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A simulator (Wa-LiD) was developed to simulate the reflection of LiDAR waveforms from water across visible wavelengths. The 

specific features of the simulator include (i) a geometrical representation of the water surface properties, (ii) the use of laws of 

radiative transfer in water adjusted for wavelength and the water’s physical properties, and (iii) modelling of detection noise and 

signal level due to solar radiation. A set of simulated waveforms was compared with observed LiDAR waveforms acquired by the 

HawkEye airborne and GLAS satellite systems in the near-infra red or green wavelengths and across inland or coastal waters. Signal-

to-noise ratio (SNR) distributions for the water surface and bottom waveform peaks are compared with simulated and observed 

waveforms. For both systems (GLAS and HawkEye), Wa-LiD simulated SNR conform to the observed SNR distributions. 

     

Index Terms— Waveform model, altimetry, bathymetry, SNR, GLAS, ICESat, HawkEye 

 

I. INTRODUCTION 

Water surface altimetry and bathymetry are key variables 

for many applications in hydrology, geomorphology and 

meteorology (e.g., [1], [2]). Several techniques for measuring 

water altimetry and bathymetry have been developed through 

the use of sonar, radar and optical imaging. Each of these 

techniques has drawbacks when used on inland or coastal 

waters [3], including (i) limited spatial coverage and use on 

navigable rivers (sonar), (ii) a large radar footprint when used 

for inland water, especially rivers and (iii) the lack of the use 

of optical imaging in unclear waters.  

Airborne hydrographic LiDAR has proved to be a suitable 

sensor because of its accuracy and high spatial density 

features [4]. The potential for airborne hydrographic LiDAR 

is that it can be used for both altimetry and bathymetry 

because of the ability of LiDAR detectors to register returned 

signals from (i) the water surface for altimetry [5], (ii) the 

water bottom for bathymetry ([6], [7]), and (iii) the water 

column that allows some optical properties of water to be 

deduced [8]. The Airborne Hydrographic LiDAR technique is 

limited in terms of spatial coverage and because the data is 

expensive to gather.  

ICESat has been the only altimeter LiDAR satellite up to 

now. The Geoscience Laser Altimeter System (GLAS) from 

ICESat provides accurate high resolution elevations for 

altimetry. The GLAS is promising for inland areas with 

widths greater than 1.5 km, even though the footprint is small 

(50 to 90 m), because of the time needed for detector gain 

adaptation when transitioning from land to water (0.25 s, 

approximately 1.5 km). The transition phase from land to 

water limits the use of GLAS in small, inland water areas [9].  

To improve the prospective and the performance analysis in 

satellite LiDAR systems designed for water altimetry and 

bathymetry, a LiDAR signal database representative of the 

possible physical conditions of water using different LiDAR 

configurations is needed. The common procedure to obtain a 

database involves the development of a physical model 

simulating the signals. Such a model would allow the 

reproduction of the LiDAR signal regardless of the water and 

instrumental parameters.   

Most hydrographic applications that use LiDAR signals are 

derived from the work of Guenther [5]. Before now, few 

studies have been published that model LiDAR waveforms on 

water; these studies include (i) the simulation model of 

Mclean [10], which generates LiDAR returned waveforms 

from a wind-roughened ocean, (ii) the work of Feigels [6] on 

the optimisation of airborne LiDAR’s parameters through 

modelling and analysing waveforms and (iii) work on 

modelling sea surface return and laser bathymetry from 

airborne LiDAR [7]. 

The objective of this study is to develop a new waveform 

simulation model available for any laser wavelength in the 

optical spectrum domain from 300 (Ultra Violet, UV) to 1500 

nm (Near Infra Red, NIR). This model is similar to other 

Hydrographic LiDAR models (e.g., [5], [6], [7]) except it 

integrates radiative transfer laws governed by the physical 

properties of water for any wavelength. This simulation model 

uses a geometrical representation of the water surface with the 

geometric model of Cook and Torrance [11] and integrates 

both the characteristics of detection noise and signal level due 

to solar radiation. 

The aim of this paper is (i) to present the water LiDAR 

waveform model (Wa-LiD) formulae regardless of LiDAR 

system parameters and water parameters, (ii) to exhibit a 

selection of simulated waveforms for certain wavelengths and 

the same water characteristics and (iii) to compare simulated 

waveforms to observed LiDAR waveforms from the satellite 

GLAS sensor and the airborne HawkEye sensor. 
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II. LIDAR MODELLING 

A. The Water LiDAR (Wa-LiD) Simulation Model  

 

1) Model description 

The Wa-LiD model is able to simulate waveforms for any 

laser wavelength in the optical spectrum domain from 300 to 

1500 nm regardless of the optical properties of water. These 

optical properties are determined by the attenuation 

(absorption + scattering) of optical light by pure water, yellow 

substances, phytoplankton and sediment (e.g., [12], [13]). In 

addition, this Wa-LiD model (i) takes into account any Bragg-

scattering from the water surface using the geometric (facets) 

model of Cook and Torrance [11] and (ii) integrates the 

effects of detector noise and noise due to solar radiation. 

The waveforms received by the LiDAR system (power as a 

function of time) are written as the sum of the echoes of 

multiple waves [7]: 

PT(t) = Ps(t) + Pc(t) + Pb(t) + Pbg(t) + PN(t)           (1) 

Where PT(t) is the total power received, Ps(t) is the power 

returned by the water surface, Pc(t) is the power returned by 

the water column, Pb(t) is the power returned by the bottom, 

Pbg(t) is the background power returned by the air column, 

PN(t) is the detector noise power and t is the time scale. 

The emitted laser pulse from the LiDAR system is 

considered to be a Gaussian distribution [14]:  
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Where tx is the two-way time delay of the emitted Gaussian 

pulse between the detector and the water surface ts, water 

column tc or bottom tb. The returned waveforms from the water 

surface, water column and bottom correspond to the 

convolution of the Gaussian emitted pulse and the instant 

echoes from the water surface Ps, water column Pc and bottom 

Pb.  

Returned waveform from water surface: 

The returned waveform from the water surface received by 

the LiDAR detector Ps(t) is given by: Ps(t) = w(ts) * Ps, with: 
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Pe is the emitted power by laser = E0/T0, E0 is the emitted 

energy of the LiDAR system, T0 is the Gaussian FWHM (Full 

Width at Half Maximum), 2
atmT is the two way atmospheric 

loss, AR is the receiver area, ηe and ηR are the optical 

efficiencies of emission and reception, LS is the loss of 

transmission through the surface (surface albedo), θ is the 

local incidence angle, H is the sensor altitude, 
)θcos(c

H2
ts = , 

and c is the velocity of light in air. 

The loss factor through the surface LS is calculated by the 

BRDF (Bidirectional Reflectance Distribution Function) of 

the water surface represented by specular microfacets using 

the geometric model of Cook and Torrance: 
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kd and ks (kd = 1 - ks) determine the fraction of diffuse and 

specular components, respectively. D is the microfacet 

distribution function that models the surface as geometric 

facets and is described by the distribution function of 

Beckmann [15]. 

( )2r/θtan
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r is the rms (root mean square) slope of the facets, which 

determines the surface roughness. Small values of r signify 

gentle facet slopes and give a distribution that is highly 

directional around the specular component while large values 

of r imply steep facet slopes and give a distribution that is 

spread out [11]. 

O is the geometric attenuation factor of the BRDF that takes 

into account the phenomenon of masking between facets 

(auto-shadowing). Fr is the function that describes the Fresnel 

reflection of light on each microfacet. 

 

Returned waveform from water column 

The returned waveform from the water column PC(t) at a 

depth z is given by: Pc(t) = w(tc) * Pc(z), with:  
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θw is the local incidence angle in the water, F is a loss factor 

due to the field of view of the telescope, nw is the water 

refractive index, β(φ) is the volume scattering function, z is 

the column layer, 
ww

sc θcosc

z2
tt += with cw as the velocity of 

light in water, and

 

k is the diffuse attenuation coefficient and 

is defined by the degradation rate of light with depth. An 

approximate formula was built by Guenther [5] to present the 

relationship between k and the optical properties of water: 
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Where ω0 = b(λ)/c(λ) is the single scattering albedo, b(λ) is the 

scattering coefficient, c(λ)=a(λ)+b(λ) is the attenuation 

coefficient and a(λ) is the absorption coefficient. 

The optical properties (a(λ),b(λ)) of turbid water are then 

expressed as the sum of contribution from different substances 

in water, such as yellow substances, phytoplankton and 

sediment [13], where: 

a(λ) = aw(λ) + ay(λ) + aph(λ) + as(λ)        (8) 

b(λ) = bw(λ) + bph(λ) + bs(λ)                    (9) 

Where w, y, ph and S are the indices of pure water, yellow 

substances, phytoplankton and sediments, respectively.
 

  
Returned waveform from water bottom 

The returned waveform from the water bottom received by 

the LiDAR detector Pb(t) is defined as: Pb(t) = w(tb) * Pb, 

with:  
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Where Z is the bathymetry, Rb is the bottom albedo (or bottom 

reflectance) and 
ww

sb θcosc

Z2
tt +=

 
Signal level due to solar radiation 

The signal level due to solar radiation is defined as a Gaussian 

white noise with a mean of zero and a standard deviation 

equal to 1 convolved by the instant echo, Pbg: 
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Where Is is the solar radiance reflected from the water column, 

Δλ is the bandwidth of the optical filter in the receiver and γr is 

the receiver obscuration ratio. 

 
Receiver internal noise 

The detector internal noise is defined as a normal 

distribution with a zero mean and a standard deviation σN(t)  

that varies according to the signal level:  

λ
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Where Pext(t) = Pbg(t) + Ps(t) + Pc(t) + Pb(t), e is the electron 

charge (1.6 x 10-19 C ), B is electrical bandwidth of the 

detector, G is the excess noise factor and Rλ is the 

responsivity. 

Wa-LiD formulae presented above are programmed using a 

MATLAB code. 

 

2)  Wa-LiD simulation examples 

Figure 1 shows simulated waveforms in the case of a 

satellite LiDAR sensor at an altitude of 500 km, emitting NIR 

(1064 nm), green (532 nm), and UV (350 nm) wavelengths. 

Water characteristics used in this simulation correspond to 

river water conditions with an average turbidity (average 

concentration of yellow substances a
y0 = 0.86 m

-1
, 

phytoplankton Cph = 4 mg/m3 and sediment S = 2.8 mg/l) and 

a 2 m depth. The NIR signal has the highest amplitude from 

the surface and penetrates a few cm into the water column. 

The green signal penetrates deeper into the water column and, 

depending on the water properties, is reflected from the 

bottom. The UV wavelength penetrates considerably through 

the water column and can reach the bottom, but the response 

is very low.  

III. COMPARISON OF SIMULATED TO OBSERVED WAVEFORMS  

Simulated waveforms are compared with observed LiDAR 

waveforms to identify the Wa-LiD model behaviour. The 

available observed data were provided from the satellite 

GLAS sensor and the airborne HawkEye sensor (© SHOM). 

A. Observed waveforms Datasets 

Two datasets were available. The first dataset contains 

waveforms acquired by the Geosciences Laser Altimeter 

System (GLAS) across the Lake Leman located in 

Switzerland and France (Lat. 46°26’N and Long. 6°33’E, 

Figure 2a). Lake Leman is one of the largest lakes in Western 

Europe with a surface area of 582 km². The maximum length 

and width of the lake are 73 km and 14 km, respectively. The 

relatively flat surfaces and the fact that the lake is not affected 

by tides make this a good location for validation studies. The 

GLAS data used in this study are GLA01. The GLA01 data 

include waveforms echoed from the water surface in NIR 

(1064 nm). Each waveform was sampled in 544 or 1000 bins 

of received power in volts at a sampling rate of 1 ns over land 

area [16]. In this study, two GLAS transects (set of successive 

shots or footprints) were selected. Waveforms from these two 

transects do not have saturation problems and are longer than 

other transects. The first transect was taken on March 4
th

 2005 

with a length of 11.5 km and corresponds to 69 shots; the 

second transect was taken on June 7
th

 2006 with a length of 

10.5 km and a corresponding 61 shots.  

 
Fig. 1. Simulated LiDAR Waveforms in NIR (1064 nm), green (532 nm), and 

UV (350 nm). E0=20 mJ, T0=5 ns, θ=0.3°. Water is of average turbidity 

(ay0=0.86 m-1, Cph=4 mg/m3, S=2.8 mg/l) with a depth of 2 m. 

 

 
(a) 

 
(b) 

Fig. 2. (a) GLAS transects over Leman Lake, (b) HawkEye points across a 

coastal area in the northern part of Reunion Island. 

 
The second dataset contains waveforms registered by the 

airborne HawkEye system across a coastal area in the northern 

part of Reunion Island near le Chaudron (Lat. 20°52’S and 

Long. 55°30’E, Figure 2b). The HawkEye LiDAR consists of 

two laser scanners, one green (532 nm) and one infrared 

(1064 nm) [17]. The infrared laser light is reflected at the 

water surface whereas the green laser light continues into the 

water column. The green laser light is reflected at the seabed, 

and a portion of the reflected light is collected by the receiver. 

Table 1 shows the characteristics of the two LiDAR 

systems, GLAS [16] and HawkEye [7]. 

B. Simulated waveforms datasets 

Table 2 shows the range of water parameters used for these 

simulations. A range of probable values of water parameters is 
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used for the simulation because the exact water properties 

were not precisely known at the time of the survey; in some 

cases, it was impossible to measure some of the properties, 

such as water surface roughness. The range of roughness, r, 

values used are from Beckman and Spizzochino [15]. The 

range of sediment concentration for coastal areas varies from 

2.6 for clear water to 200 mg/l for very turbid water [18]. 

Here, we used a smaller range (2.6–10 mg/l) corresponding to 

clear water. In the same way, as sand in this area is black and 

formed as a result of volcanic activity [19], the selected range 

of values for bottom reflectance (Table 2) is the same used by 

Jun et al. [20]. 

 
TABLE 1 

THE GLAS AND HAWKEYE SYSTEMS PARAMETERS USED IN SIMULATIONS 

Parameters GLAS HawkEye Parameters GLAS HawkEye 

λ (nm) 1064 532-1064 ηe 0.8 0.9 

H  600 km 200 m ηR 0.5 0.5 

E0 (mJ) 75 3 F 1 1 

T0 (ns) 5 7 Δλ (nm) 1.2 1 

θ (°) 0,3 20 γr
 0.1 0.35 

AR (m²) 0,8 0,025 B (MHZ) 100 142 

FOV (mrad) 5 30 G 3 3 

Rλ (A/W) 0.25 0.3 Id (A) 10-10 10-8 

 
TABLE 2 

RANGE OF ENVIRONMENTAL PARAMETERS USED IN SIMULATIONS 

Parameters Range Parameters GLAS HawkEye 

r [0.1–0.5] 2
atmT  0.64 0.9 

S (mg/l) [2.6–10] β(φ) (m-1sr-1) 0.0014 0.0014 

Rb [0.05–0.2] Is (w/m²srnm) 0.025 0.025 

ks 0.9 nw 1.33 1.33 

C. Waveforms comparison  

The amplitude of GLAS waveforms is in volts whereas the 

units for HawkEye are not known because of industrial trade 

secrets. For the Wa-LiD simulations, the waveforms are 

expressed in watts. For these reasons as well as the invariant 

shapes of waveforms and the fact that peaks in waveforms are 

the main information retrieved, the chosen method to compare 

simulated and observed waveforms was to compare the signal-

to-noise ratio (SNR). Here, SNR is defined by the ratio 

between the waveform peak amplitude (water surface, bottom) 

and the standard deviation of detection noise (includes also 

the photon noise of the useful signal). The distributions of 

SNR for simulated and observed waveforms were computed. 

The 95%, 90%, 75% and 50% confidence intervals were thus 

calculated from SNR quantiles for both observed waveforms 

(GLAS and HawkEye) and simulated ones. Next, the 

probabilities for an observed SNR to belong to a given 

simulated SNR confidence interval were computed. The 

number of simulated waveforms chosen was around two times 

higher than the number of observed waveforms to ensure a 

better simulation of extremes. 

D. Results and discussion 

1)  Comparison with GLAS waveforms 

Waveforms were simulated from Wa-LiD using the GLAS 

system parameters (Table 1) and the range of values for 

roughness r (Table 2). In the infrared, the waveforms are 

influenced mainly by the water surface roughness because the 

penetration of this wavelength is very low in the water column 

and the LiDAR return comes primarily from the water surface. 

In all, 260 waveforms were generated by random, and water 

surface properties were uniformly selected within the ranges 

given in Table 2. From the two GLAS transects selected, 130 

GLAS waveforms across Leman Lake were used. Next, 

GLAS and simulated SNR distributions were computed and 

assigned confidence intervals. The probability of a GLAS 

SNR (SNRGLAS) value belonging to the simulated SNR 

(SNRwalid) confidence intervals is higher (Figure 3a) 

(approximately 0.99 at a 95% confidence interval) than the 

opposite (Figure 3b) (approximately 0.57 at a 95% confidence 

interval). In the Wa-LiD model, the water surface albedo (Ls) 

is influenced by two water surface properties: the specular 

reflection coefficient and the surface roughness. The 

underestimation of the simulated SNR is probably due to the 

distribution of unknown water properties compared with 

simulations from distributions of uniform water properties. 

 
Fig. 3. a) Probability for an observed SNR to belong to a simulated SNR 

interval, b) Probability for a simulated SNR to belong to an observed SNR 

interval. 

 

2) Comparison with HawkEye waveforms 

NIR channel  

In all, 400 waveforms were simulated from Wa-LiD using 

the HawkEye system characteristics (Table 1) and a wide 

range of values for water surface roughness (Table 2). They 

were compared to 200 observed HawkEye waveforms. The 

probability of HawkEye SNR (SNRHawk) belonging to 

SNRwalid confidence intervals are higher (approximately 0.98 

at a 95% confidence interval) than the opposite 

(approximately 0.66 at a 95% confidence interval) (Figure 3). 

The weak underestimation of simulated SNR may result for 

the same reason as the underestimation for GLAS (i.e., 

unknown values of properties for actual surface water 

distribution), which may demonstrate the limitations of this 

comparison exercise. This result confirms the capability of the 

Wa-LiD model to simulate realistic LiDAR waveforms in the 

NIR. 

 

Green channel  

The simulated waveforms in the green were carried out 

using the same system parameters as those for the infrared, 

except for the wavelength value (532 nm). The water 

parameters (Table 2) were randomly selected as inputs for the 

simulator. The water surface roughness r has a higher impact 

on the surface echo, and the sediment concentration S has the 

higher impact on the water column echo for coastal areas [18]. 
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In contrast, the bottom reflectance Rb has the higher impact on 

the bottom echo. The remaining water parameters were fixed 

for values that belong to clear coastal water (ay0=0.1 m
-1

, 

Cph=1 mg/m
3
). The comparison between HawkEye and 

simulated waveforms were carried out for 4 water depths: 3, 6, 

10, and 15 m. For each depth, 400 simulations were generated. 

For comparison, 94 HawkEye waveforms were used: 21 at 3 

m, 20 at 6 m, 20 at 10 m, and 18 at 15 m depths.  

HawkEye and simulated data were compared using the 

SNR for both the surface and bottom returns. The same 

confidence intervals were calculated for each considered 

bathymetry. Figure 4 presents the boxplots of SNR for surface 

and bottom returns from simulated and HawkEye green 

waveforms at a 3 m depth. There is a high probability (higher 

than 0.8) that the HawkEye surface SNR (SNRHawk) belong to 

the simulated surface SNR 95% confidence interval for all 

water depths (Figure 3a). These probabilities were higher than 

those of a simulated surface SNR to belong to the HawkEye 

surface SNR confidence intervals. At the bottom, the 

probability of HawkEye SNR (SNRHawk) to belong to the 

simulated bottom SNR confidence intervals were slightly 

higher than the opposite (Figure 3). This weak 

underestimation of simulated SNR (surface and bottom) is 

thought to be a result of the unknown actual distribution of 

95% at the surface (ks, r), the column (S) and the bottom (Rb), 

which does not fully match the distribution of uniform water 

properties for the simulation. 

 
Fig. 4. Box plots of SNRHawk (surface and bottom) and SNRwalid (surface and 

bottom) for HawkEye waveforms in the Green channel at depth of 3 m. 

IV. CONCLUSION 

A simulation model was built in order to simulate LiDAR 

waveforms on waters for any emitted wavelength in the 

optical domain and for different systems characteristics and 

water properties. The behaviour of the simulator was new 

explored using datasets of observed waveforms collected from 

the GLAS satellite sensor over Leman Lake in the NIR 

channel and from the HawkEye airborne sensor in a coastal 

area across the northern part of Reunion Island in the NIR and 

the green channels. The observed and simulated waveforms 

were analysed by comparing the SNR distribution of their 

peaks and their confidence intervals, for surface and bottom 

peaks. The confidence intervals for both observed and 

simulated SNR are sufficient while presenting some bias, most 

likely because of the distribution of unknown water 

properties.  

In future works, experiments and research are necessary for 

a proper characterisation of water surface roughness. 

Moreover, an analysis of the model sensitivity to different 

media characteristics and sensor parameters will be carried out 

to analyse the influential parameters and to assess the 

performance of future LiDAR systems for the water surface 

altimetry and bathymetry especially for what concerns the 

optimisation of the ground processing algorithms. 
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