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émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52628425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00831793


Transition probabilities for piecewise affine models of genetic networks

Madalena Chaves, Etienne Farcot and Jean-Luc Gouzé

Abstract— In the piecewise affine framework, trajectories
evolve among hyperrectangles in the state space. A qualitative
description of the dynamics - useful for models of genetic
networks - can be obtained by viewing each hyperrectangle as
a node in a discrete system, so that trajectories follow a path in
a transition graph. In this paper, a probabilistic interpretation
is given for the transition between two nodes A and B, based
on the volume of the initial conditions on hyperrectangle A

whose trajectories cross to B. In an example consisting of two
intertwinned negative loops, this probabilistic interpretation is
used to predict the most likely periodic orbit given a set of
parameters, or to find parameters such that the system yields
a desired periodic orbit with a high probability.

I. INTRODUCTION

The class of piecewise affine (PWA) systems is a com-

monly used formalism to describe biological regulatory

networks [5]. It provides a qualitative description of the

dynamical behaviour, roughly by dividing the (continuous)

state space into finitely many hyperrectangles, also called do-

mains, and then describing the possible transitions between

those domains [8], [1]. The state space of PWA networks can

be described by a discrete system, where each discrete state

represents a domain, and the transition graph between the

states represents the pathways allowed for the trajectories of

the continuous system. In general, there may be multiple

transitions from the same domain, and in this case the

transition graph provides no information on which transition

is “more likely”.

In this study, we explore the idea of associating a prob-

ability of transition to each of the edges in the discrete

transition graph, in terms of the parameters of the PWA

model (Section III; see also [7], for a first approach). If the

transition probabilities between domains can be experimen-

tally measured, this idea could be applied to estimate some

of the model’s parameters.

This method is also of interest in the case of a system

whose asymptotic behaviour consists of a transition graph

with no single state attractor, but with several transition

cycles, raising the question of the existence of periodic

trajectories [2] (Section IV). Some problems to be discussed

include finding sets of parameters that lead to a given

periodic trajectory, and to control the system from one

periodic trajectory to another, by appropriately changing the

inputs/parameters (Section V).
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II. PIECEWISE AFFINE DIFFERENTIAL MODELS

Piecewise affine (PWA) differential systems where first

introduced by Glass and co-authors [5] as suitable models

for genetic regulatory models. Various mathematical aspects

of these systems have recently been studied in detail [8],

[1], including the definition of solutions across thresholds,

sliding mode solutions, and the stability of steady states.

The existence of periodic orbits for these systems has been

studied, for instance in [6], [2], [4], as well as some control

problems [3].

A. The general set up

Consider an n-dimensional system, x ∈ R
n,

ẋ = f(x) − Γx (1)

where f(x) is a piecewise constant function and Γ =
diag(γ1, . . . , γn). The function f represents the interactions

between the various components of the system, for instance,

the activation or inhibition effects between different proteins

(see the example in Section IV). A general hypothesis

underlying this class of models is the idea that a protein A1

will strongly influence another protein A2 once it reaches

an appropriate concentration θ1→2; below this threshold

concentration, A1 does not influence A2. To characterize

the function f , we will assume that each variable i has ri

thresholds:

0 < θ1
i < · · · < θri

i < Mi := θri+1
i , (2)

where Mi = max{ fi(x)
γi

: x ∈ R≥0}. These thresholds

partition the state space into regular domains in which the

vector fields are given by a linear function. To label these

domains, we will use the notation:

Bk1 k2··· kn : ki ∈ {0, 1, . . . , ri}, θki

i < xi < θki+1
i ,

with θ0
i := 0. So, for n = 3 and (r1, r2, r3) = (1, 2, 2),

B102 denotes the cube x ∈ (θ1
x, Mx), y ∈ (0, θ1

y), and

z ∈ (θ2
z , Mz). The segments defining the borders of the

regular domains are called switching domains, since a group

Is (nonempty) of the variables is at a threshold value, and

are denoted by:

Dl1··· ln : li = θki

i , i ∈ Is, lj = kj , j /∈ Is.

In this paper, the function f takes a constant value in each

regular domain: f(x) = fk1 k2··· kn , so that an expression for

the solution of the system ẋ = fk1 k2··· kn−Γx can be explic-

itly written for each regular domain. The point φk1 k2··· kn =
(fk1 k2··· kn

i /γ1, . . . , f
k1 k2··· kn
n /γn) is called the focal point

of the domain Bk1 k2··· kn . If φk1 k2··· kn ∈ Bk1 k2··· kn , then



the focal point is an equilibrium of the system. The solutions

of the system are thus continuous functions, and can be

formed by concatenating the segments from each domain.

The crossing between two regular domains (the function f
is not defined at switching domains) can be defined in a

natural way if the vector fields are not opposing on each

side of the boundary [1]. Otherwise, solutions can still be

defined, in the sense of Filippov [8].

B. Transition graph

For a trajectory starting in a given domain Bk1··· kn there

are two possibilities: (i) if the domain contains its focal

point φk1 k2··· kn , then this is actually an asymptotically stable

equilibrium point and the trajectory will remain in Bk1··· kn

for all times; (ii) if the focal point φk1 k2··· kn /∈ Bk1··· kn ,

then the trajectory will leave Bk1··· kn at some instant. In

case (ii), the trajectory will leave the domain Bk1··· kn as

soon as one of the variables reaches a threshold. Suppose

that variable kl is the first to reach a threshold; then we say

that there is a transition

Bk1··· kn → Bk1··· k̃l··· kn , k̃l ∈ {kl − 1, kl + 1}.

The family of all possible one-variable transitions among the

regular domains is called the transition graph of system (1)

(see Fig. 3 for an example). In this graph, any domain B may

have at most n successors S(B) ⊂ {Bk̃1··· kn , . . . , Bk1··· k̃n}.

Note that there are also trajectories for which two or more

variables simultaneously reach their respective threshold

values. These trajectories give rise to separatrix curves, since

they partition the domain Bk1··· kn into regions that switch to

the different possible successors in S(B) (see more details

in Section III). However, the family of all separatrix curves

forms a subset of measure zero of the set of all possible

trajectories of system (1). Thus, for the results in this paper,

one can assume that the one-variable switch transition graph

does represent all the possible pathways for a trajectory of

system (1).

One can also define the following object (see also [2]).

Definition 2.1: A sequence of L regular domains

Br1 → · · · → BrL → Br1

that can be visited in one-variable transitions returning to the

first domain after L transitions is called a transition cycle of

length L.

Note that any periodic solution of (1) will follow a

transition cycle, but the existence of a transition cycle does

not imply the existence of a periodic orbit.

In this paper, we will assume that there are at most two

successors for each region:

H1 Given any Br = Bk1 k2··· kn , there exist at most two

coordinates xi, xj such that

S(Br) = {Bi, Bj },

where Bi = Bk1···k̃i··· kn , Bj = Bk1···k̃j ··· kn

and k̃i ∈ {ki − 1, ki + 1} and k̃j ∈ {kj − 1, kj + 1}.

In this case, a trajectory starting from any initial condition

in Br will either cross to Bi or Bj , dividing Br into two

subregions.

III. TRANSITION PROBABILIIES IN THE GRAPH

The transition graph contains information on the possible

pathways for a trajectory, but it provides no indication on

whether a given pathway is more likely than another. The

goal of the present analysis is to relate dynamical aspects

determined by the systems’s parameters (here, synthesis and

degradation rates) to probabilities of transition between two

state space regions.

Under hypothesis H1, the transition from Br to Bi or Bj

can be studied in the 2D plane (xi, xj). For convenience of

notation, let x = xi, y = xj and Bx = Bi, By = Bj .

To analyse the dynamics in Br, it is enough to look at the

projection of the space onto the plane x-y:

ẋ = fr
x − γxx (3)

ẏ = fr
y − γyy, (4)

where fr
x , fr

y ≥ 0. Assume that θr
x and θr

y are the thresholds

that will be crossed, and consider also the two closest

thresholds for each variable: θr−1
x < θr

x < θr+1
x , θr−1

y <
θr

y < θr+1
y . Then, the locus of the initial points from which

a trajectory ends in (θr
x, θr

y) is a separatrix curve dividing

the region Br into two subsets from which transitions are

possible to Bx or By . This curve can be easily computed

from the solutions on Br:

x(t) = (x0 − Mx) exp−γxt +Mx

y(t) = (y0 − My) exp−γyt +My

letting Mx =
fr

x

γx
(similarly for My). The separatrix is:

σ(x) = y = My + (θr
y − My)

(

x − Mx

θr
x − Mx

)

γy
γx

. (5)

To relate kinetic parameters to probabilities of transition, one

idea is to compare the volumes of the two subregions of Br

above and below the separatrix [7]: that is, the probability of

crossing from Br to Bx would be given by the fraction of the

volume of Br corresponding to initial conditions that evolve

to Bx. This has a natural biological interpretation as follows.

Suppose a given experiment is repeated N times, always

with initial conditions in Br (that is, initial concentrations

in the intervals defined by Br) and one counts the number of

times Nx that the system evolves to Bx. Then the quotient

Nx/N can be viewed as the probability that trajectories of

system (3) switch from Br to Bx.

However, a careful look at Fig. 1 shows that more accurate

probabilities should take into account the history of the tra-

jectory. Indeed, on the upper panel of Fig. 1, if the trajectory

enters the box Br from the region x < θr−1
x , θr

y < y < θr+1
y ,

then it will always proceed to Bx, by uniqueness of solutions

inside Br. In the next subsections, we explicitly calculate

the area below the separatrix as a function of the systems

parameters, and then suggest a definition for probability of

transition that uses both the current box and the previous

box.



A. Volume of initial conditions below the separatrix

For a general domain Br, let (θr
x, θr

y) denote the ending

point of the separatrix, and define

H(x) =

{

1, x > θr
x

−1, x < θr
x

Then, one can see that (x, y) ∈ Br iff

min{θr
x, θr+H(x)

x } < x < max{θr
x, θr+H(x)

x },

min{θr
y, θr+H(y)

y } < y < max{θr
y, θr+H(y)

y }.

There are two possibilities for the starting point of the

separatrix depending on whether the curve hits a vertical

or horizontal threshold first (see the top and bottom plots in

Fig. 1): either (θ
r+H(x)
x , σ(θ

r+H(x)
x )) or (θ̃x, θ

r+H(y)
y ), with

σ(θ̃x) = θ
r+H(y)
y , that is

θ̃x = Mx + (θr
x − Mx)

(

θ
r+H(y)
y − My

θr
y − My

)

γx
γy

.

The area corresponding to initial conditions below the sepa-

ratrix curve can be calculated as follows.

Lemma 3.1: Let Mx, My, θi
x, θi

y ≥ 0 and γx, γy > 0.

Given a domain Br from which transitions are possible to the

domains Bx and By , consider the corresponding separatrix

curve (5), with endpoint (θr
x, θr

y). Define, for s ∈ {x, y},

sini = min{θr
s , θ

r+H(s)
s }, send = max{θr

s , θ
r+H(s)
s }

and

α =

{

θr
x, if θr

x < x, ∀x ∈ Br

max{θ
r+H(x)
x , θ̃x}, if θr

x > x, ∀x ∈ Br,

β =

{

min{θ
r+H(x)
x , θ̃x}, if θr

x < x, ∀x ∈ Br

θr
x, if θr

x > x, ∀x ∈ Br.

The area of the box Br under the curve (5) is given by:

Aσ =

∫ β

α

σ(x)dx + σ(α)(α − xini)

+σ(β)(xend − β) − yini(xend − xini).

where the integral
∫ β

α
σ(x)dx is given by

My(β − α) +
γx

γx + γy
(θr

y − My)(θr
x − Mx) ×

×

(

(

β − Mx

θr
x − Mx

)1+
γy
γx

−

(

α − Mx

θr
x − Mx

)1+
γy
γx

)

.

Furthermore, the area Aσ reflects the basin of attraction of

Br from where transitions are possible to Bx (if θr
y > y

forall y ∈ Br) or By (if θr
y < y forall y ∈ Br).

In any case, note that either α = xini = θr
x or β = xend =

θr
x, so the expressions for Aσ can be simplified. The last

term represents the area of the box just below Br (which is

counted in the integration) (it is naturally zero if there is no

box below Br, i.e. yini = 0).

Fig. 1. A general case: inside the initial box B
r , there are two possibilities

for the starting point of curve σ, depending on the parameters.

B. Probabilities of transition

To develop a definition of transition probability, consider

the region Bz preceding Br, meaning that coordinate z
changes in the transition Bz → Br. Under assumption H1,

observe that either coordinate z coincides with x or y (as in

Fig. 1, where z coincides with x), or coordinate z is different

from both x, y and thus introduces a third dimension on the

transition scheme (in the Fig. 1, Bz would correspond to a

cube above or below Br, along a third direction z).

If Bz and Br differ on coordinate x, then the boundary

between Bz and Br is a plane along xz|r = θ
r+H(x)
x .

The probability of a transition Bz → Br → Bx is thus

proportional to the segment of the boundary between Bz

and Br that lies below the separatrix σ(xz|r), that is the

intersection of the boundary and the separatrix.

If Bz introduces a new coordinate z, then the separatrix

σ(x) extends into a surface along the z direction. The

transition from Br to Bx or By depends on the point of

this surface where the trajectory crosses from Bz to Br. In



this case, the probability of a transition Bz → Br → Bx

is still proportional to the area of the boundary between Bz

and Br that lies below σ(xz|r), that is the intersection of the

boundary and the separatrix.

Recall the notation Br = Bk1··· kn , and Bx =
Bk1···k̃x··· kn , where k̃x ∈ {kx − 1, kx + 1}.

Definition 3.2: Consider a trajectory ϕ(t;x0) that crosses

from a domain Bz to Br, and assume that there are two

possible transitions from Br, to Bx or By . The probability

of transition between Br and Bx, given Bz is defined as:

Prx(z) =















Aσ
˛

˛

˛
θr

x−θ
r+H(x)
x

˛

˛

˛

˛

˛

˛
θr

y−θ
r+H(y)
y

˛

˛

˛

,

if z /∈ {x, y} or Bz = Br

|θr
x−β|

˛

˛

˛
θr

x−θ
r+H(x)
x

˛

˛

˛

, if z = x

(6)

where β is as defined in Lemma 3.1 and, in the case z = x,

x is the coordinate such that k̂x = kx 6= k̃x, while k̂y =
ky = k̃y . In addition, for each fixed z: Prx(z)+Pry(z) = 1.

IV. EXAMPLE: OSCILLATIONS IN BIOLOGICAL

REGULATORY NETWORKS

To illustrate the applications of the concept of transition

probability, we will consider a 3-dimensional system, con-

sisting of two intertwinned negative feedback loops (Fig. 2).

It is inspired by a reduced model of the NF-κB /IκB system

Fig. 2. Network consisting of two negative loops.

(see [10] for more details), where a =[NF-κB]cytoplasm,

b =[IκB], and c =[NF-κB]nucleus. Oscillatory behaviour has

been experimentally observed for this system [9]. A positive

activation x → y will be described by a Heaviside function:

s+(x, θxy) =

{

0, x < θxy

1, x > θxy

and an inhibition x ⊣ y will be described similarly by

s−(x, θxy) = 1 − s+(x, θxy). The model can be written in

the piecewise constant framework as:

ȧ = γa(s−(b, θba) − a)

ḃ = γb(s
+(c, 1) − b) (7)

ċ = γc(Mcas+(a, θa) + Mcbs
−(b, θbc) − c),

where we have assumed, to reduce the number of parameters,

that the maximal values of a and b have been normalized to

1, and that θc = 1. We will assume that the parameters satisfy

the inequalities

0 < θa < 1, 0 < θbc < θba < 1,

0 < Mcb < 1 < Mca. (8)

Under these conditions, variable a has two regions (corre-

sponding to one threshold quantity) and b, c both have three

regions (two threshold quantities). So the state space can be

divided into 18 regions, which can be labelled Bijk, where

i ∈ {0, 1} and j, k ∈ {0, 1, 2}.

We have chosen parameters satisfying conditions (8) be-

cause they imply that system (7) has no stable steady

states but its transition graph has several transition cycles.

For reasons of space we omit the construction of the full

transition diagram and show only the final result (see Fig. 3),

where transient states are not included. Indeed, it can be

easily shown that B002, B110, B111, B120, and B121 are

transient domains, that is, once a trajectory leaves one of

these domains, it will never return to it. Therefore, Fig. 3

represents the asymptotic behaviour of the system. The

transition diagram has five distinct transition cycles in the

sense of Definition 2.1: one cycle of length 6 (c6) and two

cycles each of length 8 (c8a, c8b) and 10 (c10a, c10b). These

are characterized in Definition 5.1. In particular, note that

each of the domains represented in Fig. 3 has at most two

successors, the only domains that admit two successors being

B112, B012, and B021. The method described in Section III

can thus be applied, since hypotheses H1 is satisfied.

Fig. 3. Attractor for the discrete system Σ, representing the asymptotic
behaviour of system (7).

The dynamics of system (7) under condition (8) is thus

expected to exhibit oscillatory solutions following one of the

five transition cycles. Among other results, given a set of

parameters, we would like to predict which cycle is more

likely to be followed by the solutions of the system.

A. Computing transition probabilities

The probabilities of transition associated with each arrow

in the graph of Fig. 3 can be computed according to

Definition 3.2. For the states where only one transition is

possible the probability is, of course, equal to 1. Define

the following new parameters, which represent the relative

distances between thresholds:

B =
1 − θba

1 − θbc
, C =

Mca

1 − Mcb
. (9)

Note that B, C > 1, by assumption on the parameters. Then

the transition probabilities can be easily written in terms of

B and C, and the ratios between degradation rates:

gab =
γa

γb
, gbc =

γb

γc
.

For simplicity of notation, we will abbreviate: P112 ≡
P112→012, P012 ≡ P012→011, and P021 ≡ P021→011.



Proposition 4.1: The probabilities of transition associated

with the graph of Fig. 3 are given by:

P112 =
β − 1
1
θa

− 1
, β = min

{

1

θa
, Bgab

}

;

P021 =
β − 1
1

θbc
− 1

, β = min

{

1

θbc
,

1

Mgbc

cb

}

;

P012 =























1 − 1
(C−1)(B−1)

[

C(Cgbc − 1) − Cgbc+1−1
1+ 1

gbc

]

,

if B > Cgbc

1
C−1

[

1
1+ 1

gbc

B
1+ 1

gbc −1
B−1 − 1

]

, if B < Cgbc ;

P010→000 = 1;

P000→100 = 1.
Proof: For the case 102 → 112 → 122, 012: the rectangle

112 corresponds to a ∈ (θa, 1), b ∈ (θba, θbc) and c ∈
(θc, Mca). The coordinate c is constant throughout these

regions, and the coordinate b strictly decreases along 102 →
112 → 012, so we will take z = a, x = a, and y = b, with

θr
x = θa, H(x) = 1 and θr

y = θbc, H(y) = −1. The result

follows from (6), with z = x. The values of the constants

can be obtained by looking at the equations in box B112:

Mx = 0, My = 1, θ
r+H(x)
x = 1, θ

r+H(y)
y = θba.

For the case 112 → 012 → 022, 011: the rectangle 012

corresponds to a ∈ (0, θa), b ∈ (θba, θbc) and c ∈ (θc, Mca+
Mcb). In the two transitions from 012 the coordinate a
remains constant, so we will take z = a, x = b, and y = c,

with θr
x = θbc, H(x) = −1 and θr

y = θc, H(y) = 1.

So the result follows from (6), with z /∈ {x, y}. To find

the constants, observe that the equations in box B012 are:

ḃ = kb − γbb and ċ = kcb − γcc. Therefore, Mx = 1 and

My = Mcb, and θ
r+H(x)
x = θba, θ

r+H(y)
y = Mca + Mcb.

The other cases can be similarly analysed.

From Proposition 4.1 it follows that there is, in fact, only

one possible transition from 010 and from 000. The transition

graph can thus be simplified, by removing the dashed arrows

in 3.

B. Parameter identifiability and estimation

In the present framework, the working hypothesis is that

the transition probabilities are an output of the system, that

is, they can be experimentally measured. In this example,

there are only three independent probabilities: P112, P012,

and P021, so one may expect to be able to estimate at

most three quantities/functions on the parameters of the

system, including some of the thresholds. The independent

parameters of the system are: θa, θba, θbc, Mca, Mcb, gab,

and gbc. From Proposition 4.1, the parameters that satisfy

any given triple of probabilities can be fully characterized:

Proposition 4.2: Consider a triple of probabilities P112 ∈
(0, 1], P021, P012 ∈ (0, 1). The family of parameters that

satisfy Proposition 4.1 are given by B, C > 1, as given

by (9), and either

F1(B) > max











B
1

gbc − 1,
1

(

P021

B−1 + 1
)

1
gbc − 1











(10)

with

C − 1 = F1(B) =
1

P012

[

1

1 + 1
gbc

B
1+ 1

gbc − 1

B − 1
− 1

]

or

Cgbc − 1 ≤ F2(C) <
P021

(

C
C−1

)gbc

− 1
(11)

with

B − 1 = F2(C) =

1

1 − P012

1

C − 1

[

C(Cgbc − 1) −
Cgbc+1 − 1

1 + 1
gbc

]

For both cases (10) and (11), the other parameters are given

by:

(

B − 1

P021 + B − 1

)
1

gbc

< Mcb <
C − 1

C
, (12)

and

Mca = C(1 − Mcb),

θa

{

= P112

P112+Bgab−1 , P112 < 1

> 1/Bgab , P112 = 1
(13)

θbc

{

= P021

P021+1/M
gbc
cb

−1
, P021 < 1

> Mgbc

cb , P021 = 1
(14)

θba = 1 − B(1 − θbc). (15)

Thus, by measuring probabilities of transition, one may

recover an interval for the ratio B (or C) between the

magnitudes of the thresholds for the variable b. Then the

ratio C follows from the value of B. The values B and C
define an interval for the parameter Mcb. The threshold θa

can be calculated directly from P112 and B; the thresholds

θba and θbc can be calculated from P021, B, and Mbc.

To visualize these conditions, we will consider in more

detail the case of equal degradation rates: gab = gbc = 1. In

this case, the interval defined by (11) is nonempty. The sets

of possible parameters are depicted in Fig. 4.

Corollary 4.3: Assume gab = gbc = 1 and consider a

triple of probabilities P021, P112 ∈ (0, 1], P012 ∈ (0, 1). If

P021 = 1, then the parameters satisfy

B > C > 1, Mcb <
B − 1

2P012 + B − 1
, θbc > Mcb.

If P021 < 1, then there is an nonemtpy set of parameters

only if P021 > 2P012 and

B >
1

1 − P021
, with C = 1 +

B − 1

2P012

and

B − 1

P021 + B − 1
< Mcb <

B − 1

2P012 + B − 1
.

In both cases, Mca = C(1−Mcb) and θa, θbc, θba are given

by (13)-(15).



Fig. 4. Range of values admitted for B and Mcb in terms of P021, in the
case of equal degradation constants. The case P012 = 0.1 is shown.

V. CONTROLLING THE SYSTEM

The attractor on Fig. 3 has 5 different transition cycles,

as indicated at the beginning of Section IV. In this context,

Propositions 4.1 and 4.2 can be used as a guide for choosing

parameters that yield a system with a periodic orbit of a given

length, or passing through desired domains. For instance, it

is clear that setting P021 = 1 prevents a cycle of length

10. Similarly, setting P112 = 1 and choosing a large P012

leads to a high probability of obtainning a length 6 cycle.

Another application of the previous results is to control

system (7) between two cycles, by changing only a small

set of parameters.

A. Predicting the transition cycle

To formalize the idea that the orbit of system (7) follows a

given transition cycle with a certain probability, we will now

assume that the system has a unique stable periodic orbit

and, for each set of parameters, define a predicted transition

cycle.

Definition 5.1: Given any set of parameters, the probabil-

ity that a periodic orbit of system (7) follows one of the

transition cycles is:

P (c6) = P112P012,

P (c8a) = P112(1 − P012)P021,

P (c8b) = (1 − P112)P021,

P (c10a) = P112(1 − P012)(1 − P021),

P (c10b) = (1 − P112)(1 − P021).

The predicted transition cycle to be followed by the periodic

orbit is c̃ such that:

P (c̃) = max{P (c6), P (c8a), P (c8b), P (c10a), P (c10b)}.
Note that the five probabilities add up to 1. Since the

computation of transition probabilities are based on a model,

an immediate question is whether the predicted transition

cycle is a reasonable indication of the actual observed

cycle. Performing simulations by randomly choosing sets

of parameters, shows that the predicted transition cycle is

correct on around 75% of the simulations (see also Fig. 5).

Note that, if P112 = P021 = 1, only the transition cycles c6
or c8a may take place. In this case, P (c6) + P (c8a) = 1

so, if the prediction fails, the predicted probability is simply

1 − P (observed cycle) (this accounts for the distribution of

the red crosses in Fig. 5).

Fig. 5. Probability of the actually observed cycle againtst that of
the predicted transition cycle. Results from 1000 simulations: black dots
represent cases where the predicted cycle coincides with the observed cycle;
red crosses represent the cases where prediction fails.

These simulations also show that length 8 transition cycles

are the most frequent (Fig. 6). The largest discrepancy be-

tween the number of predicted and observed cycles concerns

length 6 and 10 cycles: overall, the transition probability

model predicts 4% more c6 cycles and 4% less c10 cycles

than are observed.

Fig. 6. Histograms of the distribution of transition cycles over 1000
simulations. Dark blue bars represent predicted cycles and light blue bars
represent observed cycles.

B. Controlling the system to a given cycle

Finally, we will use Definition 5.1 in conjunction with

Propositions 4.1 and 4.2 to construct a control that drives

the system to follow a desired cycle. Throughout this section,

it will be assumed that the production rates Mca and Mcb

can be controlled. These can be associated to the “weights”

of each of the negative feedback loops in the dynamics of

the system: note that the system with Mcb = 0 is a single

3-dimensional negative feedback loop. This system has a

unique stable periodic orbit, following cycle c6, as shown

in [4].



Thus, in Propositions 5.2 to 5.4 below it will be assumed

that θa, θba, and θbc are given, and that gab = gbc = 1, for

simplicity. Under this assumption, the parameter B and the

probability P112 are also given.

Proposition 5.2: The predicted transition cycle is of

length 10 if

Mcb >
2θbc

1 + θbc
,

Mca > (1 − Mcb)

(

1 +
B − 1

2

G(Mcb)
1

θbc
− 1

Mcb

)

where

G(Mcb) = max

{

2

θbc
−

1

Mcb
− 1,

P112

1 − P112

(

1

θbc
− 1

)}

,

if P112 < 1 and

G(Mcb) =
2

θbc
−

1

Mcb
− 1, if P112 = 1.

if

The proof follows from Corollary 4.3 by requiring that

P (c10i) > P (c8i) and P (c10i) > P (c6) (i = a, b).
Proposition 5.3: Assume P112 < 1. The predicted transi-

tion cycle is of length 8 if

θbc < Mcb <
2θbc

1 + θbc
,

Mca > (1 − Mcb)

(

1 +
B − 1

2

P112

1 − P112

1
θbc

− 1
1

Mcb
− 1

)

or

Mcb < θbc,

Mca > (1 − Mcb)

(

1 +
B − 1

2
max

{

1

2
,

P112

1 − P112

})

.

If P112 = 1, then the predicted transition cycle is of length

8 if

θbc < Mcb <
2θbc

1 + θbc
, Mca > 1

or

Mcb < θbc, Mca > (1 − Mcb)

(

1 +
1

2

B − 1

2

)

.

The proof is similar to that of Proposition 5.2.

Proposition 5.4: Assume P112 ≤ 1. The predicted transi-

tion cycle is of length 6 if

Mcb < θbc,

Mca < (1 − Mcb)

(

1 +
B − 1

2
min

{

1

2
,

P112

1 − P112

})

.

The proof is again similar to the previous ones, using the fact

that the inequality P (c6) > P (c8a) can only be satisfied if

P021 = 1.

As an numerical example, one of the randomly generated

sets of parameters was:

θa = 0.7513, θba = 0.2551, θbc = 0.6320,

Mcb = 0.6991, Mca = 3.6727. (16)

TABLE I

PROBABILITIES OF TRANSITION

Original set Prop. 5.4 Prop. 5.2

Mcb 0.6991 0.1937 0.9324
Mca 3.6727 1.0064 3.6727

P112 1.0 1.0 1.0
P021 0.7392 1.0 0.1246
P012 0.0457 0.8789 0.0096

P (c6) 0.0457 0.8789 0.0096
P (c8a) 0.7054 0.1211 0.1234
P (c8b) 0.0 0.0 0.0
P (c10a) 0.2489 0.0 0.8670
P (c10b) 0.0 0.0 0.0

The corresponding transition probabilities and each cycle

probabilities are shown in Table I (Original set column). The

predicted transition cycle is c8a, which indeed corresponds

to the observed periodic orbit (see Fig. 7).

To control the system towards a length 6 cycle, we have

used Proposition 5.4. Since P112 = 1, and to guarantee that

Mca > 1, we choose Mcb < min{θbc, 0.95(1− 1/(1+ (B −
1)/4)}, and next set Mca = 0.5 + 0.5 ∗ (1−Mcb)(1 + (B −
1)/4). To control the system towards a length 10 cycle, we

have used Proposition 5.4, choosing Mcb = 0.7 + 0.3 ×
2θbc/(1 + θbc) This consists of increasing the contribution

from the short negative feedback loop. Computing the new

lower bound for Mca shows that the same value for Mca

can be used. The new parameters and transition probabilities

are given in Table I. For both cases, the predicted transition

cycle is correct, as can be seen in Figs. 8 and 9.

Fig. 7. The projection on the plane bc of the periodic orbit of system (7)
with parameters (16), which follows a cycle of length 8. The dashed lines
represent the separatrices σ in domains B

112 and B
021.

VI. CONCLUSIONS AND FUTURE WORK

A notion of transition probability has been introduced to

relate the parameters of piecewise affine systems with the

qualitative dynamics in the corresponding transition graph.

The transition probability depends on the volume of initial

conditions that cross from the current domain to a neigh-

bouring domain, and also on the previous step history of the



Fig. 8. Controlling the system to a periodic orbit that follows a length
6 transition cycle. The projection on the plane bc of the periodic orbit
of system (7) with parameters (16), except Mcb = 0.1937 and Mca =
1.0064.

trajectory. Therefore, this notion of transition probability can

be interpreted as a very rough approximation of a first return

map. Applications of this idea include parameter estimation,

system control by finding sets of parameters that satisfy a

certain qualitative dynamics, and, in the case of systems with

several possible transition cycles, the prediction of the most

likely periodic orbit of the system given a set of parameters.

This study deals only with systems where there are at most

two possible transitions from each hyperrectangle, which is

a very limiting constraint. The generalization of probabilities

for multiple transitions and application to higher dimensional

systems constitute directions for future work.
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