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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00741010v2




Mapping local density of young Eucalyptus plantations by
individual tree detection in high spatial resolution satellite 
images

Jia Zhoua,b, Christophe Proisyc, Xavier Descombesb, Guerric le Maired,e, Yann

Nouvellond,f, José-Luiz Stapeg, Gaëlle Viennoish, Josiane Zerubiab, Pierre 

Couteronc

a. Université de Montpellier 2, UMR AMAP, Boulevard de la Lironde, TA-A51/PS2, 

Montpellier Cedex 5, F-34398 France

jia.zhou@cirad.fr

b. Institut National de Recherche en Informatique et Automatique (INRIA), Sophia-

Antipolis Méditerranée, BP 93, 2004 Route des Lucioles, Sophia-Antipolis 

Cedex, F-06902 - France 

xavier.descombes@inria.fr; josiane.zerubia@inria.fr

c. Institut de Recherche pour le Développement (IRD), UMR AMAP, Boulevard de 

la Lironde, TA-A51/PS2, Montpellier Cedex 5, F-34398 France

christophe.proisy@ird.fr; pierre.couteron@ird.fr

d. CIRAD, UMR Eco&Sols, 2 Place Viala, Montpellier, F-34060 France

guerric.le_maire@cirad.fr; yann.nouvellon@cirad.fr

e. CIRAD, UMR TETIS, Maison de la Télédétection, Montpellier Cedex 5, F-34093 

France

f. Atmospheric Sciences Department, Universidade de São Paulo, Rua do Matão 

1226, 05508-090 São Paulo, Brazil

g. Department of Forestry and Environmental Sciences, North Carolina State 

University, Raleigh, NC 27695, United States

stape@ncsfnc.cfr.ncsu.edu

h. Centre National de la Recherche Scientifique (CNRS), UMR AMAP, TA A51 PS 

2, Boulevard de la Lironde, Montpellier Cedex 5, F-34398, France

gaelle.viennois@cirad.fr

Accepted for publication to FOREST ECOLOGY AND MANAGEMENT

http://dx.doi.org/10.1016/j.foreco.2012.10.007



Abstract

Local tree density may vary in young Eucalyptus plantations under the effects of 

environmental conditions or inadequate management, and these variations need to be 

mapped over large areas as they have a significant impact on the final biomass

harvested. High spatial resolution optical satellite images have the potential to provide 

crucial information on tree density at an affordable cost for forest management. Here, we 

test the capacity of this promising technique to map the local density of young and small 

Eucalyptus trees in a large plantation in Brazil. We use three Worldview panchromatic 

images acquired at a 50 cm resolution on different dates corresponding to trees aged 6, 

9 and 13 months and define an overall accuracy index to evaluate the quality of the 

detection results. The best agreement between the local densities obtained by visual 

detection and by marked point process modeling was found at 9 months, with only small 

omission and commission errors and a stable 4% underestimation of the number of trees

across the density gradient. We validated the capability of the MPP approach to detect 

trees aged 9 months by making a comparison with local densities recorded on 112 plots 

of ~590 m² and ranging between 1360 and 1700 trees per hectare. We obtained a good 

correlation (r²=0.88) with a root mean square error of 31 trees/ha. We generalized

detection by computing a consistent map over the whole plantation. Our results showed

that local tree density was not uniformly distributed even in a well-controlled intensively-

managed Eucalyptus plantation and therefore needed to be monitored and mapped. Use 

of the marked point process approach is then discussed with respect to stand 

characteristics (canopy closure), acquisition dates and recommendations for algorithm 

parameterization.

Keywords: crown identification, object detection, stochastic point process,

forests, remote sensing, Brazil



1. Introduction

Local density in forest plantations corresponds to a planting density from which local 

mortality is substrated. It is one of the most important factors controlling the productivity 

of managed Eucalyptus forests (e.g. Walters, 1980). It directly affects inter-tree

competition for light, water and soil nutrients for the whole rotation period (Gonçalves et 

al., 2004). As young trees are the most sensitive to adverse environmental conditions 

and inappropriate practices, mortality is likely to occur at early stages. There is thus a

silvicultural challenge specifically to locate areas of excessive tree mortality or 

insufficient growth as soon as possible during the first year in order to decide on 

replanting accordingly. Areas of strong mortality or poor growth are generally conserved 

up to the end of the rotation and result in overall lower productivity (Stape et al., 2010). 

Spatially explicit information about individual Eucalyptus trees may therefore be of great 

value for pinpointing problems that are often encountered even in intensive plantations 

due to inadequate management, heterogeneous soil conditions (e.g. Garau et al., 2008),

competition with herbaceous vegetation, seed genetic capacity, nutrients supply 

problems or other local damage (Pallett and Sale, 2004; du Toit et al., 2005). For 

instance, trees that are rachitic in their early stages are later totally dominated by 

'regular' trees, and by the end of the rotation their crown is expected to be under the 

canopy. Those trees are generally neglected in biomass estimates by companies.

Therefore, monitoring the actual number of regular-sized live trees in order to make 

comparisons with planned density turns out to be of prime importance in the 

management of extensive forest plantations. However, counting and positioning such

young individual trees in the field is generally an unaffordable business when dealing 

with hundreds of hectares of plantation, as it is frequently observed in Brazil.

The potential of sub-metric spatial resolution remotely sensed data needs to be 

examined carefully with a view to count young trees at an affordable cost. Published 

studies have used airborne Light Detection and Ranging (Lidar) and optical satellite 

instruments. Both types of data can provide fine-scale information on canopy 

characteristics (e.g. Richardson et al., 2011; Hirschmugl. et al., 2007). The Lidar 

instruments have a good potential for single tree detection in open canopies (e.g. 

Tesfamichael et al., 2009; Vauhkonen et al., 2012) or for a forest carbon inventory (e.g. 

Stephens et al., 2012) due to their ability to measure the vertical structure of forests by 



determining the distance between the sensor and a target within the canopy. However, 

the cost of airborne Lidar data collection remains high. In Brazil, it ranges from US$ 

15/ha to US$ 200/ha depending on the location inside the country, the area covered and

the signal density of points (E. Gorgens, pers. comm.). The additional time and cost 

required for data processing cannot be ignored (Hummel et al., 2011). Consequently,

operational use of Lidar remote sensing over extensive Eucalyptus plantations in Brazil 

is still limited to one-off and well-funded research activities.

On the other hand, space-borne imagery acquired at 0.5 to 1-m resolutions and provided 

by recent satellites such as Geoeye, Ikonos, Worldview or Quickbird is now increasingly 

available at reasonable costs ranging from US$ 0.10 for archived images to a maximum 

of US$ 0.80/ha in tasking mode (e.g. e-GEOS, 2011). Fast delivery of data, daily revisit 

and viewing agility are also key characteristics of a forthcoming constellation of small 

satellites such as Pleiades. In sub-metric optical images, individual tree crowns are 

visible because of the contrasting sunlit and shadowed parts of the crown itself and also 

the gaps between neighboring trees. These data can therefore be used to study the 

canopy aspect of natural tropical forests by conducting a textural analysis and extracting 

texture indices that correlate with above-ground stand parameters (Couteron et al., 

2005; Barbier et al., 2010; Song et al., 2010) and biomass (Proisy et al., 2007). 

However, canopy texture approaches usually yielded less accurate estimations of stand 

density than other stand variables such as mean quadratic diameter (e.g. Ploton et al. 

2012).

The possibility of automatically detecting individual tree crowns from optical images has 

been investigated by a variety of techniques, but they all work on pixel intensity to 

delineate tree crowns from their surrounding environment (Korpela, 2004; Erikson and 

Olofsson, 2005). A first family of techniques includes local maxima detection (e.g. 

Pitkänen, 2001; Wulder et al., 2004; Gebreslasie et al., 2011), valley following or region 

growing (e.g. Gougeon, 1995; Culvenor, 2002), 3D template matching (e.g. Larsen and 

Rudemo, 1998) or a combination of several of the above (Pouliot and King, 2005).

Another family of approaches applies stochastic geometry models to forest scenes. 

These models can efficiently detect objects by considering both the noise in data and 

object variability. In remote sensing, marked point process modeling, a subfield of 

stochastic geometry, would appear to be well suited to the analysis of very high 

resolution images since it adjusts a random process by considering groups of pixels as 

parametric, a priori defined objects located in the geographic space (Descombes, 2012). 



The different possibilities opened up by this approach include the counting of items as 

diverse as brain lesions (Descombes et al., 2004), trees (Perrin et al., 2006) and 

flamingos (Descamps et al., 2011). Although the review of Larsen et al. (2011) 

concludes that the above-mentioned individual tree detection techniques show 

decreasing accuracy with the heterogeneity of forest stands, the marked point process 

has been found to yield the best results over a forest plantation. The latter study was 

based on aerial photographs with pixel sizes ranging from 10 to 50 cm. To our 

knowledge, young stand density has not yet been assessed through individual tree 

detection from satellite optical imagery.

In this paper, we assess the potential of marked point processes (MPP) to detect 

individual tree as a contribution to the monitoring of young Eucalyptus plantations from 

three Worldview images acquired at the ages of 6, 9 and 13 months. We first used the 

results of visual detection by independent assessors to measure the performance of the 

MPP approach and its sensitivity to parameter values. We then validated the MPP 

estimations of local tree density using figures from a ground truth dataset of 112 plots.

Finally, a local density map was produced across the entire study area i.e. 170 ha. The

usefulness and performance of MPP for mapping the early stages of Eucalyptus

plantations are finally discussed.

 

2. Data

2.1. Main characteristics of the Eucalyptus plantation

This study took place in a plantation managed by the Duratex company. It is located in

southeastern Brazil at approximately 22°58’S and 48°43.75’W (Fig. 1). The area is 

currently the subject of several research investigations aimed at monitoring and 

improving the growth of Eucalyptus trees (e.g. Laclau et al., 2010; le Maire et al., 

2011a). Mean annual rainfall in the area is around 1300 mm, occurring mainly between 

October and March. Annual temperatures range from 13.3°C in the coldest months (June 

to August) to 27.2oC in the warmest season (December to February), with 19°C being 

the average. In addition, temperatures in the cold season rarely drop below 5oC. The 

study area is almost entirely flat except in the western and northwestern part of the stand 

where the land slopes gently down to a stream. This part of the stand has also a higher 



percentage of clay content and is more prone to encroachment by herbaceous 

vegetation (Campoe et al., 2012).

The study concerned a surface area of about 170 hectares, as shown in Figure 1. This 

stand is planted with a company-improved, highly productive clone of Eucalyptus grandis

(W. Hill ex Maiden). Clone cuttings have been planted in rows approximately 3 meters 

apart, and the trees in the rows are about 2 m apart. This gives a target density of 1666 

trees per hectare. Planting operations took place over a period of 3 to 4 weeks from the 

end of November 2009. The soil was fertilized and chemical weeding was carried out to 

remove competitors (Garau et al., 2008).

Unloading tracks clearly divide the area into 4 zones labeled A to D (Fig. 1). The four 

zones have specific plantation row azimuths (Fig. 2) of about 159°, 72°, 7° and 8° from 

the East. Despite uniform plant material, soil preparation and fertilization (le Maire et al., 

2011b; Campoe et al., 2012), each zone shows local productivity gradients related to 

local differences in topography, soil water, nutrient availability or insufficient weed 

control. This alters final planting performance by reducing growth or increasing mortality 

during juvenile stages in the least favorable contexts.

The growth of these trees averages 20-25 Mg of dry matter ha-1 year-1, i.e. one of the 

highest forest productivities in the world (Marsden et al., 2010; le Maire et al., 2011a).

Tree crown extension was recorded in four inventory plots of 84 trees each (Fig. 1) in 

from May to October 2010 by measuring ground projections of both row and inter-row 

tree crown axes (diameters). Our measurements in May, August and October showed 

that crown radii were 0.80m ± 0.22m, 0.99m ± 0.21m and 1.1m ± 0.16m in the plantation 

row direction and 0.82m ± 0.24m, 1.06m ± 0.22m and 1.15m ± 0.16m in the orthogonal 

direction. Interestingly, the dissimilarity between the two directions proved weak over the 

growing sequence (less than 6%) and crown projection to ground was therefore

approximated as circular discs. After October, no measurements were available but we 

assumed relative stable crown projections to ground due to the canopy closeness.

2.2. Validation data

The validation data included local tree densities collected in May 2010 on 112 plots 

located at the periphery of the plantation zones (Fig. 1). These plots corresponded to 

seven replications of clone trials involving sixteen different clones commonly used in 

commercial Eucalyptus plantations. The 16 clones were very different in terms of leaf



properties (reflectance, transmittance) and canopy structural characteristics (leaf angles, 

leaf area index, crown diameters, height, etc.). On each of these 112 plots, 12 rows with 

16 trees per row were planted on an approximately 3*2 m regular grid at the same time 

as the rest of the plantation. Within the central area of each plot, we measured the crown 

diameters of a total of 96 trees (12 trees per row). The area over which density was 

actually assessed in each plot was thus around 590 m2. In some plots, mortality 

occurred between the planting date and the inventory date, and some trees though 

surviving, had almost no growth. For the study, we considered as ‘regular’ only the trees 

that had a crown diameter above 20 cm in May 2010. The local density on the 112 plots 

of these regular trees ranged between 1360 and 1700 trees per hectare. 

2.3. Remote sensing images and preprocessing

The study involved three high spatial resolution Worldview images acquired from May 

2010 to January 2011 (Table 1). Only panchromatic data were used. The images were 

acquired at different viewing angles (Table 1) and were provided in a GeoTiff format at a 

spatial resolution of 50 centimeters. Sun elevation in the January image was 25° higher 

than for May and August. Sun-viewing angle values indicated an almost rear illumination 

(sun behind) of 20° for the May acquisition whereas illumination in August and January 

was from the side, with angles of about 95 and 105° (Table 1). A preliminary visual 

examination of the images (Fig. 2) showed how the January image contrasted sharply 

with the two previously acquired images as being slightly blurred in appearance with

plantation rows no longer visible, especially in zones A and C. We interpreted this as a 

consequence of high sun elevation combined with the relative azimuth angle of the 

sensor while the distance between the crowns of Eucalypt trees in adjacent rows had

narrowed since August (and crowns adjoined along a row). Indeed, rows in the zone B 

image were still clearly visible in the January image because the sunlight was coming

from a near orthogonal direction of 80°.

The registration of the Worldview-2 images needed to be corrected in order to reach the 

pixel size precision required to superimpose the three images of the same area. To do 

this, we took the May image as the reference image for superimposition and located 

about 100 image-to-image landmarks spread over the stand and the neighboring region 

in both the August and January images. We then used a third order polynomial to reach 

a spatial superimposition error of less than 50 cm. 



Lastly, we re-sampled the three superimposed images into 10 cm pixel images by 

applying a cubic convolution fit to keep the rectification smooth. This oversampling, as 

routinely accomplishable by all image processing software, was required to improve the 

flexibility of disc radius parameter adjustments to the crown in the MPP analysis. 

3. Methods

The study comprised several operations (Fig. 3) applied to the preprocessed images that 

could be grouped into five main steps: tree positioning by visual analysis (3.1); automatic 

detection of trees by MPP (3.2); identification of the best sets of parameters by an 

analysis of detection quality (3.3); validation from ground-assessed densities before 

generalization to the whole plantation (3.4). These operations were implemented in 

Matlab® language.

 

3.1. Visual tree positioning

In our study we assumed that a careful visual analysis of the Worldview images would 

provide an adequate reference dataset of tree positions for comparison with MPP results 

(Fig.3; step 2). This is reasonable provided that tree crowns are neither too small 

(compared to pixel size) nor sufficiently large to fill the inter-crown gaps along the rows. 

We therefore visually analyzed the August image (9-month-old trees), which was 

immune to both difficulties and used the May image (6-month-old trees) only for 

additional comparisons. In addition, we restricted the tedious work of visual interpretation 

to a sample of training/validation zones given that not only the affordability but also the 

quality and objectivity of the interpretation process were likely to decrease with the

interpreted area. We thus arbitrarily located and delineated a total of 18 square 50x50 m 

plots in zones A, B, C and D (Fig. 1) with the aim of interpreting a sample that featured 

all the different plantation row angles. 

Visual detection was carried out by two experts working independently on GIS-based 

data and consisted in determining latitude and longitude projections of apparent crown 

centers for all identifiable trees located in each of the 18 plots. About 7,000 trees were 

located by each of the two experts with close agreement between the two for the number 

of trees in the plots (correlation coefficient 0.95). On the other hand, tree density across 

the 18 plots varied substantially, but independently of the zones as the number of 



visually detected trees ranged from 358 to 417, i.e. the maximum number of trees 

imposed by the plantation scheme for 2500 m².

 

3.2. Tree detection by the marked point process

The point process theory can be used to build random spatial patterns of points and is 

part of stochastic geometry. As the reader can find abundant literature on the subject 

from the mathematical point of view (e.g. Stoyan et al., 1995; van Lieshout, 2000; 

Jacobsen, 2006), or from an image processing point of view (Descombes, 2012), we 

present here only the basics of marked point process modeling along with specificities 

for application to high spatial resolution images of Eucalyptus plantations (Fig. 3; step 2). 

 

3.2.1. Marked point process modeling from zenithal images of forests

A high-resolution image of a forest canopy is a two dimensional lattice of spectral 

reflectance where tree crowns are distinguishable from their surrounding environment by 

intensity contrasts between sunlit and shadowed canopy portions or soil portions (Proisy 

et al., 2007). As visual analysis naturally tends to individualize tree crowns, it is sensible 

and logical to model the image scene as a particular production of a point process 

having as marks discs that approximate the crown shapes (Fig. 4; left). Each MPP 

corresponds to a random configuration of discs belonging to the configuration 

space MPX  ! , where P is the space containing the geographic positions of the crown 

centers, and M is the space containing the marks. In our study, the mark was regarded 

as the ground-projected crown half-diameter (or radius). Space X was thus defined as: 

][];0[];0[ maxmin;rrYXMPX MM   ! !  (1) 

where XM is the width and YM the length of the image scene, and rmin is the minimum 

value and rmax the maximum value considered for the radius of the discs. The PPM 

model was defined through a probability density with respect to the Poisson measure 

(van Lieshout, 2000) and an energy function was stated using a Gibbs formulation 

(Descombes et al., 2009; Descombes, 2012). Finding the best configuration for the 

model then became an energy minimization exercise through the space of all possible 

random configurations featuring a finite number of disc-objects. The total energy U(x) of 

a given configuration was defined as the sum of two terms, namely:

)()()( xUxUxU dp "!   (2) 



where Up(x) is a term introducing constraints between two adjacent objects (prior 

energy) and Ud(x) is a term that expressed how well the system made by the objects and 

their neighborhood fitted image reflectance (data energy). The first term Up(x) cumulates 

the elementary energy computed for each adjacent pair of objects while the second 

Ud(x) cumulates the local energy and includes variations in pixel values within and 

around each object in the configuration. 

This local data energy Ud(x) was computed through a function of the radiometric contrast 

between the pixels inside a given disc-object and the pixels composing its surrounding 

annulus. The higher this contrast, the more likely was the existence of a sunlit crown 

over a shadowed background. Let us note as µi,  i, ni and µ0,  0, n0 the mean intensity, 

standard deviation and number of pixels inside a given disc-object and inside its 

surrounding ring, respectively. For every disc brighter than its corona i.e. µo<µi, a

contrast function derived from a Student's mean-comparison test is computed as follows:
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when S(x) < 1 – T, Ud(x) < 0, the disc fits the data. Setting the contrast threshold to a low 

value tends to increase the number of discs accepted around the same location, while 

high values of T may increase omissions in the event of low contrasts. 

The prior energy term Up(x) is defined here to penalize any overlap between two objects 

and is a function of the normalized extent of the discs’ intersection (Fig. 4; left). This 

function is parameterized using an overlapping threshold value, noted +, that must be 

adjusted in relation to both image characteristics and forest type. Finally, overall prior 

energy is described as )()( xxUp ,-! , where )(x- is the number of disc pairs with non-

null intersection in the current configuration and , is a parameter that weights prior 

energy comparatively to data energy Ud(x).

 

3.2.2. Multiple Births and Deaths optimization algorithm



In order to find the configuration that minimized total energy U(x), we used a ‘multiple 

births and deaths’ process. The algorithm, embedding an annealing technique, was first 

proposed in Descombes et al. (2009) and consists of the following steps:

1) Initialize both a temperature . to 1 and a birth rate 
maxr

YX MM  
!/

2) Select image pixels randomly from those not yet associated with a disc. Then, select 

discs with radius between rmin and rmax randomly from the newly born disc radius. a

uniform distribution.

3) Sort the discs of the current configuration with respect to their data energy in 

decreasing order (i.e. from the worst to the best cases). 

4) Remove each disc with a probability depending on both the temperature parameter 

and the total energy difference between the configurations with and without this object.

5) If the process has not converged (i.e. if total energy changes significantly during the 

last iteration), both temperature and birth rate are decreased.

 

3.3. Identifying the best sets of parameters 

MPP modeling was applied to the 18 image extracts (each of 50x50m). The range of 

disc radius variations was adjusted based on field measurements of the radii of a sample 

of crowns at the three plantation ages considered (see 2.1). The [rmin, rmax] pairs values 

used to analyze the January image were taken according to the October measurements, 

assuming minor changes in canopy dimensions afterwards due to canopy closure. The 

largest interval range for [rmin, rmax] pairs was thus set to [5, 10], [7, 12] and [9, 15] pixels 

in the analysis of the May, August and January 10 cm oversampled images, 

respectively. Various values for ,, 0 and + were also used (see 4.1). For each 

parameters combination, all detected disc-objects (center coordinates plus radius) were 

drawn and overlaid on the analogue patterns provided by the visual interpretation of 

each expert (Fig. 3; step 3). A search was conducted for all detected discs located within 

a capture distance of less than the maximum radius of the tree crown expected at a 

given observation date. Capture distance was taken from field measurements to be the 

average tree crown half diameter at the considered age plus one standard deviation of 

the related crown radius distribution.

When only one disc was captured in the neighborhood of a known tree, the detection 

was considered as validated (situation 1). Detection process limitations generated three 



other possible situations: no discs captured (situation 2), multiple captures (situation 3), 

and false detection i.e. no reference position could be associated with a given detected 

disc (situation 4). We therefore defined four variables for characterizing the quality of 

detection for any given set of parameters. Situation 1 (one tree, one disc) was described 

through the number of validated discs (noted nbv). Situation 2 informs on omission error 

as quantified by the number of omitted discs (nbo) whereas situations 3 and 4 contribute 

to the commission error through the number of multiple detections (nbm) and the 

number of false detections (nbf). The number of trees visually detected was noted nbr.

Associated rates were then computed from ratios of nbv, nbo, nbl or nbv on nbr.

Finally, and as done in several other studies (e.g. Pitkänen, 2001; Pouliot et al., 2005)

we used an overall accuracy index, noted AI, to measure the performance of any given 

set of parameters:

100(%)  
"""

!
nbfnbmnbonbv

nbv
AI (5)

This index corrects the validated rate by taking account both of omission and 

commission errors.  It should be noted that computation of this overall index was strictly 

dependent upon the availability of reference data for tree locations.

3.4. Local density validation and large-scale mapping

We validated the potential of the MPP to detect young Eucalyptus trees by comparing 

local density values estimated by MPP with fully independent data coming from the 112 

field plots measuring ~590 m² as previously presented. Only the best set of parameters

that minimized unavoidable omission and commission errors was used (Fig. 3; step 4). 

Our last aim was to compute a MPP-derived local density map for the entire plantation 

area from the number of MPP-detected discs (Fig. 3; step 5). In order to cover the whole 

Eucalyptus plantation imaged by Worldview, the local density index had to be computed 

over approximately 800 image windows (each of 50x50m), i.e. about 170 hectares of 

plantation. We also indicated an error index for MPP-detection by averaging the number 

of omitted, redundant and false discs, noted nboe, nbme and nbfe, respectively.  

For information, it takes around 20 minutes to process a 50x50m image (500x500 pixels) 

extracted using a Matlab® routine on a 3.5GHz 64 bit PC running with a conventional 

RAM configuration of a few gigabytes. Processing time increases with the specified 

range of radii.



 

4. Results

The quality of MPP detections was analyzed in two steps. The first aimed to identify both 

the parameters (,,0,+) and observation dates that maximized the overall accuracy index. 

It was carried out using broad ranges of crown radius values. The second step evaluated 

how the range of crown values, i.e. [rmin, rmax] pairs affected the final results.

 

4.1. Selecting tree detection parameters 

4.1.1. MPP parameters

The May, August and January images were analyzed using various pairs of minimum 

and maximum radius values, i.e. [5, 8], [8, 10] and [10, 12] pixels, respectively. Detection 

scores were systematically computed in reference to the two visual expert appraisals. 

For the sake of conciseness, only a subset of the results and figures obtained is 

presented in this paper.

Detection scores varied only by a few percentage points when data energy threshold 

value 0 was varied from 0.05 to 0.8 (not shown). This parameter was therefore set to 

0.1 in subsequent analyses, without any great loss of generality. The effect of the ,

parameter that weights prior energy relative to data energy was also tested by 

considering values ranging from 0.5 to 6. For each value of ,, we simultaneously 

examined the effect of the overlapping threshold by taking 0  # +  # $%&. The results 

obtained for all observation dates and all + values showed that setting , below 1 

generated far too many multiple detections while , values above 1 reduced multiple 

detections to less than 15% for the May image and to around 10% for both the August 

and January images (result not shown). Also, overall detection quality was stable for all 

values of , 1 1. Thus, for the remainder of the study, , was set to 2.

Variations in detection scores were analyzed by considering a range of overlapping 

threshold + values from 0 (no overlap) to very high values of up to 0.5 for May and 

August (50% overlapping) and 0.7 for January. We observed that the overall accuracy 

index for the May image (Fig 5; top) was relatively stable at about 60%, with + less than 

0.2. Beyond this value, the overall accuracy index rapidly deteriorated due to a 

simultaneous decrease in validated detections and an increase in multiple detections. 



4.1.2. Image acquisition date

As shown in figure 5, the accuracy index AI for MPP-based detections was clearly higher 

when using the August image than when using the May and January images, with mean 

values of 82%, 51% and 30%, respectively. 

Considering the May acquisition, index values were about 70% as long as the 

overlapping threshold + remained below 0.2, but then fell to 40% (Fig 5; top). The rate of 

missed detections exceeded 15% while that of validated detections (single detections) 

was less than 60%. Conversely, the August image clearly provided good overall scores 

exceeding 80% when using $%$&# +  #$%'# (Fig 5; middle). Very poor detection quality 

was obtained from the January image, with the overall accuracy index peaking at no 

more than 35% for + = 0.4 (Fig 5; bottom). Canopy closure along plantation rows due to 

crown enlargement (Fig. 2) is a likely explanation for this poor performance of the MPP 

analysis at this plantation age. 

However, it should be noted that false detections (disc-objects that cannot be associated 

with a visually detected tree) were zero for all tested parameters and all observation 

dates, indicating that the marked point process had been appropriately parameterized.

4.1.3. Range of disc radii using the August image

Here we focused on analyzing the August image. The main parameters were set to the 

previously established values of ,, 0 and + in order to determine how the choice of 

minimal/maximal radius values impacted omission and commission errors and overall 

detection quality (Table 2) for the four zones with different plantation row orientations 

(Fig. 6). 

Since no significant difference was found between the tree density values provided by 

the two independent visual expert appraisals (see 3.1), densities were considered as a 

sound basis to compute overall detection scores. Interestingly, the validated detections 

rate exceeded 82% for all four zones, showing that row orientation had little or no impact 

on this result. However, the overall accuracy index indicated that median density values

were about 15% lower in A and B than those observed for zones C and D. Rates of no 

detection and multiple detection ranged from 5 to 8% in zones A and B while in zones C 

and D these values did not exceed 3%. 

A detailed analysis using various [rmin, rmax] pairs (Table 2) indicated that the MPP 

analysis performed least well taking values in the upper part of the realistic tree crown 

radius interval, i.e. with rmin (#!$#)*+,-.#/!#0"1#23,4,5.#6.*78#9rmin, rmax] pairs close to the 



lower boundary i.e. [7, 11], [8,11] or [9, 11] boosted both the overall index and the 

validated rate to values above 90% by minimizing omission and commissions errors to a 

few percent. The potential of the MPP analysis is illustrated in Figure 7 which shows 

examples of the detection results obtained with [rmin, rmax] =[9, 11]. 

Additionally, a comparison of visually- vs. MPP-detected trees pointed to MPP detection 

providing a 4% underestimation, but despite this difference the two assessments 

appeared to be linearly correlated throughout the range of Eucalyptus tree densities. 

This indicates that the discrepancy between the visual- and MPP-based density 

estimates is not density-dependent when considering Worldview images acquired for 9-

month old Eucalyptus plantations.

4.2. Validation of MPP-derived local density

We computed the local density on the 112 validation plots using the best parameter

combinations i.e.  0=0.1, ,=2 and +=0.1 and using one of the best radius ranges, i.e. [7, 

11] pixels. The comparison of the MPP-derived and ground truth collected local density 

values correlated well (r²=0.88) with a root mean square error of 31 trees/ha (Fig. 8). The 

slope coefficient of the regression between both datasets did not significantly depart 

from 1 with a 95% confidence interval. There was no mean to quantify omissions or 

commission errors, since ground truth plots did not feature XY locations of trees. 

However, this result validated the ability of MPP detection to assess tree density using 

the parameter values previously identified by visual detection. It also confirmed the 

robustness of MPP density estimates across gradients of tree densities, tree structural 

characteristics and row orientations.

4.3. Large-scale mapping of local density

Lastly, we generated a local tree density map for the entire plantation (~800 image

windows of 50x50m) using one of the best radius ranges, i.e. [8, 11] pixels. This 

parameterization yielded a number of trees ranging from 333 to 420 trees to compare

with the 415 theoretically planted trees for a 50x50m planted area. The associated 

values for nboe, nbme, nbfe corresponded to 17, 14 and 0 trees, respectively. The 

resulting map showed local density variations ranging from 316 trees mainly in the 



northwestern part (zone A) to maximum density values in zone D (Fig. 9). Local density 

across the plantation was clearly not uniformly distributed.

5. Discussion

5.1. Potentialities and further improvements of MPP analysis 

High spatial resolution satellite images can supply useful quantitative information for 

forest management as they can be used to analyze the forest scene on an individual 

tree scale. For instance, pixelwise classification algorithms based on optical image 

radiometry are generally ill-suited to detect young individual trees and measure their 

characteristics. The problem of tree crown delineation in fine spatial resolution images

calls for methods that combine both an analysis of radiometric contrast and a priori

knowledge of tree size and physiognomy. In response to this, and once it had been

verified that tree crowns can be represented by circular discs, the marked point process 

modeling of forest image properties has an undeniable potential for monitoring 

Eucalyptus forest plantations. One particular advantage of using this MPP method is its 

ability to integrate a priori and ideally field-derived data on forest characteristics when 

setting the ranges of parameter values that determine point process configurations.

Values for disc radii must match realistic ranges of tree crown half-diameters on the 

observation date in order to avoid false detections and improve MPP performance. Data 

on tree crown overlapping area are crucial for MPP analysis and can be deduced from 

ground-truth references in one or more plots. Yet, very little crown overlap is observed in 

this kind of even-aged Eucalyptus plantation, and, over time, overlap is of very limited 

importance. The overlap parameter, +, is therefore more intended to express possible 

crown deformation that may occur from tree-tree interactions along the plantation rows. 

Crown modeling via circles cannot account for such deformation plasticity, but 

allowances made for some overlapping provide the necessary plasticity. However, in our 

study, field data showed that little crown deformation occurred, and interpretation of the 

optimal overlap values is probably related to sun and/or sensor position distorting 

apparent tree position or crown shape.

Some difficulties may arise when transforming radiometric variations expressed as 

square pixels into disc-objects of adequate size. Here, we found in our preliminary tests 

that simply oversampling the original image up to 10 cm pixels greatly improved



detection as the marked point process functions better when disc-objects are described 

by tens of pixels rather than a few pixels. More accurate disc positioning through to a 

finer evaluation of the radiometric distance between a crown and its periphery may 

improve data energy minimization. This of course relies on choosing an appropriate 

value for threshold parameter 0. In our case of Eucalyptus crown detection in Worldview 

panchromatic images and for the 10 cm resolution used, a sensitivity analysis led us to 

the conclusion that substantial variations in 0 do not significantly affect detection.

Dealing with other images such as infrared channels or Lidar-derived canopy-height 

models would require additional sensitivity testing. Additionally, computation of the 

radiometric distances needed to evaluate the data energy term may be improved, 

especially if spatial resolution and pixel numbers are high. 

5.2. Prospects and limitations

Although the set of parameters used to implement the method is theoretically large, we 

have shown here that, for a specific class of application (i.e., a certain type of tree stand 

and a given type of image), most parameters have a limited effect on the result and can 

be safely assigned to predetermined values. In our study of a Eucalyptus plantation, we 

noted that we could take 0=0.1 and ,=2 as the energy threshold and weighting of data 

energy, respectively. We also propose that the overlapping parameter may be taken in

:64;3,4#.;6<*,.#5.#$%!# #+  #$%= in the absence of more specific information. The only 

remaining parameters concern the range of disc radii, which has been shown to have a 

substantial effect on the results, but which can easily be adapted to each specific case 

by field measurements of crown radii.

This work highlights that the number of trees and possibly tree locations can be mapped 

from metric spaceborne images during early growth stages before tree crowns join.

Considering Eucalyptus plantations, mapping can be used to illustrate that planting 

success is heterogeneous in space and pinpoint where the problem of tree mortality or 

insufficient growth is the most acute. The potential for stand density mapping from 

individual tree detection must now be tested in diverse types of even-aged, open-canopy

stands. For instance, the monitoring of ecosystems marked by frequent primary 

successions, such as Amazonian mangroves, could benefit from the mapping of natural 

colonization over extensive mud banks by fast-spreading species such as Avicennia 

germinans (Proisy et al., 2009). The method could also be used to detect emergent tree 



crowns sparsely distributed over a number of hectares of closed canopy forest, and this 

could be tested by setting the overlapping threshold and disc radii at values distinct from 

those observed for canopy trees. However, as suggested by the analysis of the January 

image, corresponding to trees aged 13 months, tree canopy closeness makes detection 

impossible with the available native image resolution. In comparison, Vauhkonen et al. 

(2011) concluded that airborne scanning laser data allowed tree detection during the 

whole rotation time in 4x3m Eucalyptus plantations. Moreover, when considering natural 

tropical terra firme forests, tree crown size cannot be restricted to a given interval of a 

few decimeters. In addition, tree crowns often overlap or closely adjust one to another, 

resulting in non-circular shapes. Hence, any attempt to determine the number of trees 

per hectare (except emergent/dominant trees) by MPP analysis on images with a spatial 

resolution of 50 cm to 1m will probably fail in natural forests. A texture analysis providing 

information on modal crown size on a forest hectare scale (Couteron et al., 2005; Proisy 

et al., 2007) may be the best way to extract information from images of closed canopies 

at these resolutions. 

5.3. Prospects for improving the management of Eucalyptus plantations 

Large-scale automatic mapping of local tree density within commercial eucalypt 

plantations is possible by MPP-based single tree detection. Generated maps contribute 

to our overall knowledge of plantations, and could influence decision-making by locating 

site-specific silvicultural failures that reduce productivity. An early detection of high

mortality areas could lead to modifications in current fertilization and weeding practices 

to adapt them more to local low stand density (precision forestry). Local densities are a 

good indicator of the potential volume at harvest, particularly when combined with 

information about average individual tree volume obtained from adequate field 

measurements. The advantage of using imagery compared to forest inventories is that 

individual-scale and thus local information can be obtained over large areas. A lower

than expected tree density can inform the manager of possible problems occurring in 

that area, and this can either be dealt with directly or at the next rotation. Since the best 

detection results are obtained when trees are aged 6 to 9 months, this is too late to 

replace missing trees, but the manager may decide to replant the local area entirely if 

economically profitable, or change the clone, treatments or other operations at the next 

rotation. The price of high spatial resolution satellite images will very likely decrease in 



the future while availability will increase. Moreover, the application of such MPP-based 

analyses at each successive rotation may provide a basis for building temporal archives 

of plantation performance that may be useful for adjusting stocking densities and 

management practices. Finally, the potential of the MPP approach will probably increase 

with its application to fin-scale Lidar-derived canopy heights models that already proved 

usefulness for monitoring Eucalyptus plantations (e.g. Packalén et al., 2011).

5.4. Concluding remarks

A better understanding of how the most influential MPP parameters need to be set for 

different forest types, tree ages, crown forms and sun and viewing conditions may be 

obtained by simulating reflectance images using 3D stand mockups and a radiative 

transfer model, like for instance the DART model (Gastellu-Etchegorry, 2008). Here, as 

explained by Barbier et al. (2012), realistic canopy images can be simulated by applying 

the DART model to 3D forest mockups consisting of “lollipop” trees (ellipsoids on a stick) 

built from field inventories and allometric relationships. This is a very convenient method 

for developing and testing the robustness of remote sensing methods dedicated to the 

application of high spatial resolution imagery to forests.

Simulating images of Eucalyptus plantations may help to both adjust the set of MPP

parameters for each age (and related levels of total height and crown development) and 

determine optimal acquisition parameters in terms of sun and viewing angles (le Maire et 

al., 2012b). This approach may pave the way to providing key attributes for forest 

management, such as trees location maps, an abacus of crown diameter growth during 

early stages, and areas of poor growth or high mortality. Information such as this is 

crucial when investigating the effect of planting density on yield (Vanclay, 1994) or when 

simulating competition for light (Binkley et al., 2010; le Maire et al., 2012a; Binkley et al., 

2012) and when using a simple representation of tree crowns with geometrical volumes, 

such as ellipsoids or cones (Medlyn, 2004).
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Table 1

Main acquisition parameters for Worldview images.

Satellite 
Date of 

acquisition 

Acquisition 

time (GMT) 

Spatial 

resolution  

(m) 

Sensor 

azimuth 

angle (°) 

Sensor 

elevation 

angle (°) 

Sun 

Azimuth 

angle (°) 

Sun 

Elevation 

angle (°) 

Worldview2 11-May-10 13:29 0,5 53,5 70,7 33,5 68,1 

Worldview2 01-Aug-10 13:43 0,5 297,7 83,2 32,5 42,7 

Worldview1 29-Jan-11 13:50 0,5 337,6 81,6 82,3 66,7 

Table 2

Median scores obtained using various [rmin, rmax] pairs and in comparison with the two visual 

expert appraisals. Minimum and maximum scores are given in brackets.

Expert #1 Expert #2 Expert #1 Expert #2 Expert #1 Expert #2 Expert #1 Expert #2

82.8 84.9 1.6 2.2 90.6 91.9 5.4 3.7

(68.4-

95.2)

(69.1-

94.8)

(0.0-

10.7)

(0.0-

12.4)

(81.2-

97.5)

(81.7-

97.3)

(0.7-

15.2)

(0.9-

13.3)

83.2 86.4 3.9 3.8 90.8 92.7 3.3 2.6

(70.1-

93.3)

(72.1-

94.8)

(0.7-

10.7)

(0.2-

13.1)

(82.4-

96.5)

(83.8-

97.3)

(0.7-

11.6)
(0.7-7.9)

81.2 84.8 5.7 4.4 89.6 91.4 2.9 2.3

(70.6-

95.7)

(70.9-

94.7)

(1.6-

13.5)

(0.8-

14.2)

(82.7-

97.8)

(83.0-

97.1)
(0.5-9.3) (0.7-7.3)
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FIGURE CAPTIONS1

2

Figure 1. Extract from the Worldview image acquired in August 2010 of the Eucalyptus 3

plantation area and location of the study site near São Paulo, Brazil (box map). The four 4

zones of different plantation row azimuths are noted A to D. The four filled frames inside5

zones C and D indicate the areas where extensions of tree crowns were recorded on a 6

total of 4x83 trees. The empty square frames symbolize the 18 training plots (each of 7

50x50m) from which the visual analysis was completed. The filled white square frames 8

represent the 112 ground truth plots where tree counting was obtained from a field 9

inventory undertaken in May 2010.10

11

Figure 2. Appearance of the four plantation row orientations (from left to right) from 12

selected 50x50m Worldview images in May, August and January (from top to bottom). 13

Crown size variability and variation of local tree density of trees are also apparent.14

15

Figure 3. Flowchart of processing steps.16

17

Figure 4. Illustration based on a particular configuration of three disc-objects of the main 18

aspects of marked point process fitting. Left: Illustration of overlapping area  between 19

two disc-objects and principles defining the prior energy term in relation to the 20

overlapping threshold  . Right: Example of circular disc-objects as positioned on a 10 cm 21

pixels image to maximize reflectance contrasts between discs and surrounding rings. 22

The inset shows the position of the illustration within the embedding system of rows.23

24

Figure 5. Effect of overlapping threshold  on detection quality for May (6 months after 25

planting, top), August (9 months, middle) and January (13 months, bottom) images. 26

Circular dots indicate accuracy index AI (see text). Square, star and triangle markers 27

correspond to rates of validated, multiple and omitted detections, respectively. All values 28

are averaged over three plots from those inside zones A, C or D (one per zone) using 29

three values of data energy threshold ! values of 0.05, 0.1 and 0.2. The standard error 30

in overall accuracy index is represented by dashed lines.31

32

Figure 6. Results from the MPP-based modeling of the image acquired in August with 33

"=2, !=0.2 and  =0.2 (see text). Detection rates and accuracy index are computed for 34

the four zones of the plantation and for each expert visual interpretation as median 35

values over the [rmin, rmax] intervals listed in table 3. Circular dots indicate the accuracy 36

index AI. Square, star and triangle markers correspond to rates of validated, multiple and 37

omitted detections, respectively. 38

39

Figure 7. Example of MPP detection results obtained over the 4 plots presented in figure 40

2 using the best parameters combination established for the August image analysis i.e. 41

"=2, !=0.2 and  =0.2 and [rmin, rmax]=[8, 11]. Yellow discs with ‘+’ indicate single 42

detections. Blue square dots and green triangles with ‘x’ indicate multiple detection and 43

no detections, respectively.44

45

Figure 8. Comparison between local density values obtained from a field survey and 46

from MPP analysis. Two plots of strongly contrasting tree density are shown. The solid 47

black line gives the regression line of the form XaY #$ (intercept coerced to zero). 48

49



Figure 9. Example of a local tree density map computed over the entire plantation at 50

50x50m resolution of the marked point process modelling. Masked areas are centered 51

along the road network.52

53
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