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émanant des établissements d’enseignement et de
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Université Montpellier II

mugnier@lirmm.fr

Abstract
Argumentation is a reasoning model based on ar-
guments and on attacks between arguments. It con-
sists in evaluating the acceptability of arguments,
according to a given semantics. Due to its gen-
erality, Dung’s framework for abstract argumenta-
tion systems, proposed in 1995, is a reference in
the domain. Argumentation systems are commonly
represented by graph structures, where nodes rep-
resent arguments and edges attacks between argu-
ments. However beyond this graphical support,
graph operations have not been considered as rea-
soning tools in argumentation systems. This paper
proposes a conceptual graph representation of an
argumentation system and a computation of argu-
ment acceptability relying on conceptual graph de-
faults.

1 Introduction
Argumentative reasoning is based on the construction and the
evaluation of interacting arguments. Most of the existing ar-
gumentation models are grounded on the abstract argumenta-
tion framework proposed by Dung in [Dung, 1995]. It con-
sists of a set of arguments and a binary relation on this set, ex-
pressing conflicts among arguments. Argumentation systems
are commonly represented by graph structures, where nodes
represent arguments and edges attacks between arguments.

Two main tools are currently available for argument vi-
sualization: Araucaria [Araucaria, website] and Carneades
[Carneades, website]. These tools facilitate the visual display
of arguments and in particular their structure (e.g. premisses
and conclusion), however they are not reasoning tools. This
paper deals with the reasoning issue, moreover it regards a
different level, since it does not focus on argument structure,
but on the representation of a whole argument base and on the
computation of maximal acceptable sets of arguments from it.

The chosen formalism is the conceptual graph (CG) model
[Chein and Mugnier, 2009]. Indeed, it is the only AI for-
malism that combines a graphical representation and graph-
based operations, together with an equivalent logical interpre-
tation, providing a well-founded graphical and logical reason-
ing model. A recent study [de Moor et al., 2009] has consid-
ered the representation of “argument maps” in the concep-

tual graph model. It designs an architecture to map argument
maps and conceptual graphs, to allow visualizing the argu-
ments put forward by different actors and examining them
through queries. The authors present the advantages of using
conceptual graphs, and highlight that, beyond this first step,
further reasoning features remain to be explored.

In this paper, we focus on this reasoning issue. Non-
monotonic reasoning is used as a computational tool to de-
termine maximal acceptable sets of arguments. It is in-
stantiated by conceptual graph defaults [Baget et al., 2009;
Baget and Fortin, 2010]. The paper is organized as follows.
Section 2 presents the background on argumentation systems
and conceptual graphs. Section 3 introduces a representation
of argumentation systems in the conceptual graph formalism.
Section 4 proposes a way of computing four kinds of accept-
able sets of arguments, namely the naive, the admissible, the
preferred, and the stable sets, according to the semantics of
argumentation systems.

2 Background
This section introduces fundamental notions of argumenta-
tion systems and the basic conceptual graph formalism as
well as one of its extensions, namely CG defaults.

2.1 Argumentation systems
Three main steps can be distinguished in an argumentation
process: 1) constructing arguments and counter-arguments,
2) evaluating the collective acceptability of sets of arguments,
and 3) drawing justified conclusions. In [Dung, 1995], an
abstract argumentation framework is defined as follows.

Definition 1 (Dung’s argumentation framework). An argu-
mentation framework is a pair AF = 〈A, R 〉 where A is a
set of arguments and R ⊆ A × A is an attack relation. An
argument α attacks an argument β iff (α,β ) ∈ R.

In the above definition, arguments are abstract entities,
whose origin and structure are left unknown. With each ar-
gumentation system is naturally associated a directed graph
whose nodes are the arguments and edges represent the at-
tack relation between them.

Definition 2 (Conflict-free, Defense). Let B ⊆ A.

• B is conflict-free iff @ α , β ∈ B such that (α,β ) ∈ R.
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• B defends an argument α ∈ B iff for each argument β ∈
A, if (β ,α) ∈ R, then ∃ γ ∈ B such that (γ,β ) ∈ R.

Among all the conflicting arguments, one has to select ac-
ceptable subsets of arguments for inferring conclusions and
making decision. In [Dung, 1995; Bondarenko et al., 1997],
several semantics for the notion of acceptability have been
proposed. For the purpose of this paper, we only recall naive,
admissible, preferred, and stable semantics. Other semantics
(e.g. complete, grounded) are not presented here.

Definition 3 (Acceptability semantics). Let B ⊆ A.

• B is a naive set iff it is a maximal (w.r.t. set-inclusion)
conflict-free set.

• B is an admissible set iff it is a conflict-free set that de-
fends all its elements.

• B is a preferred set iff it is a maximal (w.r.t. set-
inclusion) admissible set.

• B is a stable set iff it is a maximal (w.r.t. set-inclusion)
conflict-free set such that every element of (A \B) is at-
tacked by an element in B.

A1 A3A2

Figure 1: Graph of attacks

Figure 1 presents a graph of attacks, where A1 and A2 at-
tack each other and argument A3 attacks A2. There are two
naive sets S1 = {A1,A3} and S2 = {A2}. S1 is admissible,
preferred and stable, while S2 has none of these properties.

Note that a stable set is a fortiori a preferred set (which is
itself an admissible set). Given an argumentation framework,
there is always a naive (resp. admissible, preferred) set of ar-
guments, possibly equal to the empty set. This is not true for
the stable semantic. For example, consider an argumentation
framework with three arguments A1, A2, A3, such that A1 at-
tacks A2, A2 attacks A3 and A3 attacks A1 (hence a cycle of
attacks). It does not have any stable set of arguments because,
for any conflict-free set, there is at least one argument outside
this set that is not attacked by any argument of the set.

2.2 The Conceptual Graph Formalism
The conceptual graph (CG) formalism [Sowa, 1984; Chein
and Mugnier, 2009] is a knowledge representation and rea-
soning formalism based on labelled graphs. In its simplest
form, a CG knowledge base is composed of two parts: the
support, which encodes terminological knowledge –and con-
stitutes a part of the represented domain ontology– and basic
conceptual graphs built on this support, which express asser-
tional knowledge, or facts. The knowledge base can be fur-
ther enriched by other kinds of knowledge built on the sup-
port. Here, we will consider two kinds of rules: “usual rules”
and CG defaults, which lead to non-monotonic reasoning.

The support. It provides the ground vocabulary used to
build the knowledge base, i.e., the types of concepts, denoted

by TC and the types of relations that can link concept in-
stances, denoted by TR. TC is partially ordered by a kind
of relation, with > being its greatest element. TR is also par-
tially ordered by a kind of relation, with any two comparable
relation types having necessarily the same arity (i.e., number
of arguments). Each relation has a signature that specifies its
arity and the maximal concept type of each of its arguments.

Figure 2 shows the sets of concept types and of relation
types (each with their signature) used in the application. TR
is partitioned into two sets, TR1 and TR2 . TR1 is a set of unary
relations representing properties of sets (of arguments): being
a naive set (Accna), an admissible set (Accad), a preferred set
(Accpr), a stable set (Accst ) or a non-stable set (nonAccpr).
TR2 is a set of binary relations, that contains for instance the
attack relation R (with signature (Arg,Arg)).

>

Arg Set

(a) TC

>1

Accna
(Set)

Accad
(Set)

Accpr
(Set)

Accst
(Set)

nonAccst
(Set)

(b) TR1

>2

R
(Arg,Arg)

∈
(Arg,Set)

/∈
(Arg,Set)

⊂
(Set,Set)

(c) TR2

Figure 2: CG Support with concept and relation types for
representing argumentation systems

Basic conceptual graphs. A basic CG is a bipartite graph
composed of: (i) a set of concept nodes (pictured as rectan-
gles), which represent entities, attributes, states or events; (ii)
a set of relation nodes (pictured as ovals), which express the
nature of relationships between concept nodes; (iii) a set of
edges linking relation nodes to concept nodes; (iv) a labelling
function, which labels each node or edge: the label of a con-
cept node is a pair t : m, where t is a concept type and m is a
marker, the label of a relation node is a relation type, and the
label of an edge is its rank in the total order on the arguments
of the incident relation node; furthermore, the relation type
signatures have to be satisfied: the number of edges incident
to a relation node is equal to the arity of its type r, and the
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Arg : A1 Arg : A2 Arg : A3

R

R

R

1

2
1

2 1
2

Figure 3: Basic conceptual graph

concept type assigned to its neighbor by an edge labelled i
is less or equal to the ith element of the signature of r. The
marker of a concept node can be either an identifier referring
to a specific individual (for instance A1 of type Arg in Figure
3) or the generic marker (noted ∗) referring to an unspeci-
fied instance of the associated concept type (see for instance
in Figure 4). A basic CG without occurrence of the generic
marker is said to be totally instantiated. Figure 3 shows a to-
tally instantiated basic CG built on the support of Figure 2,
which encodes the attack graph of Figure 1.

Logical translation. Conceptual graphs have a logical
translation in first-order logic, which is given by a mapping
classically denoted by φ . φ assigns a formula φ(S) to a sup-
port S, and a formula φ(G) to any basic CG G on this support.
First, each concept or relation type is translated into a pred-
icate (a unary predicate for a concept type, and a predicate
with the same arity for a relation type) and each individual
marker occurring on the graphs is translated by a constant.
Then, the kind of relation between types of the support is
translated by logical implications. For example, the fact that
Accst is a specialization of Accpr (Figure 2b) is translated by:
∀x, Accst(x)→ Accpr(x)

Then, given a basic conceptual graph G on S, φ(G) is built
as follows. A distinct variable is assigned to each node with
a generic marker. An atom of the form t(e) is assigned to
each concept node with label t : m, where e is the variable
assigned to this node if m = ∗, otherwise e = m. An atom of
the form r(e1, . . . ,ek) is assigned to each relation node with
label r, where ei is the variable or the constant corresponding
to the ith neighbor of the relation. φ(G) is then the existential
closure of the conjunction of all atoms assigned to its nodes.
For instance, the logical translation of the conceptual graph
represented in Figure 3 is the following: Arg(A1)∧Arg(A2)∧
Arg(A2)∧R(A1,A2)∧R(A2,A1)∧R(A3,A2)
Note that in this case, the graph is totally instantiated, thus its
logical translation has no variable.

Specialization relation, homomorphism. Any set of con-
ceptual graphs is partially preordered by a specialization re-
lation, which can be computed by a homomorphism (allow-
ing the restriction of the node labels) also called projection in
the conceptual graph community. The specialization relation,
and thus homomorphism, between two graphs, corresponds
to the logical entailment between the corresponding formu-
las, i.e., there is a homomorphism from G to H (both built on
a support S) if and only if φ(G) is entailed by φ(H) and φ(S)

(e.g. [Chein and Mugnier, 2009])1.

Basic CG rules. Basic CG rules [Salvat and Mugnier,
1996] are an extension of basic CGs. A CG rule (notation:
R = (H,C)) is of the form “if H then C”, where H and C are
two basic CG (respectively called the hypothesis and the con-
clusion of the rule), which may share some concept nodes.
Formally, it can be defined as a single bicolored basic CG,
as illustrated in Figure 4: the hypothesis is composed of the
white nodes; the conclusion is induced by the black nodes
and the white concept nodes that are linked to a black relation
node; these latter nodes that belong both to the hypothesis and
the conclusion are called frontier nodes. Intuitively, this rule
says that “if an argument x attacks an argument y that attacks
an argument z, then x defends z”.

Arg : *

Arg : *

Arg : *
R

R

de f ends

1
2

1
22

1

Hypothesis︷ ︸︸ ︷

︸ ︷︷ ︸
Conclusion

Figure 4: CG rule

A rule R is applicable to a basic CG G if there is a homo-
morphism from its hypothesis to G. Let π be such a homo-
morphism. Then, the application of R on G according to π

produces a basic CG obtained from G by adding the conclu-
sion of R according to π , i.e., merging each frontier node c of
the added conclusion with the node of G that is image of c by
the homomorphism π . For instance, the rule in Figure 4 can
be applied twice to the basic CG of Figure 3, which allows to
infer that A3 defends A1 and that A1 defends itself.

The mapping φ to first-order logic is extended to CG
rules. Let R = (H,C) be a CG rule, and let φ ′(R) de-
notes the conjunction of atoms associated with the basic CG
underlying R (all variables are kept free). Then, φ(R) =
∀x1 . . .∀xk(φ ′(H) → (∃y1 . . .∃yqφ ′(C))), where φ ′(H) and
φ ′(C) are the restrictions of φ ′(R) to the nodes of H and C
respectively, x1, . . . ,xk are all the variables appearing in φ(H)
and y1, . . . ,yq are all the variables appearing in φ(C) but not
in φ(H). For example, the rule of Figure 4 is translated as fol-
lows: ∀x ∀y∀z Arg(x)∧Arg(y)∧Arg(z)∧R(x,y)∧R(y,z)→
de f ends(x,z).

The rule application mechanism is logically sound and
complete: given a set of rules R, basic CGs G and H (repre-
senting for instance a query and a set of facts), G is entailed
by the logical formulas assigned to R, H and S (the support)
if and only if there is a sequence of rule applications with
rules of R leading from H to a basic CG H ′ such that there is

1Note that, for the completeness part, H has to be in normal form:
each individual marker appears at most once in it.
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a homomorphism from G to H ′ (in other words, by applying
rules to H, it is possible to obtain H ′ which entails G).

When a rule is applied, it may create new individuals (one
for each generic concept node in its conclusion, i.e., one for
each existential variable yi in the logical translation of the
rule). In the following, we will assume that all facts (repre-
sented as basic CGs) are completely instantiated. Then, when
a rule is applied, we will instantiate each new generic con-
cept node created, by replacing its generic marker with a new
individual marker (which can be seen as a skolem function,
moreover without variable in this case). This will allow us to
present CG defaults in a simpler way.

2.3 Conceptual Graph Defaults
A Brief Introduction to Reiter’s Default logic
Let us recall some basic definitions of Reiter’s default log-
ics. For a more precise description and examples, the reader
should refer to [Reiter, 1980; Brewka and Eiter, 1999].
Definition 4 (Reiter’s Default theory). A Reiter’s default the-
ory is a pair (∆,W ) where W is a set of FOL formulae and
∆ is a set of defaults of form δ = α(−→x ):β1(−→x ),··· ,βn(−→x )

γ(−→x ) , n ≥ 0,
where α(−→x ), βi(−→x ) and γ(−→x ) are FOL formulae for which
each free variable is in the tuple of variable−→x = (x1, · · · ,xk).

The intuitive meaning of a default δ is “For all individ-
uals −→x = (x1, · · · ,xk) , if α(−→x ) is believed and each of
β1(−→x ), · · · ,βn(−→x ) can be consistently believed, then one is
allowed to believe γ(−→x )”. α(−→x ) is called the prerequisite,
the βi(−→x ) are called the justifications and γ(−→x ) is called the
consequent. A default is said closed if α(−→x ), βi(−→x ) and
γ(−→x ) are all closed FOL formulae. A default theory (∆,W )
is said to be closed if all its defaults are closed.

Intuitively, an extension of a default theory (∆,W ) is a
set of formulae that can be obtained from (∆,W ) while be-
ing consistently believed. More formally, an extension E of
(∆,W ) is a minimal deductively closed set of formulae con-
taining W such that for any α:β

γ
∈ ∆, if α ∈ E and ¬β /∈ E,

then γ ∈ E. The following theorem [Reiter, 1980] provides
an equivalent characterization of extensions that we use here
as a formal definition.
Theorem 1 (Extension). Let (∆,W ) be a closed default the-
ory and E be a set of FOL formulae. We inductively define
E0 = W and for all i ≥ 0, Ei+1 = T h(Ei)∪{γ | α:β1··· ,βn

γ
∈

∆,α ∈ Ei and ¬β1, · · · ,¬βn /∈ E}, where T h(Ei) is the de-
ductive closure of Ei. Then E is an extension of (∆,W ) iff
E = ∪∞

i=0Ei.

Note that this characterization is not effective for computa-
tional purposes since both Ei and E = ∪∞

i=0Ei are required
for computing Ei+1 (for more details on generating exten-
sions, see in [Reiter, 1980; G. Brewka, 2007]). Moreover,
Theorem 1 is only useful to deal with a closed default theory,
which is less expressive than the general case, since no vari-
able can be shared between the hypothesis, the conclusion
or a justification. When we want to apply some non-closed
default, we first have to instantiate each free variable by all
the constants that may appear in the knowledge base, which
yields a set of closed defaults.

Default Rules in the Conceptual Graph Formalism
We now present an extension of CG rules, which has been in-
troduced in [Baget et al., 2009; Baget and Fortin, 2010] and
allows for default reasoning. It can be seen as a graphical im-
plementation of a subset of Reiter’s default logic: indeed, we
restrict the kind of formulae that can be used in the three com-
ponents of a default. On the other hand, we can deal directly
with non–closed defaults, i.e., without instantiating free vari-
ables before processing the defaults. In Reiter’s logic, the
application of a default is subject to a consistency check with
respect to current knowledge: each justification J has to be
consistent with the current knowledge, i.e., ¬J should not be
entailed by it. In CG defaults, justifications are replaced by
graphs called constraints; a constraint C can be seen as the
negation of a justification: C should not be entailed by cur-
rent knowledge.

Definition 5 (CG defaults). A CG default is a tuple D =
(H,C,C1, . . . ,Ck) where H is called the hypothesis, C the con-
clusion and C1, . . ., and Ck are called the constraints of the
default; all components of D are themselves basic CGs and
may share some concept nodes.

Briefly said, H, C and each Ci respectively correspond to
the prerequisite, the consequent and the negation of a justifi-
cation in a Reiter’s default.

In this paper, we will represent CG defaults by a multi-
colored basic CG. As in a CG rule, the hypothesis is repre-
sented by the white nodes. The conclusion is represented by
the black nodes and frontier nodes. Each constraint is repre-
sented by a different level of gray.

The intuitive meaning of a CG default is rather simple:
“for all individuals x1 . . .xk, if H[x1 . . .xk] holds true, then
C[x1 . . .xk] can be inferred provided that no Ci[x1 . . .xk] holds
true”. If we can map by homomorphism the hypothesis H
to a fact graph G, then we can add the conclusion of the de-
fault according to this homomorphism (as in a standard rule
application), unless this homomorphism can be extended to
map one of the constraints. As already pointed out, while the
negation of a justification in a Reiter’s default should not be
entailed, in a CG default the constraint itself should not be
entailed.

The entailment mechanism is based on the construction of
a default derivation tree.

Let K = ((S ,G,R),D) be a knowledge base, where G
is a basic CG, R is a set of CG rules, and D is a set of
CG defaults, all defined over the support S . As previously
mentioned, we will assume that G is completely instantiated.
Then the rule application mechanism ensures that all derived
facts are also completely instantiated.

A node of the default derivation tree DDT(K ) is labelled
by a basic CG called fact and a set of basic CGs called con-
straints. A node of DDT(K ) with label (G,C ) is said to be
valid if there is no homomorphism from a constraint in C or
a constraint occurring in the label of one of its ancestors to G.
We now define inductively the tree DDT(K ):

• the root is labelled by (G, /0)

• if x is a valid node of DDT(K ) with label (F,C )
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for every default D = (H,C,C1, . . . ,Ck) in D , for
every homomorphism π from H to a basic CG F ′
R-derived from F ,

x has a successor whose fact is obtained by the
application of D as a classical rule R = (H,C)
without considering it as a default, and whose
constraints are the π(Ci), iff that successor is
valid.

In the above definition, π(Ci) is obtained from Ci by replac-
ing the labels of concept nodes that belong to the domain of π

(thus are shared with H) with their image by π . This allows to
bind some nodes of Ci to nodes of the current fact. Let us con-
sider for instance the DDT in Figure 6, obtained with the set
of rules in Figure 5 and the initial fact G in Figure 3. The suc-
cessor of the root is obtained by applying the rule RN , which
has an empty hypothesis and no constraints: hence, the con-
clusion is simply added to G, after instantiation of the generic
concept node [Set:*] with a new individual marker (denoted
by E in the figure). The left most successor of this tree node
(let us note it n3) is obtained by applying the rule DN with
the concept nodes [Set:*] and [Arg:*] from the rule hypothe-
sis being respectively mapped to [Set:E] and [Arg:A1]. Both
constraints of DN are instantiated accordingly. It is checked
that n3 is valid: indeed, the instantiated constraints do not
map to the newly built fact. Thus n3 is actually added to the
tree. Note that all descendants of n3 will have to satisfy the
constraints labelling n3.

The leaves of DDT(K ) exactly encode extensions of a de-
fault theory (see [Baget et al., 2009; Baget and Fortin, 2010]).

3 Argumentation System Modelling
This section proposes a representation of an abstract argu-
mentation system in the CG formalism, as previously intro-
duced. The associated reasoning mechanisms that computes
acceptable sets of arguments, will be presented in Section 4.

3.1 Support Description
To encode an argumentation system, independently from a
given application domain, the elements that constitute an ar-
gumentation framework (arguments, sets of arguments), their
properties (admissibility semantics) and the relations between
them (attack relation, membership and inclusion relations)
have to be introduced in the support of the CG model.

Figure 2 shows a support that represents these elements.
The fact that stable sets of acceptable arguments are special-
izations of preferred sets, which are themselves specializa-
tions of admissible sets, is directly encoded in the support
through the “kind of” relation.

3.2 Graph of Attacks
Based on the generic support of Figure 2, a graph of attacks
is defined as follows.

Definition 6 (Graph of attacks). A graph of attacks is a basic
CG such that:

• concept nodes are labelled by pairs Arg : i, where i de-
notes an instance of an argument;

• relation nodes are labelled by R, which represents the
attack relation.

Figure 3 shows an example of a graph of attacks in which
A1 attacks A2, A2 attacks A1 and A3 attacks A2.

4 Computing acceptable sets of arguments
using CG defaults

In this section, we use CG defaults to compute acceptable sets
of arguments.

4.1 Computing naive sets of acceptable arguments
We will show how to compute all the naive sets of arguments
using two rules (a “classic” CG rule and a CG default, see
Figure 5). The way we compute the naive sets is thus purely
declarative. Using these rules, the default computation mech-
anism calculates the default extensions. Each of these exten-
sions encodes in a graphical manner a naive set of arguments.

Set : * Accna1

(a) RN

Set : ∗Accna ∈ Arg : ∗2 11

∈ Arg : * R

22

1 1

∈ Arg : * R

12

1 2

(b) DN

Figure 5: Rules generating naive sets of acceptable arguments

The first rule encodes the following information: “A naive
set of arguments exists”. Indeed, as mentioned in section 2.1,
for any graph of attacks, a naive set of arguments always ex-
ists. This rule (denoted by RN) is a classic CG rule (see Fig-
ure 5(a)).

Given a conflict-free set of arguments E, a naive set of ar-
guments (which has to be maximal) can be built by iteratively
adding some arguments. An argument a may be added to E
if E ∪{a} is still conflict-free. The CG default DN given in
Figure 5(b) is designed in such a way that the argument a is
added to the set E only if it is not in conflict with any argu-
ment of E. This is guaranteed by the two constraints of DN :
• the first one (in dark gray) ensures that a does not attack

any argument of E;
• the second one (in light gray) ensures that a is not at-

tacked by any argument of E.
Therefore, applying this rule to a graph of attacks preserves

the property that the group of arguments linked to the set E
by the relation ∈ is conflict-free.

The deduction mechanism based on the default deviation
tree ensures that when a default extension is computed, the
rule DN cannot be applied any more. Hence the extension
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node labelled by E is a maximal (w.r.t. set inclusion) conflict-
free set of arguments, i.e. a naive set.

Figure 6 shows the default derivation tree that is computed
to obtain the default extensions encoding the naive sets. The
default extensions are encoded in the leaves of the tree. Note
that two of the leaves of the tree are identical, so we obtain
only two different default extensions: Accna

1 = {A2} Accna
1 =

{A1,A2}.

4.2 Computing preferred sets of acceptable
arguments

One way to obtain the preferred sets from the naive ones is
thus to iteratively remove the non-defended arguments. For
that, we use the two CG defaults shown in Figure 7. Given a
set of arguments, if there is an argument in this set that is not
defended, the CG default DCP1 creates a new set, and the non-
defended argument is declared as not belonging to this set.
The CG default DCP2 adds all the arguments to the new set of
arguments, unless they have been declared as not belonging
to this set. By applying these two rules until obtaining of the
default extensions, the resulting sets of arguments have the
property of being:
• conflict-free, since they are subsets of naive sets;
• without non-defended arguments.

Among them, the maximal ones (w.r.t. set-inclusion) are the
preferred sets of acceptable arguments. Note that, to select
maximal sets, one would have to compare extensions, which
is not possible in our framework. Thus, tagging such sets by
the Accpr relation, indicating they are preferred sets, is done
outside the framework.
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2 1
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Figure 7: Rules generating preferred sets of acceptable argu-
ments
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Figure 8: Extensions computed from the leaves of Figure 6,
with the CG defaults of Figure 7

Figure 8 represents the preferred sets of our running exam-
ple (subject to maximality test). The first set, derived from
Accna

1 , is the empty set (since there is no ∈ relation linking E ′

to any argument). As it is included in the set Accpr
2 = {A1,A3},

derived from Accna
2 , it is not maximal and thus not tagged as

a preferred set.

4.3 Computing stable sets of acceptable arguments
A stable set of arguments is a fortiori a preferred set. To be
stable, a preferred set of arguments has to attack all the argu-
ments that are not in the set. It turns out that once a set of pre-
ferred arguments is computed, it is easy to check whether it is
also a stable set of arguments. This can be done using the CG
default represented in Figure 9, which starts from a preferred
set and expresses a condition to reject it if it is not a stable set;
it is tagged as “not stable” (denoted by notAccst ) unless each
argument belongs to it (dark gray constraint) or is attacked by
an argument that belongs to it (light gray constraint). Then,
when a default extension is computed, a preferred extension
is identified as a stable extension iff it is not tagged as “not
stable”.

In our running example, the unique preferred set of argu-
ments Accpr

2 = {A1,A3} is also a stable set, since the only
argument that is not in the set, A2, is attacked by A1 and A3.

5 Conclusion
In this paper, we have shown how an argumentation frame-
work can be represented in the CG formalism. This formal-
ism also allows to compute different kinds of acceptable sets
of arguments. However, it does not capture the notion of max-
imality in the definition of preferred sets. Therefore, in order
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Figure 9: Rule that tags preferred sets of arguments as “not
stable”

to be properly used in an argumentation context, this formal-
ism still needs to be extended.

Another interest of using conceptual graphs in this con-
text would consist in representing not only the relationships
between arguments, but also the internal structure of argu-
ments. Indeed, basic CGs can be extended to nested CGs,
in which concept nodes not only have a type and a marker,
but also a description, which is itself a nested CG. The basic
homomorphism notion can be easily extended to nested CG.
Generally speaking, this allows for a hierarchical represen-
tation of knowledge and reasoning by taking this structuring
into account. In our application case, the first level would
correspond to arguments seen as “black boxes”. Then, by
“zooming” on arguments, one would have access to the in-
ternal description of arguments. Since the internal structure
of an argument is a CG, it benefits from the graph mecha-
nisms for reasoning. In the literature, there has been several
proposals to represent this internal structure (e.g. [Bentahar et
al., 2010]). In a preliminary study [Bourguet, 2010], whose
aim was to represent the viewpoints of different actors and
the associated arguments in a health policy case, we chose to
represent an argument with several parts, one of them being
the action advocated by the argument. Any two different ac-
tions were either in a specialization relation (i.e., one action is
more specific than the other) or incompatible. The attack re-
lation between arguments was computed from the action parts
of the arguments: an argument a attacks an argument b if the
action of a is not entailed by the action of b, i.e., either a and
b are incompatible, or a is a strict specialization of b. In a
CG framework, an argument can be represented as a concept
node with a nested description, which is itself partitioned into
several CGs, one of them corresponding to the action advo-
cated by the argument. A set of arguments is then a nested
CG, in which each concept node is an argument. The attack
relation can be computed automatically by comparing the ac-
tion graphs of arguments. For the above attack relation, this
can be done with a simple homomorphism check: if the ac-
tion of a does not map by homomorphism to the action of b,
then a attacks b. This is only one simple example of how the
internal structure of arguments can be represented, and the at-
tack relation generated, in the CG framework. As for further
work, we want to study the adequacy of this framework with
the proposals in the argumentation literature.
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