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Abstract

Mathematical modeling of plant growth has gained increasing interest in recent years due
to its potential applications. A general family of models of Carbon allocation formalized as
dynamic systems serves as the basis for our study. They are known as functional-structural
plant models (FSPMs, [45]). Modeling, parameterization and estimation are very challeng-
ing problems due to the complicated mechanisms involved in plant evolution. In [46] a
specific type of a non-homogeneous hidden Markov model is proposed as an extension of
the GreenLab FSPM ([9]) to study a certain class of plants with known organogenesis. In
such a model, the maximum likelihood estimator cannot be derived explicitly. A stochastic
version of an ECM (expectation conditional maximization) algorithm was adopted, where
the E-step was approximated by a sequential importance sampling with resampling method
(SISR-ECM approach). In this paper, a Markov Chain Monte Carlo method is proposed
for the approximation of the E-step (MCMC-ECM approach). The parameter estimates ob-
tained with MCMC-ECM are compared with those obtained with SISR-ECM from simulated
and real sugar beet data. Based on this real data set competing models are compared via
model selection techniques. Moreover, a data-driven automated MCMC-ECM algorithm for
finding the proper sample size in each ECM step and also the proper number of ECM steps
is proposed. The MCMC approach seems to be more flexible for this particular application
context and can be more easily generalized to the parameter estimation of other plant models
for which observations are taken under destructive measurements.

keywords: plant growth model; hidden Markov model; stochastic ECM algorithm; MCMC;
Metropolis-within-Gibbs; automated Monte-Carlo EM algorithm; sequential importance sam-
pling with resampling

1 Introduction

Mathematical modeling of plant development and growth has gained increasing interest in the
last twenty years, with potential applications in agricultural sciences, plant genetics or ecology.
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Due to the complicated mechanisms which guide plant’s evolution, modeling, model parameter-
ization and estimation are very challenging problems. The last decades advanced plant growth
models have been proposed in the literature (see, e.g., [47]). In this paper, a certain class of
plants with known organogenesis (in plants, organogenesis is the process of creation of new
organs) is studied, whose growth is modeled by the so-called GreenLab functional-structural
plant growth model ([9], [30]). The parameters of the model are related to plant functioning,
environment, model uncertainty and observation errors. The vector of observations consists of
organ masses, measured only once by censoring plant’s evolution at a given observation time
(destructive measurements). In [8], a first approach for parameter estimation was introduced
but based on the rather restrictive assumption of an underlying deterministic model of biomass
production and uncorrelated errors in the mass measurements of different organs in the plant
structure. In [46] the authors proposed a more general framework for statistical analysis which
can potentially be applied to a large variety of plant species by taking into account process
and measurement errors. They provided a frequentist-based statistical methodology for state
and parameter estimation in plants with deterministic organogenesis rules. A lot of agronomic
plants can be modelled in this way, from maize ([20]) to rapeseed ([27]) or trees ([34]). This
framework can also serve as the basis for statistical analysis in plant models with stochastic
organogenesis as well (see also [33]). In [46], the authors proposed a non-homogeneous hidden
Markov model (HMM), where the hidden states of the model correspond to the sequence of
unknown biomasses (masses measured for living organisms) produced during successive growth
cycles. In such a model, the maximum likelihood estimator cannot be derived explicitly and for
this reason a stochastic variant of an ECM-type algorithm was adopted. The complexity of the
model makes both the E-step and the M-step non-explicit. In this article, a state estimation
technique based on a Markov Chain Monte Carlo (MCMC) method is proposed for the approx-
imation of the E-step. For the M-step, we use a conditional maximization approach (see, ECM
in [38]), in which the parameters of the model are separated into two groups, one for which
explicit updates can be derived by fixing the parameters of the other group, and one for which
updates are derived via numerical maximization. The parameter estimates obtained by the new
method are compared in simulated and real data with the sequential importance sampling with
resampling (SISR) method proposed in [46]. Moreover, a data-driven automated algorithm for
finding the proper sample size in each ECM step and also the proper number of ECM steps is
proposed. The new approach appears to be more flexible for this particular application context
and can be more easily generalized to the parameter estimation of other plant models for which
observations are taken under destructive measurements.

The paper is organized as follows. In Section 2, we review the basic assumptions of the
GreenLab FSPM and we give a short description of the non-homogeneous hidden Markov model
developed in [46]. We describe as well a new competing model which operates in the log-scale and
give the framework for making maximum likelihood estimation feasible within the framework
of EM-type algorithms. In Section 3, we describe the MCMC approximation to the Q-function
of the E-step and compare the current approach based on MCMC with the one based on SISR.
Automated Monte-Carlo EM algorithms are reviewed in Section 4, and the adaptation of the
automated algorithm of [4] in our context is also given. The resulting automated MCMC-ECM
is compared with the non-automatic one in synthetic examples. In Section 5, the performance
of the aforementioned algorithms is tested on data from the sugar-beet plant and a model
comparison is also achieved. Finally, in the last section an extended discussion is provided.
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2 Description of the plant growth model

In this section we recall the basic assumptions of the GreenLab model and its formulation as an
HMM given in [46]. Additionally, we propose a new candidate model and describe an appropriate
version of an ECM-algorithm for maximum likelihood estimation. Starting with the initial mass
of the seed q0, plant development is considered to be the result of a cyclic procedure. The cycle
duration is determined by the thermal time needed to set up new organs in the plant and is
called Growth Cycle (GC). At each GC the available biomass is allocated to organs in expansion
and at the same time new biomass is produced by the green (non-senescent) leaves and will be
available for allocation at the next GC. The set of different classes (types) of organs of a plant
are denoted by O. In our application context with the sugar-beet plant O = {b, p, r}, where b
stands for blade, p for petiole and r for the root. Let us now give the assumptions concerning
biomass production and allocation.

2.1 Modeling assumptions

In the sequel, we use the compact notation xi:j for vectors (xi, . . . , xj), where i ≤ j.

Assumption 1. i) At the n-th GC, denoted by GC(n), the produced biomass qn is fully
available for allocation to all expanding (preexisting + newly created) organs and it is distributed
proportionally to the class-dependent empirical sink functions given by

so(i ; p
o
al) = po c(ao, bo)

(
i+ 0.5

to

)ao−1(
1− i+ 0.5

to

)bo−1

, i ∈ {0, 1, . . . , to − 1}, (1)

where poal = (po, ao, bo) ∈ R
∗
+ × [1,+∞)2 is the class specific parameter vector with (po)o∈O a

vector of proportionality constants representing the sink strength of each class (by convention
pb = 1), to is the expansion time period for organs belonging to the class o ∈ O and c(ao, bo)
is the normalizing constant of a discrete Beta(ao, bo) function, where its unnormalized generic
term is given by the product of the two last factors of (1).
ii) As in [30], we suppose that expansion durations are the same for blades and petioles and T
denotes their common value: tb = tp = T .

We denote by pal , (poal)o∈O the vector of all allocation parameters and (No
n)o∈O the vector of

organs preformed at GC(n), for all n ∈ N (determined by plant organogenesis, and deterministic
in this study).

Definition 1. The total biomass demand at GC(n), denoted by dn, is the quantity expressing
the sum of sink values of all expanding organs at GC(n).

Since we consider that there is only one root compartment and the fact that an organ is in
its i-th expansion stage if and only if (iff) it has been preformed at GC(n− i) (see Assumption
1), we have that

dn(pal) =
∑

o∈O−{r}

min(n,T−1)∑

i=0

No
n−i so(i; p

o
al) + sr(n; p

r
al). (2)

Except for the initial mass of the seed q0 subsequent biomasses {qn}n≥1 are the result of photo-
synthesis by leaf blades.
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Definition 2. i) The photosynthetically active blade surface at GC(n+ 1), denoted by sactn , is
the quantity expressing the total surface area of all leaf blades that have been preformed until
GC(n) and will be photosynthetically active at GC(n+ 1),
ii) the ratio (percentage) of the allocated ql which contributes to sactn will be denoted by πact

l,n .

Assumption 2. i) The initial mass of the seed q0 is assumed to be fixed and known,
ii) the leaf blades have a common photosynthetically active period which equals T ,
iii) the leaf blades have a common surfacic mass denoted by eb.

Now, we describe how biomasses {qn}n≥1 are obtained.

Assumption 3. In the absence of modeling errors, the sequence of produced biomasses {qn}n≥1

is determined by the following recurrence relation known as the empirical Beer-Lambert law (see
[20]):

qn+1 = Fn(q(n−T+1)+:n, un+1; p) = un+1 µ spr

{
1− exp

(
−kB

sactn (q(n−T+1)+:n; pal)

spr

)}
, (3)

where x+ = max(0, x), un denotes the product of the photosynthetically active radiation during
GC(n) modulated by a function of the soil water content, p , (µ, spr, kB, pal), µ is the radiation
use efficiency, spr is a characteristic surface that represents the two-dimensional projection on
the ground, of space potentially occupied by the plant, kB is the extinction coefficient in the
Beer-Lambert extinction law, sactn is given by

sactn (q(n−T+1)+:n; pal) = e−1
b

n∑

l=(n−T+1)+

πact
l,n (pal) ql, (4)

and

πact
l,n (pal) =

1

dl(pal)

min(l,l+T−n−1)∑

j=0

N b
l−jsb(j; p

b
al), (n− T + 1)+ ≤ l ≤ n, (5)

where dl is given by (2), sb by (1) and N b
n is the number of blades preformed at GC(n).

Note that qn+1 also depends on pal, but only through sactn , and that p could have lower
dimension if some of the aforementioned parameters are fixed or calibrated in the field.

In [46] the available data Y were rearranged sequentially into sub-vectors Yn by taking into
account the preformation time (one GC before their first appearance) of all available organs
except for the root mass which was excluded from the data vector. In this paper we use the
same data decomposition and we also indicate a way to take into account the root mass. Each
sub-vector Yn contains the masses of the organs which are preformed at GC(n). Whenever the
root mass is included, it is contained in the last sub-vector. If we denote by Gn the vector-valued
function that expresses the theoretical masses of all the different classes of organs which started
their development at GC(n), then by summing the allocated biomass at each expansion stage
and Assumption 1 we obtain directly

Gn(qn:(n+T−1); pal) =




T−1∑

j=0

qj+n

dj+n(pal)
so(j; p

o
al)




o∈O−{r}

. (6)

4



The theoretical root mass, whenever included, is given by

Gr(q0:N ; pal) =
N∑

j=0

qj
dj(pal)

sr(j; p
r
al). (7)

The following assumptions determine the stochastic nature of the model.

Assumption 4. Let (Wn)n∈N and (Vn)n∈N be two mutually independent sequences of i.i.d.
random variables and vectors respectively, independent of Q0, where Wn ∼ N (0, σ2) and Vn ∼
Nd(0,Σ), with Σ an unknown covariance matrix and d the cardinality of O−{r}. By setting
No

n = 1, ∀o ∈ {b, p} two type of model equations will be assumed and compared in the sequel:

a) model M1: for n ≥ 0,

Qn+1 = Fn(Q(n−T+1)+:n; p)(1 +Wn), (8)

Yn = Gn(Qn:(n+T−1); pal) + Vn, (9)

b) model M2: for n ≥ 0,

Qn+1 = Fn(Q(n−T+1)+:n; p) e
Wn , (10)

Yn = Gn(Qn:(n+T−1); pal) ◦ eVn , (11)

where Fn is given by (3), Gn is given by (6), ex , (ex1 , . . . , exd) for a d-dimensional vector
x = (x1, . . . , xd) and x ◦ y is the Hadamard (entrywise) product of two vectors.

Remark 1. i) Assumption 4-a) corresponds to the model equations adopted in [46].
ii) When a data set Y0:N is available and the root mass is included, then the dimension of YN ,
GN and VN given in (9) or (11) is increased by one to incorporate the root mass given by (7)
observed with error Vn,d+1 ∼ N (0, σ2

r ).

Both models given above correspond to state-space models with state sequence Q, satisfy
Assumptions 1-3, and differ in the state and observation equations given by Assumption 4-a) or
4-b).

Now, we give their equivalent formulation as hidden Markov models (HMM), see [5]. The
proof is direct and will be omitted.

Proposition 1. Under Assumptions 1-4, the bivariate stochastic process (Q,Y) defined on a
probability space (Ω,F ,Pθ), where θ = (p,Σ) or (p, σ2,Σ) can be represented as an HMM, where

i) the hidden sequence Q, with values in R+, evolves as a time-inhomogeneous T -th order
Markov chain with initial distribution Pθ(Q0 ∈ ·) = δq0(·) (dirac at q0), where q0 ∈ R

∗
+, and

transition dynamics due to Assumption 4-a) for model M1:

Pθ(Qn+1 ∈ · | Q(n−T+1)+:n) ≈ N
(
Fn(Q(n−T+1)+:n; p), σ

2F 2
n (Q(n−T+1)+:n; p)

)
, (12)

and due to Assumption 4-b) for model M2:

Pθ(Qn+1 ∈ · | Q(n−T+1)+:n) = logN
(
logFn(Q(n−T+1)+:n; p), σ

2
)
, (13)

where logN stands for the log-normal distribution,
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ii) the observable sequence Y, with values in (R+)
d, conditioned on Q forms a sequence of

conditionally independent random vectors and each Yn given Q depends only on Qn:(n+T−1)

with conditional distribution due to Assumption 4-a) for model M1:

Pθ(Yn ∈ · | Qn:(n+T−1)) ≈ Nd

(
Gn(Qn:(n+T−1); pal),Σ

)
, (14)

and due to Assumption 4-b) for model M2:

Pθ(Yn ∈ · | Qn:(n+T−1)) = logNd

(
logGn(Qn:(n+T−1); pal),Σ

)
, (15)

where log x , (log x1, . . . , log xd) for a d-dimensional vector x = (x1, . . . , xd).

Remark 2. The model M1 is the one assumed in [46] and normality in (12) and (14) is only
valid approximately (with small variances) since we deal with positive r.v.

2.2 Maximum likelihood estimation

The available data y0:N contain organ masses, measured at a given GC(N) by censoring plant’s
evolution (destructive measurements). Based on the data set y0:N parameter estimation is
crucial to estimate the important biophysiological parameters given by the vector p. In [8]
a parameter identification method was proposed for the GreenLab model in the absence of
modeling errors in biomass production (σ2 = 0) and correlation (diagonal covariance matrix
Σ) in the mass measurements. In [46] the method was extended to cover the case of a special
type of modeling errors and to introduce correlation in the mass measurements. The authors
make parameter estimation feasible with the help of an appropriate stochastic variant of a
generalized EM-algorithm (Expectation-Maximization), see [12], [38], [23], [37]. Each iteration
of an EM algorithm consists of an expectation step (E-step) and a maximization step (M-step).
The E-step involves the computation of the conditional expectation of the complete data log-
likelihood given the observed data under the current parameter value (called Q-function). In
the M-step, the parameters are updated by maximizing the Q-function of the E-step. When
the integral involved in the E-step is analytically intractable, then the Q-function, denoted here
by Q(θ; θ′), should be approximated. Several efforts have been made in this direction, e.g., the
Stochastic EM (SEM) ([6]), the Monte Carlo EM (MCEM) ([48]), the Stochastic Approximation
EM (SAEM) ([11]), as well as the Quasi-Monte Carlo EM ([22]). The common characteristic
of the aforementioned variants is the approximation of the Q-function by simulating the hidden
state sequence from its conditional distribution given the observed data, see [23] and [24]. In the
context of hidden Markov models ([5]) the two most popular and efficient simulation mechanisms
concern sequential importance sampling with resampling (SISR), see [19], [13], [5], and Markov
chain Monte-Carlo, see [39], [21],[17], [16]. The resulting algorithms will be referred to as the
SISR-EM and MCMC-EM algorithm. In order to perform the E-step for the HMM M1 the
authors in [46] approximate the Q-function via a SISR estimate Q̂(θ; θ

′

). In the next section we
propose an approximation of the Q-function based on MCMC. We can express this estimate in
a unified way as:

Q̂(θ; θ
′

) =
M∑

i=1

wi log pθ(q
(i)
0:N , y0:N ), (16)

where pθ(q0:N , y0:N ) is the density function of the complete model when the true value is θ

and {wi, q
(i)
0:N} is a weighted M -sample (wi, q

(i)
0:N and M depend on θ

′

) from the conditional
distribution of the hidden states q0:N given the observed data y0:N when the true parameter is
θ
′

. In the case of an MCMC estimate the weights wi equal 1/M .
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Very often in real-life applications the M-step is analytically intractable as well. Unfortu-
nately, any stochastic EM-type algorithm that can be designed for the HMMs M1 and M2

given by Proposition 1 leads to a non-explicit M-step as well. For this reason, a numerical maxi-
mization procedure of quasi-Newton type could be implemented at each iteration of a stochastic
EM algorithm (see [46]) in the same way as it is implemented in a deterministic EM algo-
rithm (see [29]). Nevertheless, it is certainly desirable, whenever possible, for time and accuracy
reasons to reduce the number of parameters to be updated via numerical maximization. A
way to overcome a complicated M-step was proposed in [38] with the so-called ECM (Expecta-
tion Conditional Maximization) algorithm, where the authors separated the intractable M-step
into smaller tractable conditional M-steps and updated in a cyclic fashion the parameters of
the model. In order to perform the M-step for the HMM M1 the authors in [46] combined
conditional and numerical maximization. First, they updated explicitly in a CM (conditional
maximization) step the parameters which have explicit updates given fixed values of the rest
and then updated the rest by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton al-
gorithm. This approach is also adopted here for both models M1 and M2. Let Q̂(θ; θ(t)) denote
the approximation of Q(θ; θ(t)) given by (16) in the t-th EM-iteration (θ′ = θ(t)) and (θ1, θ2)
be a decomposition of θ in two subvectors, where θ1 can be explicitly updated given θ2. The
maximization of Q̂(θ; θ(t)) with respect to θ = (θ1, θ2) is described by the following two steps:

θ
(t+1)
1 = argmax

θ1
Q̂(θ1, θ

(t)
2 ; θ

(t)
1 , θ

(t)
2 ), (17)

θ
(t+1)
2 = BFGSmax

θ2
Q̂(θ

(t+1)
1 , θ2; θ

(t)
1 , θ

(t)
2 ),

where the notation BFGSmax corresponds to the solution of the maximization problem with
the BFGS quasi-Newton algorithm. The explicit step (17) corresponding to model M1 can be
found in [46]. The solution to (17) for the model M2 is given below. The proof is deferred to
the Appendix.

Proposition 2. Let θ = (θ1, θ2), where θ1 = (µ,Σ) and θ2 contains all parameters of p except
for µ. The update equations for θ1 are given as follows:

µ̂N (θ2; θ
′) = µ

′

exp

{
N−1

N∑

n=1

Eθ′ [logQn − logFn−1(θ2) | y0:N ]

}
, (18)

Σ̂N (θ2; θ
′) = (N + 1)−1

N∑

n=0

Eθ′

[(
log yn − logGn(θ2)

)(
log yn − logGn(θ2)

)⊤ | y0:N
]
. (19)

If σ2 is estimated as well, then its update equation is given by:

σ̂2
N (θ2; θ

′) = N−1
N∑

n=1

Eθ′

[(
logQn − logFn−1(θ2) + log µ

′

)2
| y0:N

]
−
(
log µ̂N (θ2; θ

′)
)2

. (20)

3 MCMC approximation of the Q-function

In this section we propose a suitable approximation of the Q-function by using an MCMC
algorithm (the weights in (16) are equal) and we compare this approach with the one based on
SISR developed in [46].
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3.1 E-step via Markov Chain Monte Carlo

At each iteration of the EM-algorithm, the basic problem is to sample in the most effective way
from pθ′(q1:N | q0, y0:N ), where θ′ is the current estimation of the model parameters. For the
rest, we alleviate the index θ′ since we focus on the general sampling problem (θ′ is known and
fixed at each iteration). Thus, conditionally on Q0 = q0 and Y0:N = y0:N , the hidden states are
sampled from:

Q1:N ∼ p(q1:N |q0, y0:N ) ∝ p(q1:N , y0:N |q0). (21)

One of the most important MCMC algorithms for sampling from a multidimensional distri-
bution (such as (21)) is Gibbs sampler ([17], [16]). Gibbs Sampler uses only the full conditional
distributions in order to sample a Markov chain with stationary distribution corresponding to
the multidimensional target one. For brevity, when we explicit densities in the sequel, we refer
only to model M1 since the general approach that we consider here is entirely the same for
both models M1 and M2. The full conditional distribution of Qn given all the other variables,
denoted by πn(qn|q0:n−1, qn+1:N ) , p(qn|q0:n−1, qn+1:N , y0:N ) corresponding to model M1, by
(12) and (14) can be written in the form:

πn(qn|q0:n−1, qn+1:N ) ∝
(n+T )∧N∏

i=n+1

(
1− exp

{
−δ sacti−1(qn)

} )−1

× exp



− 1

2σ2



(

qn
Fn−1(qn)

− 1

)2

+

(n+T )∧N∑

i=n+1

(
qi

Fi−1(qn)
− 1

)2






× exp



−1

2

n∑

i=(n−T+1)+

(yi −Gi(qn))
⊤Σ−1(yi −Gi(qn))



 , (22)

where δ = kB/s
pr > 0, see (3), and all the other quantities that appear in this expression are

explained in Section 2 and are expressed here only as functions of qn.

Clearly, direct simulation from (22) is impossible. For this reason alternative sampling
techniques are required, such as hybrid Gibbs Sampler. Hybrid Gibbs Sampler is a Gibbs
Sampler where at least one of the simulations of the full conditional distributions is replaced
by a Metropolis–Hastings (MH) step ([39], [21]). Let πn, n = 1, . . . , N , be the densities of the
unnormalized full conditional distributions given by (22) and fn(zn|q1:n−1, qn+1:N ), i = 1, . . . , N
be the densities of the proposal distributions.

Let also

α(qt−1
n , zn) = min

{
1,

πn(zn|qt1:n−1, q
t−1
n+1:N )

πn(q
t−1
n |qt1:n−1, q

t−1
n+1:N

·
fn(q

t−1
n |qt1:n−1, zn, q

t−1
n+1:N )

fn(zn|qt1:n−1, q
t−1
n , qt−1

n+1:N )

}

denote the acceptance probability of the MH-step. The hybrid Gibbs Sampler can be described
as follows:

Initialize q01:N
For t = 1 to M

For n = 1 to N

Draw zn ∼ fn(qn|qt1:n−1, q
t−1
n+1:N )

Set qtn = zn with probability α(qt−1
n , zn)
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otherwise set qtn = qt−1
n

End

End

The choice of the proposal distribution is not of great importance for the convergence of the
Markov chain to the target distribution. The proposal distribution can be chosen arbitrarily with
the limitation to satisfy the conditions that ensure the convergence to the target distribution
([40], [43]). On the other hand, the proposal distribution affects the convergence rate of the
Markov chain to the target distribution. The more the proposal is closer to the target, the
faster the desirable convergence is achieved. Moreover, it must be easy and fast to sample from.
In this paper, we used as a proposal distribution for the hidden states the one resulting from the
prior transition kernel of the hidden chain under the current parameters’ values given by (12)
for model M1 and by (13) for model M2. We also tried a Random-Walk Metropolis-Hastings
with different variances and the results that we obtained were worse.

3.2 Comparing MCMC and SISR using simulated datasets

In order to evaluate the effect of the MCMC approximation of the Q-function in parameter
estimation and to compare this approach with the one proposed by [46] using SISR, we performed
several tests with simulated data. Here, we present a comparison for the model M1. We
generated one data vector y0:N with N = 50 for several values of σ and we present the cases
where σ ∈ {0.02, 0.1}. The parameters’ values that we used to simulate the data are presented
in Table 1.

Table 1: Parameters’ values used to generate the data (for σ ∈ {0.02, 0.1}), where σb, σp and
ρ are the standard deviations and the correlation coefficient of the measurement error model.
The explanation of the other parameters is given in Section 2. The parameters that should be
estimated are given in the first column.

param. unknown param. known param. known

ab 3 q0 0.003 eb 0.0083
ap 3 ar 5.5 br 2
pp 0.8165 pr 400 bb 2
µ−1 100 kB 0.7 bp 2
σb 0.05 tr 100
σp 0.05 T 10
ρ 0.8 spr 500

As a stopping criterion for the EM algorithm we used a predefined number of EM steps (100
EM steps). For each independent run of the algorithm, the sample size was increased piecewise
linearly (with increasing slope) for the first 50 iterations (starting from 250, then increased
by 10 for the first 25 iterations and by 20 for the subsequent 25 iterations), and for the last
50 iterations we used a quadratic increase until we reached 10.000 trajectories. The burn-in
period for the MCMC was fixed at 500 iterations. For a similar type of simulation schedule
and some discussion on some alternatives see [5]. Our final estimates for both algorithms were
based on means from 50 independent runs. We also tested the effect of the averaging technique
developed by [15] (see also [5], p. 407). The authors proposed to smooth the estimates from each
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independent run by averaging after a burn-in period all subsequent EM-updates with weights
proportional to the Monte-Carlo sample size used in the corresponding EM iterations. This
technique is typically used when the simulation noise at convergence is still significant. We
present 3 different scenarios: no-averaging and averaging from the last 25 or 50 iterations. The
means and the standard deviations of the final estimates based on the 50 independent runs are
presented in Tables 2-3 for both values of σ ∈ {0.02, 0.1}.

Table 2: Parameter estimation results for the synthetic example when σ = 0.02. Means and
standard deviations of the estimates based on 50 independent runs with SISR-ECM and MCMC-
ECM for three different averaging strategies.

No averaging Averaging 25 Averaging 50
param. SISR MCMC SISR MCMC SISR MCMC

ab 2.9703 2.9705 2.9706 2.9706 2.9706 2.9706
(9.48 · 10−4) (5.53 · 10−4) (7.48 · 10−4) (4.82 · 10−4) (7.98 · 10−4) (5.08 · 10−4)

ap 2.9714 2.9716 2.9716 2.9716 2.9716 2.9716
(8.45 · 10−4) (5.08 · 10−4) (6.59 · 10−4) (4.07 · 10−4) (7.01 · 10−4) (4.32 · 10−4)

pp 0.8153 0.8153 0.8153 0.8153 0.8153 0.8153
(0.10 · 10−4) (0.04 · 10−4) (0.02 · 10−4) (0.01 · 10−4) (0.02 · 10−4) (0.01 · 10−4)

µ−1 100.2885 100.2870 100.2875 100.2875 100.2876 100.2876
(5.53 · 10−3) (5.23 · 10−3) (3.58 · 10−3) (2.47 · 10−3) (3.98 · 10−3) (2.64 · 10−3)

σb 0.0477 0.0477 0.0477 0.0477 0.0477 0.0477
(0.47 · 10−4) (0.26 · 10−4) (0.14 · 10−4) (0.09 · 10−4) (0.14 · 10−4) (0.09 · 10−4)

σp 0.0504 0.0504 0.0504 0.0504 0.0504 0.0504
(0.45 · 10−4) (0.28 · 10−4) (0.14 · 10−4) (0.08 · 10−4) (0.14 · 10−4) (0.08 · 10−4)

ρ 0.8282 0.8282 0.8282 0.8282 0.8282 0.8282
(3.69 · 10−4) (2.35 · 10−4) (1.08 · 10−4) (0.55 · 10−4) (1.05 · 10−4) (0.57 · 10−4)

Table 3: Parameter estimation results for the synthetic example when σ = 0.1. Means and
standard deviations of the estimates based on 50 independent runs with SISR-ECM and MCMC-
ECM for three different averaging strategies.

No averaging Averaging 25 Averaging 50
param. SISR MCMC SISR MCMC SISR MCMC

ab 2.8719 2.8767 2.8843 2.8871 2.8806 2.8836
(1.59 · 10−2) (0.34 · 10−2) (1.77 · 10−2) (0.41 · 10−2) (1.78 · 10−2) (0.41 · 10−2)

ap 2.8756 2.8803 2.8879 2.8906 2.8842 2.8871
(1.58 · 10−2) (0.35 · 10−2) (1.76 · 10−2) (0.41 · 10−2) (1.77 · 10−2) (0.40 · 10−2)

pp 0.8153 0.8153 0.8153 0.8153 0.8153 0.8153
(0.33 · 10−4) (0.06 · 10−4) (0.06 · 10−4) (0.01 · 10−4) (0.07 · 10−4) (0.01 · 10−4)

µ−1 100.8473 100.8097 100.7520 100.7325 100.7788 100.7577
(0.1172) (0.0339) (0.1270) (0.0299) (0.1278) (0.0293)

σb 0.0504 0.0505 0.0505 0.0505 0.0505 0.0505
(2.41 · 10−4) (1.78 · 10−4) (0.65 · 10−4) (0.56 · 10−4) (0.67 · 10−4) (0.58 · 10−4)

σp 0.0535 0.0536 0.0536 0.0537 0.0536 0.0536
(2.28 · 10−4) (2.29 · 10−4) (0.93 · 10−4) (0.74 · 10−4) (0.91 · 10−4) (0.79 · 10−4)

ρ 0.8527 0.8533 0.8534 0.8535 0.8533 0.8534
(1.62 · 10−3) (1.67 · 10−3) (7.06 · 10−4) (5.34 · 10−4) (6.93 · 10−4) (5.75 · 10−4)

In Tables 2-3, we remark that SISR-ECM and MCMC-ECM give similar means for both
values of σ and the means are closer when σ is smaller. If we use averaging for the estimation,
then the estimates are even closer. The resulting estimates from the MCMC-ECM algorithm
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have smaller variance than the ones from the SIS-ECM algorithm for both values of σ (except
from σp and ρ when σ = 0.1 and no averaging is used). We also noticed with some supplementary
tests that as σ increases the superiority of MCMC-ECM is clearer, that is, as compared to the
SISR-ECM, it gives much more concentrated estimates of the structural parameters (the first
four) for independent runs of the algorithms. Notice also that the mean estimates that we obtain
for the structural parameters with both algorithms are closer to the true ones (see also Table
1) when σ = 0.02, and this is very natural since as σ increases (directly related to the model
uncertainty), the uncertainty for the values of the structural parameters becomes larger. As far
as the averaging is concerned, we mention that it acts in a different way for the different values
of σ. When σ = 0.02, averaging improves the estimators of both algorithms with respect to
the standard error. It is clear that the structural parameters benefit less from the averaging
than the parameters of the measurement error. In the case where σ = 0.1, averaging decreases
the variability of the latter parameters, but not of all the structural parameters. Indeed, the
variability in the most sensitive parameter pp is significantly decreased but not in the other
three. On the other hand, notice that the mean estimates of all structural parameters are closer
to the true values when averaging is performed. This shows that averaging has generally a
positive effect. Finally, if we increase the size of the averaging too much (from 25 to 50), then
the improvement decreases. This is natural since averaging should be used near the convergence
region and not too early.

The above conclusions are true for the given set of parameters. The two methods have
been tested in several sets of parameters, in all of them, both methods returned similar mean
estimates for 50 independent runs of the algorithms, which are reasonably close to the true
ones. Nevertheless, their standard errors are dependent on the value of σ and on the algorithm
employed. In the examples that we run, the MCMC-ECM gives smaller standard errors than
the SISR-ECM except for very small σ.

Another advantage of the MCMC approach concerns the number of data taken into account
for the estimation. For a large value of T , the SISR-ECM can generally take into account
only some (and not all) of the organs that had not reached their full expansion stage when the
plant was cut (the immature members). The reason behind this is that the underlying hidden
Markov process is T -dependent and consequently the last weights associated with the particles
in the sequential implementation of the SISR could degenerate before taking into account all
the data. We refer to [46] for further details of this implementation. In equation (4.5) of the
above reference the following result holds for the final weights of the improved filter:

w
(i)
N−T+1 = w

(i)
N−T pθ(yN−T+1|q (i)

N−T :N−1)
N∏

n=N−T+2

pθ(yn|q (i)
n:N−1, q̃

(i)
N ),

where {w(i)
N−T , q

(i)
N−T :N−1)}Mi=1 stands for the available weighted sample one iteration before the

last update, and q̃
(i)
N are the final proposed particle positions. It is clear that since the last

product has T − 1 factors, a practical implementation of this filter needs to stop the algorithm
when the effective sample size (ESS) will be lower than a threshold for the first time (see [46]
for the explanation of the ESS). This is the reason why some data may be lost and this could
be a serious problem for large values of T . In the case that MCMC is used this problem does
not exist. In this example we excluded from the data vector all the immature members in order
to compare both algorithms on the same data.
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4 Ascent–based MCMC-ECM algorithm

In the previous section we did not emphasize on the specification of the Monte Carlo sample
size in each ECM step and/or the number of the ECM steps. It is known that, if the MC
sample size remains constant at each EM iteration, the MCEM algorithm will not converge
due to a persistent Monte Carlo error, unless this size is unnecessarily too large. Moreover,
it is inefficient to start with a large sample size since the initial guess of the MLE may be far
from the true value ([48]). Many authors use a deterministic increase in the MC sample size
(independently of the data) and stop the algorithm after a predefined number of EM steps ([35],
[36], [7]). Nevertheless, these are not the most effective ways to tackle these problems.

4.1 Data Driven Automated stochastic EM algorithms

The last decades data–driven strategies have been proposed in the literature to control the Monte
Carlo sample size and the number of the EM steps. In [2] proposed an automated procedure to
determine at each step if the sample size should be increased or not. This procedure concerns
those Monte Carlo EM algorithms for which the random sample in the E–step is simulated either
by exact draws from the corresponding conditional distribution or by importance sampling from
a proposal distribution close enough to the exact one. Based on the random sample of each
step t, an asymptotic confidence interval about the current estimate of the parameter θ(t) is
constructed. If the past value θ(t−1) lies in it, then the EM step is said to be swamped by
the Monte Carlo error and the sample size is increased. The size of the additional sample is
arbitrary (e.g. mt → mt + mt/c, c = 2, 3, . . .). Moreover, in [2] proposed to stop the MCEM
algorithm when a stopping rule is satisfied for three consecutive iterations. The most commonly
used stopping criterion is a sufficiently small relative change in the parameters’ values.

The automated Monte Carlo EM algorithm of [2] was generalized from random to dependent
samples by [31]. One basic difficulty which arises with dependent samples is how to determine
the aforementioned confidence interval. In this direction, the authors in [31] evoke a central limit
theorem (see Theorem 1, [31]) on the basis of the subsampling scheme of [44]. In particular,
the Monte Carlo sample size is increased, if at least one of the estimated partial derivatives
of the Q-function with respect to θ(t−1), computed on the basis of the subsample, lies in the
appropriately designed confidence interval.

Following the steps of [2] and [31], the authors in [32] proposed an alternative automated
MCMC-EM algorithm. The method of increasing the sample size is based as well on the con-
struction of an appropriate confidence interval. The main innovation of this paper is that the
authors give a specific formula for quantifying the increase in the MC sample size. In this ap-
proach, the EM procedure should be applied two times at each iteration, one for the complete
sample and one for the subsample. This is not an issue when the overall implementation of the
EM algorithm is not time consuming, but if, for example, a numerical maximization is needed
for the M–step, this method could be computationally expensive.

In the rest of this subsection we present the data–driven automated MCEM algorithm pro-
posed by [4] which is computationally cheap and can be easily adapted in our case where nu-
merical maximization is involved as well. Now, we give a short description of the basic ideas of
the algorithm. Let

∆Q = Q(θ(t); θ(t−1))−Q(θ(t−1); θ(t−1)), (23)

∆Q̂ = Q̂(θ(t); θ(t−1))− Q̂(θ(t−1); θ(t−1)), (24)
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where Q corresponds to the true Q–function of the model and Q̂ to the proxy given by (16),
where the approximation is based on the mt-sample generated at the t-th iteration of the EM.
The most important feature of this algorithm is that it is an Ascent-based Monte-Carlo EM
algorithm, since the basic focus is to recover with high probability the ascent property of the
EM. This means that the MC sample size should be chosen throughout iterations in such a
way that ∆Q > 0 with high probability. The authors claim that ∆Q̂ is a strongly consistent
estimator of ∆Q and by evoking the appropriate central limit theorem the following asymptotic
result holds true √

mt (∆Q̂−∆Q)
d−−−−→

mt→∞
N (0, σ2

Q), (25)

where the regularity conditions and the asymptotic variance σ2
Q depend on the sampling mech-

anism employed. A sketch of the proof is given in the case that simulations result from i.i.d.
draws and a remark is made that if an MCMC algorithm is employed, then (25) holds true under
stringent regularity conditions. With the help of (25) and a consistent estimator σ̂2

Q of σ2
Q the

following asymptotic lower bound (ALB) with confidence level 1− α can be given for ∆Q:

ALB = ∆Q̂− σ̂Q√
mt

zα, (26)

where zα is the upper α-quantile of the standard normal distribution. In the same way, an
asymptotic upper bound (AUB) with confidence level 1− γ can also be obtained for ∆Q:

AUB = ∆Q̂+
σ̂Q√
mt

zγ . (27)

The authors use (26) to decide if the current update based on the mt-sample will be accepted
or not. In particular:

• if ALB > 0, then with high probability ∆Q > 0 and θ(t) is accepted as the new update,

• if ALB ≤ 0, then Q̂ is said to be swamped with MC error and a new sample is appended to
the existing one to obtain a new parameter estimate. A geometric increase is recommended
(e.g., mt → mt +mt/k, k = 2, 3, . . .). The process is repeated until ALB > 0 for the first
time.

After acceptance of θ(t), the MC sample size for the next MCEM step is determined by using
the approximation

∆Q̂t+1 ∼ N
(
∆Q̂t,

σ̂2
Q

mt+1

)
, (28)

where Q̂t is given by (24) and Q̂t+1 corresponds to the same quantity by letting t → t + 1.
Indeed, the size mt+1 is chosen in such a way so as to prespecify the probability to reject the
estimate θ(t+1) (ALB < 0), when ∆Q > 0 (type-II error). If we set to β this probability and
add the logical requirement mt ≤ mt+1, then it can be easily shown by (28) that

mt+1 = max{mt, σ̂
2
Q(zα + zβ)

2/(∆Q̂t)
2}, (29)

where mt corresponds to the initial MC sample size of iteration t (before any eventual augmenta-
tion) and zβ to the upper β-quantile of the standard normal distribution. The last requirement
is the stopping criterion. The MCEM algorithm stops if the upper bound AUB < δ, where
AUB is given in (27) and δ is a predefined small constant. If this criterion is satisfied, then
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the change in the Q-function is acceptably small. The adaptation of this approach in the case
of the MCMC-ECM that we propose in this paper is straightforward as long as a method for
estimating the variance σ2

Q is available.

There are several methods for estimating σ2
Q (see, e.g., [18]). One of the most well-known

relies on the spectral estimator which involves the estimation of autocorrelations weighted by a
prespecified function. We suggest [42] for a presentation of different choices of weight functions.
One other popular method is batch means (BM) ([3]) which is based on the division of the
MC sample into a predefined number of batches of equal size. The batch means are treated as
independent which is only approximately true if the length of each batch is much longer than
the characteristic mixing time of the chain. If the batch size is allowed to increase with respect
to the sample size m, then this method is referred to as CBM. Usually, the batch size is set
equal to

⌊
ml
⌋
, where l = 1/2 or l = 1/3. An alternative method for variance estimation is

based on regenerative simulation (RS) (see, [41]), where random times at which the Markov
chain probabilistically restarts itself are identified. In fact, the CBM can be viewed as an ad
hoc version of the RS method (see, [26]). Both methods split the sample into pieces with the
difference that the RS method guarantees that the pieces are truly independent. Nevertheless,
the conditions of RS are hard to verify. The different variance estimation methods are compared
in several papers (see, [26], [25] and [14]). In [26], the authors concluded that CBM and RS
give similar results. Despite the theoretical advantages of RS and of the spectral estimator we
adopt the CBM method in the proposed algorithm which is significantly simpler and quicker in
practice.

4.2 The automated MCMC-ECM algorithm in simulated datasets

In order to evaluate the performance of the automated MCMC-ECM, we performed the same
synthetic tests as the ones that we presented in Subsection 3.2.

The augmentation rule for the Monte-Carlo sample size is given by (29). As a stopping
criterion we used AUB < 10−3, see (27). The initial sample size was fixed at 250 and the burn-
in period at 500. Our final estimates for all the tests were based on means from 50 independent
runs. In Tables 4 and 6 (when σ = 0.1 and σ = 0.02 respectively), the parameters’ estimates
and the corresponding standard errors are presented for different combinations of the asymptotic
levels α, β and γ, see (26) and (27). For each such combination, we compared two different rates
of the geometric increase in the sample size (mt → mt + mt/k, for k = 2, 3) when ALB ≤ 0,
see (26). In Table 4 we present the results for both rates given some selected asymptotic levels
for the case that σ = 0.1. We remark in Table 5 that the mean total and final sample sizes are
increased when we choose k = 2 (+mt/2) instead of k = 3 (+mt/3). Nevertheless, this does
not reflect an improvement in parameter estimation or a decrease in their standard deviations
(see Table 4). For this reason all the tests in the sequel are performed with k = 3. Moreover,
in Tables 5 and 7, the corresponding descriptive statistics for the total sample size (TSS), the
final sample size (FSS) and the number of ECM iterations (Iter) until convergence are given.
Note that since it is an automated algorithm the final sample size and the number of iterations
until convergence will differ among independent realizations. For this reason we also present in
Table 6 the effect of weighting the estimates from independent runs with weights proportional
to their final sample size.

For all the tested values of α, β and γ, the best results with respect to the standard errors
were given in the majority of the cases for the level 0.1 and then for 0.1− 0.25− 0.1 as expected
(with some exceptions). This is better reflected in the parameters of the measurement error.
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Table 4: Parameter estimation results with the automated MCMC-ECM algorithm for the
synthetic example when σ = 0.1. Means and standard deviations of the estimates based on 50
independent runs. The results are obtained for different values of the asymptotic levels α, β and
γ, see relations (26) and (27), and for two different rates of the geometric increase in the sample
size (mt → mt +mt/k, for k = 2, 3) when ALB ≤ 0, where ALB is given by (26)

α, β, γ 0.25 0.20 0.15 0.1–0.25–0.1 0.1

increase (+mt/3) (+mt/2) (+mt/3) (+mt/2) (+mt/3) (+mt/2) (+mt/3) (+mt/3)

ab 2.8961 2.8952 2.9052 2.9028 2.9031 2.9046 2.9004 2.9057
(7.73 · 10−3) (9.17 · 10−3) (8.15 · 10−3) (6.45 · 10−3) (6.39 · 10−3) (7.87 · 10−3) (5.74 · 10−3) (7.31 · 10−3)

ap 2.8996 2.8987 2.9087 2.9062 2.9065 2.9080 2.9039 2.9092
(7.67 · 10−3) (9.13 · 10−3) (8.13 · 10−3) (6.41 · 10−3) (6.34 · 10−3) (7.87 · 10−3) (5.71 · 10−3) (7.28 · 10−3)

Pp 0.8153 0.8153 0.8153 0.8253 0.8153 0.8153 0.8153 0.8153
(0.05 · 10−4) (0.06 · 10−4) (0.05 · 10−4) (0.05 · 10−4) (0.05 · 10−4) (0.05 · 10−4) (0.06 · 10−4) (0.05 · 10−4)

µ−1 100.6717 100.6778 100.6053 100.6224 100.6205 100.6124 100.6421 100.6004
(0.0583) (0.0695) (0.0432) (0.0554) (0.0598) (0.04848) (0.0494) (0.0559)

σb 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0506 0.0506
(1.48 · 10−4) (1.41 · 10−4) (1.35 · 10−4) (1.20 · 10−4) (0.82 · 10−4) (0.86 · 10−4) (0.74 · 10−4) (0.64 · 10−4)

σp 0.0537 0.0537 0.0537 0.0537 0.0537 0.0537 0.0537 0.0537
(2.02 · 10−4) (1.89 · 10−4) (1.79 · 10−4) (1.46 · 10−4) (1.08 · 10−4) (1.14 · 10−4) (0.86 · 10−4) (0.71 · 10−4)

ρ 0.8536 0.8537 0.8538 0.8536 0.8538 0.8539 0.8540 0.8540
(1.47 · 10−3) (1.36 · 10−3) (1.29 · 10−3) (1.05 · 10−3) (0.80 · 10−3) (0.82 · 10−3) (0.62 · 10−3) (0.52 · 10−3)

Table 5: Descriptive statistics for the total sample size (TSS), the final sample size (FSS) and
the number of iterations until convergence (Iter) corresponding to the tests given in Table 4

α, β, γ 0.25 0.20 0.15 0.1–0.25–0.1 0.1

increase (+mt/3) (+mt/2) (+mt/3) (+mt/2) (+mt/3) (+mt/2) (+mt/3) (+mt/3)

Min TSS 49247 13670 77627 5811 120139 150406 90505 137264
Mean TSS 250800 287785 340029 374602 534498 565618 593939 794573
Max TSS 637305 637305 1042743 916609 1017042 1186568 1401011 1936174
Min FSS 3405 2031 4693 3379 7445 8813 8508 13309
Mean FSS 16495 19665 23421 27398 44455 49981 48803 65199
Max FSS 56985 55005 56678 67744 153184 111474 164524 169807
Min Iter 46 30 35 43 41 39 45 28
Max Iter 86 94 82 79 75 74 74 66

However, if we run the algorithm by setting the levels at 0.1, then a great computational cost is
involved (see Tables 5 and 7) which is not compensated for the gain in precision. For this reason
it could be wiser to decrease the values of the levels to have a rapid algorithm with an acceptable
precision. Furthermore, the weighted averages (see Table 6) with respect to the final sample
size generally decreased the standard deviations independently of the values of the asymptotic
levels.

It is noteworthy that the automated algorithm gives mean estimates which are closer to the
real ones than the original MCMC-ECM algorithm. On the other hand, even the “best” auto-
mated algorithm gives more variable estimates than the non-automated one with independent
runs of the algorithm. This could be expected from the variability in the final sample size and
the number of iterations until convergence of the automated algorithm. The main point here is
that the resulting estimators are of acceptable accuracy in less ECM steps and thus in less CPU
time if the asymptotic levels are not set too low. This is very important for a routine use of the
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Table 6: Parameter estimation results with the automated MCMC-ECM algorithm for the
synthetic example when σ = 0.02. Means and standard deviations of the estimates based on 50
independent runs if the estimates have i) equal weights and ii) weights proportional the final
sample size. The results are obtained for different values of the asymptotic levels α, β and γ,
see relations (26) and (27). The sample size was increased as mt → mt +mt/3, when ALB ≤ 0.

α, β, γ 0.25 0.20 0.15 0.1–0.25–0.1 0.1

ab 2.9728 2.9740 2.9745 2.9744 2.9749
(1.61 · 10−3) (1.69 · 10−3) (1.42 · 10−3) (1.43 · 10−3) (1.39 · 10−3)

ap 2.9736 2.9747 2.9751 2.9750 2.9755
(1.45 · 10−3) (1.51 · 10−3) (1.31 · 10−3) (1.28 · 10−3) (1.23 · 10−3)

Pp 0.8153 0.8153 0.8153 0.8153 0.8153
(7.00 · 10−6) (6.00 · 10−6) (6.00 · 10−6) (5.00 · 10−6) (5.00 · 10−6)

µ−1 100.2758 100.2700 100.2684 100.2671 100.2637
(0.0094) (0.0094) (0.0084) (0.0087) (0.0088)

σb 0.0477 0.0477 0.0477 0.0477 0.0477
(4.80 · 10−5) (3.50 · 10−5) (2.50 · 10−5) (2.00 · 10−5) (2.50 · 10−5)

σp 0.0504 0.0504 0.0504 0.0504 0.0504
(3.70 · 10−5) (3.80 · 10−5) (3.10 · 10−5) (2.90 · 10−5) (2.21 · 10−5)

ρ 0.8283 0.8283 0.8283 0.8284 0.8284
(2.96 · 10−3) (3.00 · 10−3) (2.46 · 10−3) (2.25 · 10−3) (1.60 · 10−3)

Weighted averaging

ab 2.9726 2.9737 2.9744 2.9742 2.9745
(1.44 · 10−3) (1.37 · 10−3) (1.01 · 10−3) (1.27 · 10−3) (1.14 · 10−3)

ap 2.9734 2.9744 2.9750 2.9748 2.9751
(1.29 · 10−3) (1.22 · 10−3) (1.00 · 10−3) (1.15 · 10−3) (1.02 · 10−3)

Pp 0.8153 0.8153 0.8153 0.8153 0.8153
(6.00 · 10−6) (5.00 · 10−6) (6.00 · 10−6) (5.00 · 10−6) (5.00 · 10−6)

µ−1 100.2767 100.2706 100.2674 100.2685 100.2660
(0.0080) (0.0085) (0.0069) (0.0078) (0.0067)

σb 0.0477 0.0477 0.0477 0.0478 0.0477
(3.60 · 10−5) (2.80 · 10−5) (2.00 · 10−5) (1.70 · 10−5) (2.20 · 10−5)

σp 0.0504 0.0504 0.0504 0.0504 0.0504
(3.10 · 10−5) (3.10 · 10−5) (2.60 · 10−5) (2.30 · 10−5) (1.90 · 10−5)

ρ 0.8283 0.8282 0.8283 0.8284 0.8284
(2.47 · 10−3) (2.39 · 10−3) (2.12 · 10−3) (1.77 · 10−3) (1.54 · 10−3)

algorithm combined with the fact that the automated algorithm uses in an intelligent way the
computational resources.

5 Application to a real dataset and model comparison

In this section, we present an application of our method with experimental data from the sugar-
beet. The experimental protocol is detailed in [30]. This real-data case was presented in [46]
to motivate the use of a hidden Markov model as the best choice among competing models.
The current data contain mass measurements from 42 blades and petioles, assumed to have
expansion durations T = 10. With this assumption all measurements correspond to leaves
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Table 7: Descriptive statistics for the total sample size (TSS), the final sample size (FSS) and
the number of iterations until convergence (Iter) corresponding to the tests given in Table 6.

α, β, γ 0.25 0.20 0.15 0.1–0.25–0.10 0.10

Min TSS 3685 6491 6359 9895 7193
Mean TSS 22413 29272 36910 41078 59441
Max TSS 89009 98637 166175 159998 235068
Min FSS 1066 1798 1964 2988 3861
Mean FSS 6314 7803 10780 12106 17465
Max FSS 27098 21869 39632 40842 66197
Min Iter 12 10 10 10 8
Max Iter 27 21 18 18 18

which have completed their expansion when the plant was cut. The measurements are given for
reference in Table 8. The parameters are divided into two categories, those which were calibrated

Table 8: A dataset from the sugar-beet plant. Mass measurements from 42 blades (bl) and
petioles (pe).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
bl 0.021 0.069 0.084 0.138 0.246 0.414 0.604 0.85 0.892 0.99 1.398 1.627 1.568 1.774
pe 0.01 0.014 0.023 0.045 0.079 0.29 0.475 0.529 0.537 0.649 0.857 0.988 1.059 1.216

15 16 17 18 19 20 21 22 23 24 25 26 27 28
bl 1.728 1.625 1.349 1.297 1.212 1.184 1.097 1.028 0.943 0.856 0.744 0.615 0.555 0.476
pe 1.317 1.263 1.154 1.204 1.134 1.106 1.056 0.964 0.904 0.889 0.797 0.687 0.655 0.532

29 30 31 32 33 34 35 36 37 38 39 40 41 42
bl 0.422 0.361 0.326 0.277 0.238 0.191 0.179 0.15 0.124 0.117 0.079 0.089 0.106 0.095
pe 0.52 0.471 0.392 0.365 0.296 0.241 0.242 0.186 0.167 0.126 0.091 0.094 0.094 0.083

directly in the field and the unknown parameter θ that has to be estimated. In Table 9 we give
the values of the fixed parameters and the initial values that we used for the parameters that
have to be estimated (determined in a preliminary searching stage).

In Table 10 we present the parameter estimation results that we obtained with the MCMC-
ECM and the SISR-ECM algorithm by fitting the real data with the model M1. The details
of the implementation are given in Section 3. The parameter σ2 represents a standard level of
uncertainty for the mean biophysical model given by (3). This value of σ = 0.1 corresponds
to the model which best fits the data as shown in [46]. In Table 11 we present the parameter
estimation results that we obtained with the automated MCMC-ECM algorithm. The details of
the implementation are given in Section 4. Moreover, in Table 12 the corresponding descriptive
statistics for the total sample size (TSS), the final sample size (FSS) and the number of ECM
iterations (Iter) until convergence are given.

We remark that the mean parameter estimates that we obtained with the SISR-ECM, the
MCMC-ECM and the automated MCMC-ECM algorithm are similar. We reach the same con-
clusion even if we use the averaging techniques. Nevertheless, notice in Table 10 that the
standard deviations from the mean estimates among independent realizations are roughly from
two to six times smaller with the MCMC-ECM than the SISR-ECM. Since the number of in-
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Table 9: Initial values for both unknown and fixed parameters used to initialize the algorithms in
the real data case, where σb, σp and ρ are the standard deviations and the correlation coefficient
of the measurement error model (see Section 2 for the explanation of the other parameters)

param. unknown param. known param. known

ab 2.829 σ 0.1 eb 0.0083
ap 1.813 ar 3.1 spr 500
pp 0.8139 pr 329.48 bb 2
µ−1 97.95 kB 0.7 bp 2
σb 0.076 tr 60 br 2
σp 0.059 T 10
ρ 0.136 q0 0.003

dependent realizations decreases linearly the variance, this means that we need at least four
times less realizations with the MCMC to have approximately the same precision with the SISR
for some of these parameters. This is an important advantage of the MCMC-ECM since the
CPU time needed for a single run is approximately the same for both algorithms. The same
conclusion holds for the automated MCMC-ECM algorithm as we can see in Table 11. The
choice α = β = γ = 0.25 results in significantly less standard deviations than the SISR, and
slightly more than the non-automated MCMC. When the parameters α, β and γ decrease, then
as expected the standard deviations decrease since the final and the total Monte Carlo sam-
ple size increases. Notice also in Table 12 that smaller values of α, β and γ decrease the total
number of ECM steps until convergence. The advantages of the automated algorithm cannot
be counterbalanced by using averaging in the non-automated algorithm as we can see in Table
10. Consequently, the choice of a single run of an automated MCMC-ECM is very reasonable
even with the choice α = β = γ = 0.25 and, depending on the desired accuracy, a small number
of independent runs could be combined to obtain the weighted mean estimates. Furthermore,
the automated algorithm makes indeed an intelligent use of Monte Carlo resources and there is
no need to determine a priori the total number of ECM steps and how the Monte Carlo sample
size should be increased.

In the last part of this section we present the results of the model comparison when fitting
the experimental data presented in Table 8. Two types of models, referred to as models M1 and
M2, were considered in this paper and their hidden Markov formulation is given by Proposition
1. For each model, we distinguished the cases when the correlation coefficient ρ between the mass
measurement errors of the blade and the petiole is a free parameter that has to be estimated
(model M1 and M2) or is null (model M∗

1 and M∗
2). In the latter cases we have one parameter

less to estimate. We run the automated MCMC-ECM for all these models with α = β = γ = 0.25
and the obtained results are presented in Table 13. We also give the estimated corrected Akaike
information criterion (AICc) and the Bayesian information criterion (BIC) for all the models
that we tested (see, e.g., [1] and the references therein). We infer that the model M∗

1 performed
better and that the additive error in the mass measurements (models M∗

1 and M1) is better
adapted than the log-additive one (models M∗

2 and M2) since both criteria best rank the model
with the lowest value. Even though we have restricted ourselves to the comparison between these
models, the comparison method is of course general, and could be applied to other formulations
of the error models or of the functional models.
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Table 10: Parameter estimation results based on the real dataset. Means and standard deviations
of the estimates based on 50 independent runs with SISR and MCMC for three different averaging
strategies.

No averaging Averaging 25 Averaging 50
param. SISR MCMC SISR MCMC SISR MCMC

ab 2.8319 2.8362 2.8285 2.8379 2.8291 2.8379
(0.0211) (0.0100) (0.0261) (0.0128) (0.0256) (0.0126)

ap 1.8259 1.8287 1.8222 1.8297 1.8227 1.8297
(0.0162) (0.0072) (0.0188) (0.0091) (0.0187) (0.0090)

Pp 0.8147 0.8147 0.8147 0.8147 0.8147 0.8147
(3.97 · 10−4) (0.67 · 10−4) (1.42 · 10−4) (0.25 · 10−4) (1.49 · 10−4) (0.25 · 10−4)

µ−1 98.0730 97.9902 98.1324 97.9714 98.1245 97.9721
(0.3913) (0.1877) (0.4745) (0.2336) (0.4653) (0.2327)

σb 0.0761 0.0761 0.0762 0.0761 0.0761 0.0761
(3.83 · 10−4) (2.75 · 10−4) (1.12 · 10−4) (0.56 · 10−4) (2.74 · 10−4) (1.08 · 10−4)

σp 0.05887 0.05889 0.0589 0.0589 0.0590 0.0590
(2.45 · 10−4) (0.67 · 10−4) (1.54 · 10−4) (0.52 · 10−4) (1.54 · 10−4) (0.50 · 10−4)

ρ 0.1260 0.1246 0.1268 0.1246 0.1266 0.1246
(6.87 · 10−3) (1.73 · 10−3) (2.78 · 10−3) (1.23 · 10−3) (2.98 · 10−3) (1.27 · 10−3)

6 Discussion

In this paper we proposed simulation techniques based on MCMC for parameter estimation
via an ECM algorithm for a class of plant growth models which can be characterized by de-
terministic structural development and include process error in biomass production dynamics,
initially introduced in [46]. The resulting estimation algorithm based on MCMC improves the
one developed in [46], where the authors used SISR to perform the Monte Carlo E-step, by
reducing significantly the variance of parameter estimates obtained by independent runs of the
algorithm. Another important advantage of this algorithm as compared to the one proposed
in [46] is that the organ masses of the last immature members can all be taken into account
even for large expansion durations and this could be very important for improving the quality
of parameter estimation. Moreover, the adaptation of the data–driven automated algorithm
of [4] to our algorithm was shown to be a good solution for an intelligent use of Monte Carlo
resources. Simulation studies from a synthetic example and a real dataset from the sugar-beet
plant were used to illustrate the performance of the proposed algorithm. Two different types of
hidden Markov models were described and tested on a real dataset for their fitting quality.

The resulting algorithm is very promising and can be further exploited for decision aid
in agricultural science. In this direction, further effort is needed for the adaptation of this
algorithm to other crop plants with deterministic organogenesis and for model comparison and
validation. Furthermore, despite the interest in individual plant growth modeling, the genetic
variability of plants, even of the same variety, can be very important and, if we add locally varying
climatic effects, then the development of two plants in the same field could be highly different.
Consequently, a population-based model could be more appropriate to describe the population
dynamics and the inter-individual variability ([10]). We are currently studying an extension to
the population level by coupling with a nonlinear mixed effects model ([28]). Another interesting
perspective is to broaden the applicability of the proposed statistical methodology in plants
with stochastic organogenesis (e.g. trees) where the total number of organs of each class at each
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Table 11: Parameter estimation results based on the real dataset with the automated MCMC-
ECM algorithm. Means and standard deviations of the estimates based on 50 independent runs
if the estimates have i) equal weights and ii) weights proportional to the final sample size. The
results are obtained for different values of the asymptotic levels α, β and γ, see relations (26)
and (27).

z25 z20 z15 z10-25 z10

ab 2.8363 2.8347 2.8346 2.8347 2.8335
(0.0122) (0.0089) (0.0091) (0.0085) (0.0070)

ap 1.8284 1.8270 1.8264 1.9269 1.8254
(0.0087) (0.0064) (0.0065) (0.0060) (0.0047)

Pp 0.8147 0.8147 0.8147 0.8147 0.8147
(0.64 · 10−4) (0.58 · 10−4) (0.56 · 10−4) (0.52 · 10−4) (0.63 · 10−4)

µ−1 97.9941 98.0231 98.0197 98.0261 98.0389
(0.2118) (0.1647) (0.1665) (0.1567) (0.1315)

σb 0.0761 0.0761 0.0761 0.0761 0.0761
2.25 · 10−4) (1.80 · 10−4) (1.65 · 10−4) (1.38 · 10−4) (1.57 · 10−4)

σp 0.0589 0.0589 0.0589 0.0589 0.0589
(0.94 · 10−4) (0.87 · 10−4) (0.78 · 10−4) (0.53 · 10−4) (0.63 · 10−4)

ρ 0.1254 0.1261 0.1265 0.1259 0.1271
(2.51 · 10−3) (2.28 · 10−3) (2.31 · 10−3) (2.12 · 10−3) (2.15 · 10−3)

Weighted averaging

ab 2.8372 2.8349 2.8354 2.8345 2.8346
(0.0120) (0.0086) (0.0104) (0.0078) (0.0068)

ap 1.8290 1.8272 1.8272 1.8268 1.8264
(0.0087) (0.0062) (0.0073) (0.0054) (0.0045)

Pp 0.8147 0.8147 0.8147 0.8147 0.8147
(0.57 · 10−4) (0.55 · 10−4) (0.51 · 10−4) (0.49 · 10−4) (0.47 · 10−4)

µ−1 97.9824 98.0244 98.0077 98.0311 98.0220
(0.2076) (0.1590) (0.1901) (0.1473) (0.1307)

σb 0.0761 0.0761 0.0761 0.0761 0.0761
(2.03 · 10−4) (1.54 · 10−4) (1.47 · 10−4) (1.18 · 10−4) (1.43 · 10−4)

σp 0.0589 0.0589 0.0589 0.0589 0.0588
(0.87 · 10−4) (0.73 · 10−4) (0.67 · 10−4) (0.49 · 10−4) (0.63 · 10−4)

ρ 0.1253 0.1260 0.1260 0.1257 0.1267
(2.62 · 10−3) (2.11 · 10−3) (2.09 · 10−3) (1.74 · 10−3) (1.86 · 10−3)

growth cycle is a random variable (see, e.g., [33]).
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Appendix

Proof of Proposition 2.

In order to simplify the proof we will change the state variables of the model M2. By setting
Rn = logQn and Zn = log Yn we can rewrite (10) and (11) as follows:

Rn+1 = logFn(R(n−T+1)+:n;µ, pal) +Wn, (30)

Zn = logGn(Rn:(n+T−1); pal) + Vn. (31)

Now, let us analyze the Q-function of the model. Let us also write Fn given by (3) as
Fn = µKn. In the rest, we identify the functions Kn and Gn (see (6)) with the induced random
variable Kn(θ2) and the induced random vector Gn(θ2) respectively, for an arbitrary θ2 ∈ Θ2,
where Θ2 is an appropriate euclidean subset. By the assumptions of the modelM2 and equations
(30) and (31) we have:

Q(θ; θ′) = Eθ′
[
log pθ(R0:N , z0:N ) | z0:N

]

=

N∑

n=1

Eθ′
[
log pθ(Rn|R(n−T )+:n−1) | z0:N

]

+
N∑

n=0

Eθ′
[
log pθ(zn|Rn:(n+T−1)∧N ) | z0:N

]

= C(θ2; θ
′) +Q1(µ, σ

2, θ2; θ
′) +Q2(Σ, θ2; θ

′), (32)

where

Q1(µ, σ
2, θ2; θ

′) = − N

2
log σ2 − 1

2σ2

N∑

n=1

Eθ′

[
(Rn − logKn−1(θ2)− log µ)2 | z0:N

]
,
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Q2(Σ, θ2; θ
′) = − N + 1

2
log(detΣ)

− 1

2

N∑

n=0

Eθ′

[(
zn − logGn(θ2)

)⊤
Σ−1

(
zn − logGn(θ2)

)
| z0:N

]
,

and C(θ2; θ
′) is independent of θ1.

Note that for fixed θ2 the initial maximization problem of Q w.r.t. θ1 can be separated
into two distinct maximization problems of Q1 and Q2 w.r.t. (µ, σ2) and Σ respectively. By
maximizing Q1 we get easily (18) and (20) and by maximizing Q2 we get (19). In the latter
case the proof is the same as in the case of an additive measurement error model (with the
transformed variables) and a detailed proof can be found in [46], Web Appendix C.
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