At k = 0, the ensemble of states {ξa,(i)
0 , i = 1, ..., N} are initialized with noisy versions

of the SLK vorticity map obtained from the two first images of the sequence using

the technique of section 2;

• At the current time k 6= 0, the ensemble members ξ
a,(i)

k−1
obtained at the previous

measurement instant are propagated through the stochastic state dynamics (4.1) to

generate the forecast ensemble members ξ
f ,(i)

k
.

• The EnKF update is then performed with the new observation in order to sample the

proposal distribution. The importance sampling weighting (relation (3.13)) based

on the likelihood and a resampling process of the particles with respect to those

weights are performed. The empirical mean of the analysis ensemble provides the

vorticity estimate at time k.

• The corresponding velocity field is finally obtained from the Biot-Savart law.
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Although this direct WEnKF filtering of the SLK vorticity maps does provide good re-

sults as we shall see it, the estimation may fail for long range velocities. To overcome this

limitation and to further improve the performance of the WEnKF, we propose in the next

section a multiscale extension of WEnKF.

4.2. Multiscale SLK-WEnKF filtering

The idea of multiscale WEnKF consists to provide an improved proposal distribution

from velocity measurements at different scales. The update step operates iteratively in an

incremental coarse-to-fine way by introducing motion measurements obtained at different

scales through the Gaussian smoothing parameter λℓ in (2.15). More precisely, at a given

scale ℓ ∈ [ℓ0, L] the proposal ensemble is build for each ensemble members from successive

analysis steps as follow (in the following for sake of notational convenience we drop the

member superscript (i), nevertheless apart from mean vectors all the vector are meant to

depend on a given member) :

ξ
a,ℓ
k
= ξ

f ,ℓ

k
+Kℓk

�eξℓk + γℓk −Hξ
f ,ℓ

k

�
, (4.6)

ξ
f ,ℓ

k
= ξ

f ,ℓ+1

k
− ξ a,ℓ+1

k . (4.7)

Here, ξ
a,ℓ
k

(respectively ξ
f ,ℓ

k
) corresponds to the analysis step (respectively forecast) at scale

ℓ of the particles set and the measurements eξℓk are supplied by the stochastic Lucas and

Kanade motion estimates between the backwarped image

ef ℓk (Xk−1) = f(Xk−1+

L∑

j=ℓ

v(ξ
a, j+1

k ), k), (4.8)

and image f(Xk−1, k− 1). The SLK estimator is run for Gaussian windowing standard de-

viation within the range [λℓ0 ,λL]. As for the values of parameter λ, a standard pyramidal

multi-scale scheme would correspond to λℓ−1 = 0.5λℓ. In practice we have founded, as

in [32], that smaller values were more efficient and we use λℓ−1 = 0.3λℓ.

The quantity ξ
a,ℓ

k denotes the empirical mean of the analysis ensemble. The initial

analysis ensemble is fixed to a null value (ξ
a,L+1

k = 0) and the initial forecast is set to the

forecast ensemble computed from the dynamics (x
f ,(i),L+1

k
= ξ

f ,(i)

k
). At the coarsest scale,L,

the motion estimation is hence carried out on the original images fk−1 and fk. These

estimates are computed at a rough scale through a large value of the gaussian window

function gλL (2.14). At finer scales the motion estimation is performed for a decreasing

value of this parameter on a pair of images constituted by the initial image fk−1 and the

image efℓ
k

obtained from backward registration of image fk with respect to the analyzed

motion field at the previous scale, v(ξ
a,ℓ+1

k ).

At each scale, the Gaussian random fields, γℓ, attached to the measurements perturba-

tions involved in the analysis step (4.6), are drawn with the uncertainties provided by the
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stochastic Lucas and Kanade formulation computed from the couple of images (fk−1,efℓ
k
)

and the current analysis ensemble (2.13). Let us note that compared to the previous single

scale filtering where the proposal was based on a single ensemble Kalman update, here

several updates associated to different Kalman gains computed from observations at dif-

ferent scales are considered. In the experimental section, three successive scales will be

considered in such a filtering. The final proposal corresponds to the sum of the analysis en-

semble obtained at the different scales: ξa
k =

∑L

ℓ=ℓ0
ξ

a,ℓ
k

. In the same way as the previous

filter, these ensemble members are then resampled according to the importance weights

computed from the likelihood associated to the original couple of images (fk−1, fk).

The multiscale version of the Weighted ensemble Kalman filter (WEnKF) procedure can

be summarized by the algorithm (4.1).

Algorithm 4.1 Multiscale WEnKF algorithm, one iteration.

Require: Ensemble at instant k− 1: {ξ(i)
k−1

, i = 1, . . . , N}
Ensure: Ensemble at time k: {ξ(i)

k
, i = 1, . . . , N}

EnKF step:

Compute the forecast ensemble ξ
f

k
according to (3.10);

ξ
a,L+1

k = 0; ξ
f ,L+1

k
= ξ

f

k
; ξ

a

k = 0;

for ℓ= L→ ℓ0 do

Compute the backward registered image ef ℓ
k
(Xk−1) = f(Xk−1+ v(ξ

a

k ), k);

Compute the SLK estimate between images fk−1 and ef ℓ
k
;

Get the observation covariance Rℓ;

Draw N samples of Gaussian random fields γℓ
k
∼N (0,Rℓ);

Compute the analysis ensemble at scale ℓ and the forecast residual from

ξ
f ,ℓ

k
= ξ

f ,ℓ+1

k
− ξ a,ℓ+1

k ;

ξ
a,ℓ
k
= ξ

a,ℓ+1

k
+ ξ

f ,(i),ℓ

k
+Kℓ

k

�eξ ℓk + γℓk −Hξ
f ,ℓ

k

�
;

ξ
a,ℓ

k = 1

N

∑N

i=1 ξ
a,ℓ
k

;

ξ
a

k = ξ
a,ℓ

k ;

end for

Compute the weights w
(i)

k
according to (3.13);

Resample: For j = 1, . . . , N , sample with replacement index I( j) from discrete proba-

bility {w(i)
k

, i = 1, . . . , N} over {1, . . . , N} and set ξ
( j)

k
= ξ

a,I( j)

k
;

5. Experimental Results and Comparisons

In this section, we first validate and compare our technique with some state-of-the-

art approaches on a synthetic sequence built from a Direct Numerical Simulation (DNS)
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Figure 2: (a): Particle image (50th of the sequence) and (b): the associated true vorticity map

corresponding to a 2D sustained turbulence. In a second step, we test our approach on a

real fluid sequence.

5.1. Synthetic DNS sequence

We present the results obtained by the application of the single scale and the multiscale

WEnKF denoted as 1L-WEnKF and 3L-WEnKF respectively as the latter has been applied

on a set of 3 three successive scale ranges. Those filters have been compared with state-

of-the-art fluid motion estimators [14,26,33] on a sequence of 100 images depicting a 2D

turbulent flow seeded with particles. The flow has been computed with a direct numerical

similation of the Navier-Stokes equations for a Reynolds number of 3000. This sequence

can be downloaded at http://www.fluid.irisa.fr.

Quantitative comparisons of the different estimation techniques with the ground truth

in terms of the Root-Mean-Square-Error (RMSE) of vorticity and velocity are both pre-

sented in figure 3.

For such particle images, it is noticeable to observe from fig. 3(a), that the RMSE

in vorticity of the SLK approach is close to state of art approaches [14, 33], though the

RMSE values in velocity are higher (fig. 3(b)). The RMSE in vorticity by assimilating the

SLK observation through 1L-WEnKF is much lower, while the error in terms of velocity

estimates is close to the approach of Yuan et al. [33]. However, the 3L-WEnKF assimilation

shows better results both in terms of vorticity or velocity. These errors are lower than

all the fluid motion estimators that have been tested and are at the same level as the

errors provided by the batch variationnal assimilation techniques‡ [26] (which corresponds

thus to a smoothing filter as opposed to a recursive filter as in our case). Let us note

that the RMSE criterion corresponds only to a large scale indicator as the errors on small

scales motion structures contribute to a small amount to the whole error energy. Besides,

‡Due to technical limits associated to batch techniques used in variational data assimilation, the results were

unfortunately available only for 50 images
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Figure 3: Comparison with State of the Art: RMSE in (a) Vorticity (b) Motion field .

the vorticity map is very sensitive to the presence of noise in the velocity fields. The

higher errors in vorticity of the motion estimators may be observed from the different

vorticity maps plotted in fig. 4. Only data assimilation techniques (either variationnal

or based on stochastic filtering as in this work) enable to recover vorticity map that are

closer to the ground truth maps even in the finer small scales details. The presence of

noisy structures in the vorticity maps provided by all the motion measurement techniques

reflects the emergence of small scale dynamical inconsistancies along time. For a visual

comparison we show in fig. 4 the vorticity maps obtained by the different methods for

the 50th images of the sequence. We in addition depicted the estimation at 3 various

scales issued from SLK in order to observe the evolution of the structures along scales (fig.

4 (g-h-i)) . From these images, it appears that the vorticity estimated by the 3L-WEnKF

assimilation (fig. 4 (f)) is less noisy and exhibits much finer scales vortical structures.

The quantitative gain obtained by the proposed 3L-WEnKF method indicates that such fine

structures are physically consistent. This constitutes a key contribution of the paper.

Let us now analyze the behavior of those techniques for real data.

5.2. Real fluid sequence

Our next set of results corresponds to a real world image sequence of a 2D turbulence

generated from the wake of a soap film behind a comb. The flow is visualized through

a Schlieren technique at a rate of 2500 frames per second. This experiments and the

image acquisition have been performed at the Fluid dynamics laboratory of the University

of Buenos Aires. A typical image of the sequence is shown in figure 5 in false color. In this

experiment, we have compared a pure SLK estimation with its filtering using 1L WEnKF

and 3L WEnKF techniques. The estimated vorticity maps and velocity fields corresponding

to SLK, 1L WEnKF and 3L WEnKF are shown in figs. 6(a), (b) and (c), respectively. We note

that though the 1L-WEnKF assimilation of SLK brings out some details at a smaller scale
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Figure 4: Estimated vorticity maps for (a) Yuan et al. ; (b) Heas et. al. [14]; (c) Papadakis et al. [26];
(d) SLK; (e) 1-Level WEnKF assimilation; (f) 3-Levels WEnKF assimilation with the representation
color scale. Last line : intermediate scales estimations during the SLK estimation process for three
various scales (from coarser scale in (g) to finer in (i))
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Figure 5: Real image sequence of a 2D turbulent flow of a soap film

than the SLK measurements, the 3L-WEnKF assimilation recovers even finer details, which

is a very good behavior. In addition, they are physically consistent since the extracted

patterns are representative of this kind of flows where details such as small scale vorticity

filaments and smaller vortices are revealed. Let us also remark that the results observed

in terms of velocity (see the motion fields superimposed on the vorticity fields in fig. 4 (g-

h-i) ) remains consistent and are close together when interpreted at a larger scale, which

demonstrates the power of the WEnKF methods to extract fine scale structures from larger

scales observations and a dynamical model.

6. Conclusion

In this paper, we have proposed an efficient multiscale extension of the Weighted En-

semble Kalman filter for fluid flow motion estimation problem. This filter is a particle

filter relying on a proposal distribution built from the ensemble Kalman filtering mecha-

nism. The particular instance we considered here incorporates measurements issued from

a stochastic extension of the Lucas and Kanade estimator. It benefits from a natural multi-

scale formulation of the motion estimator. The overall multiscale data assimilation filter is

defined in an incremental way.

We have tested our approach on synthetic and real fluid flow sequences. As for the

the former situation, we have also compared our method with several state-of-the-art fluid

motion estimators. From these experiences it can be pointed out that on the basis of

SLK motion estimates and their associated uncertainties, the overall process presented in

this article enables to recover finer scale structures and therefore, to dramatically improve

the quality of the results. Considering only few levels of this hierarchical filter enables

indeed to improve the errors of the corresponding single level filter. This promising be-

havior makes the algorithm an appealing technique for fluid motion estimation in image

sequences. As for the computational load of the technique proposed, it relies on a local

incremental motion estimator that is only slighly more expansive than the original Lucas

and Kanade estimator due to the uncertainty computation. This estimator could be coded
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Figure 6: Vorticity maps with their corresponding velocity fields (a) SLK (b) 1L- WEnKF and (c)
3L-WEnKF for images 76,86 and 96 (first, second and third row respectively).

in real time on a Graphics Processing Unit (GPU) [4]. The Weighted ensemble particle fil-

ter is intrinsically parrallel and could be very efficiently implemented on a grid computer,

in order to get small computational time. In this study, all the experiments have been

performed through a very inefficient Matlab code. In the future we plan to investigate an

efficient implementation of this code together with a 3D Navier Stokes.

Acknowledgements The authors acknowledge the support of the French Agence Na-

tionale de la Recherche (ANR), under grant PREVASSEMBLE (ANR-08-COSI-012).
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A. Appendix: Lucas-Kanade technique

Starting from the from the optical-flow constraint equation:

∂ f(x, t)

∂ t
+ v(x, t) · ∇f(x, t) = 0, (A.1)

the Lucas-Kanade estimator assumes the velocity v(x, t) at a given position x to be homoge-

neous inside a gaussian window gλ of variance λ centered in x. Therefore, the estimation

of v(x, t) reads:

v= min
v⋆=(u,v)T

∫

Ω

J (v⋆)dx= min
v⋆=(u,v)T

∫

Ω

[gλ(·)∗
�
∂ f(·, t)

∂ t
+ v⋆(x, t) · ∇f(·, t)

�2

](x)dx. (A.2)

The Euler-Lagrange equation associated to the cost-functionJ (v⋆) reads (omitting indexes

for clarity reasons):

2gλ ∗∇f
�
∇fT v+ ft

�
= 0, (A.3)

where ∇f = [fx , fy]
T = [∂ f/∂ x ,∂ f/∂ y]T and ft = ∂ f/∂ t. The value of v(x, t) being

constant inside the convolution window gλ, one gets:

2
�

gλ ∗∇f∇fT
�

v+ 2gλ ∗∇f(ft) = 0 (A.4)

and finally

v= −
�

gλ ∗
�

f2
x fx fy

fx fy f2
y

��−1

gλ ∗
�

fx ft

fy ft

�
. (A.5)

B. Appendix: Expectation of a function of a stochastic process

The conditional expectation given Xt−1 of any function Ψ(Xt , t) of a stochastic process

defined through Itô diffusion (2.5) and discretized through an Euler scheme Xt = Xt−1 +

v(Xt−1)d t +Σ1/2(Bt+1− Bt) may be written as:

E(Ψ(Xt , t)|Xt−1) =

∫

R

Ψ(Xt , t)p(Xt |Xt−1)dXt . (B.1)

where Σ is a fixed matrix-valued function. As the process Xt is known up to the Brownian

motion Σ1/2dBt , the probability p(Xt |Xt−1) is a multidimensional Gaussian of variance

Σδt (δt = 1 here) and we get:

E(Ψ(Xt)|Xt−1) =
1

p
2πdet(Σ)

1

2

∫

R

Ψ(Xt , t)exp
�
−(Xt−1+ v−Xt)Σ

−1(Xt−1+ v−Xt)
�

dXt .

(B.2)
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By a change of variable Yt = Xt−1+ v−Xt , this expectation can be written as:

E(Ψ(Xt , t)|Xt−1) =
1

p
2πdet(Σ)1/2

∫

R

Ψ(Xt−1+v−Yt , t)exp
�
−YtΣ

−1Yt

�
dYt

=
�eΨ(·, t) ∗ gΣ(·)

�
(Xt).

(B.3)

where gΣ(Xt) ∼ N (Xt ,Σ
1/2) is a multidimensional Gaussian of mean Xt with covariance

Σ and eΨ(Xt , t) = Ψ(Xt−1+ v, t).
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