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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52628421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00831798


Estimation of Lifetime Reproductive Success

when reproductive status cannot always be

assessed

L. Rouan, J-M. Gaillard, Y. Guédon, R. Pradel

Abstract The Lifetime Reproductive Success (LRS) of an individual i.e. the
number of young raised during its lifespan is an indicator of its contribution to
future generations and thus a measure of fitness. Nevertheless, the LRS is hard
to estimate because of the difficulty to keep track of the outcome of each breed-
ing attempt (successful or failed and, if successful, number of young raised).
We propose two new methods to estimating the LRS that takes into account
the uncertainty about the reproductive status when the individuals are not de-
tected or when the reproductive status cannot be assessed. We illustrate these
two methods using roe deer reproductive histories and discuss their advantages
and disadvantages.

Keywords: Capture-Recapture, counting algorithm, fitness, generalized Viterbi
algorithm, hidden Markov models

1 Introduction

Lifetime Reproductive Success (LRS) is a commonly used estimate of individual
fitness (Clutton-Brock, 1988; Newton, 1989). It can be defined as the total num-
ber of offspring an individual produces over its entire lifespan after some critical
stage has been successfully passed (e.g. number of weaned young in mammals
or number of fledglings in birds, see Clutton-Brock (1988) for case studies). As
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LRS is a measure of the lifetime reproductive performance of an individual,
its actual calculation supposes the knowledge of the individual’s entire repro-
ductive history. Nevertheless, in wild populations, the exhaustive monitoring
of a large number of individuals over a long time period is difficult; there are
not only problems of detection but also problems in assessing the reproductive
status. For instance, an individual seen during the breeding season could have
produced and/or raised young or not and if it has, the number of its offspring
could be difficult to determine. So, the capture-recapture (CR) data are in-
evitably incomplete. In the absence of established statistical tools, some ”ad
hoc” methods are used and consist of counting only the reproductive events
observed leading thus to a ’minimum LRS’ or of completing the reproductive
histories by assuming that an individual not observed in a given year during the
reproductive season, but captured (or observed) a previous year and captured
(or observed) in a later year has some chance to be an effective breeder (Jensen
et al., 2004). Pradel (2005) proposes a new approach, called multievent models,
to deal with the uncertainty in the breeding states assessment. The specificity
of these models, belonging to the hidden Markov models class (Rabiner, 1989;
Ephraim and Merhav, 2002), lies in the distinction between the (hidden) states
(in our case, the reproductive status) and the ”events” observed and recorded
in the reproductive histories (for example: ’not seen’, ’seen with one offspring’,
’seen during the breeding period’, ...). Thus, contrary to the hypotheses of
the now well established multistate CR models (Arnason, 1973), the underlying
state of a captured individual is not necessarily known for certain i.e. each ob-
servation is potentially linked to several underlying states. Thus, a particular
encounter history can be associated with different sequences of ’hidden states’
(see Figure 1); but which of these has actually generated the sequence of obser-
vations (encounter history)? Answering this question would enable to calculate
the LRS but it is, unfortunately, impossible. So, we suggest in this paper to
estimate the LRS by taking into account all these potential sequences. We
propose two different methods. The first method (Section 3.1) consists in the
actual determination of the potential hidden state sequences in order of proba-
bility of occurrences (’associated probability’). It uses the Generalized Viterbi
Algorithm (Foreman, 1993). To each sequence corresponds a number of young
produced and/or raised and the LRS is estimated as the mean of these numbers
weighted by the associated probabilities. But the calculation of the LRS does
not require the knowledge of the timing of reproduction, only the number of
reproductive episodes is required. So, we present a second method, less expen-
sive in terms of computation time (section 3.2). It is an adaptation to the CR
field of a counting algorithm initially designed for the general framework of the
hidden semi-Markov chains (Guédon, 1999). It does not enable the access to
the underlying states sequences but provides the distribution of the number of
occurences of any underlying state during the animal lifespan and enables us to
estimate the LRS.
Both approaches make use of the common notation and are illustrated with a
common example presented in the following section.
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Events

Breeding
status

Seen with one
offspring

Seen on the
site of

reproduction
Not seen

Breeder with
one offspring

Non Breeder?

Breeder with
one offspring?

Breeder with
two offspring?

...

Non Breeder?

Breeder with
one offspring?

Breeder with
two offspring?

...

Dead?

Figure 1: The events recorded at each capture occasion are potentially linked to
several states. In other words different state sequences can generate the same
encounter history.
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2 Illustrating the two methods using the roe

deer Capreolus capreolus life history

The ’multievent approach’ is based on the differentiation of the observations
made at each capture session and the actual reproductive status of the females.
In other words, as illustrated in Figure 1 we consider two separate stochastic
processes:

• the state process denoted (St)t>0 that describes the succession of the re-
productive statuses;

• the observation process denoted (Ot)t>0 that describes the different ’events’
observed over the study period.

These two processes are linked using what we call, hereafter, the ’observation
probabilities’ or ’conditional event probabilities’. Based on the roe deer life
history, we can distinguish the following different ’events’ (see e.g. Gaillard
et al., 1998):

0: the animal is not seen;

1: the animal is seen without any fawn;

2: the animal is seen with one fawn;

3: the animal is seen with two fawns;

4: the animal is seen with three fawns.

The associated underlying states are:

Non Breeder (NB);

Breeder with one fawn (B1);

Breeder with two fawns (B2);

Breeder with three fawns (B3);

Dead (†).

This defines the event and state sets: Ω = {0, 1, 2, 3, 4} and E = {NB,B1, B2, B3, †}.
It remains to specify the parameters that define the multievent model and ap-
pear in the different algorithms that we propose to estimate the LRS. There are
three kinds of parameters:

1. the transition probabilities:

• φt
ij = P (St+1 = j|St = i), probability of being in state j at t + 1 for

an animal in state i at t;

2. the initial state probabilities
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• πt
i = P (St = i), probability of being in state i when first captured at

t. In the general case, females are initially marked during early life
to be considered as known-aged individuals. For instance, roe deer
are often marked in their first winter at about 8 months of age and
can only be in state ’non breeder’ since the first reproduction is only
possible at 2-year-old (Gaillard et al., 1992). Thus πt

NB = 1.

3. the conditional event probabilities:

• bt
s(o) = P (Ot = o|St = s), probability of event o conditional on cur-

rent state s.

These last parameters can actually be expressed as functions of the familiar
encounter probabilities of the multistate models:

• pt
j , probability to be encountered in site j at time t for an individual

alive and in site j at that time.

For roe deer, we can assume that the uncertainty in assessing the repro-
ductive status is only due to problems of detection i.e. if a female is seen, its
reproductive status corresponds exactly to the observation made in the right
period (September-December) because fawns closely follow their mother during
that period (see Gaillard et al., 2000). So, most of the bt

s(o) are equal to zero.
The only not null parameters are: bt

NB(1) = pt
NB , bt

B1(2) = pt
B1, bt

B2(3) = pt
B2,

bt
B3(4) = pt

B3, bt
j(0) = 1 − pt

j for j ∈ {NB,B1, B2, B3} and bt
†(0) = 1. This

assumption has been made in agreement with our knowlegde about roe deer life
history in order to simplify the statistical model but is not necessary for any
other study. In the general case, two kinds of uncertainty can occur: the lack
of detection at some reproductive attempts and an uncertain determination for
animals detected. Both kinds can be easily accounted for in the two methods
detailed below.

The estimation of these different parameters is the first step, common to our
two approaches, to estimate the LRS.

3 Estimation of the Lifetime Reproductive Suc-

cess

To calculate the LRS, one needs to know the number of offspring an individual
has produced at each reproductive occasion. The first, intuitive, idea is to re-
construct the reproductive life of the individual.
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3.1 Method 1: estimating LRS using the generalized Viterbi

algorithm

3.1.1 Method

Given any observation sequence O = o1o2 · · · oT , the generalized Viterbi algo-
rithm (Foreman, 1993) seeks to find the L (L ≥ 1) most probable underlying
state sequences

{

Si = si
1 si

2 · · · si
T /i = 1, 2, · · · , L

}

maximizing the associated
probability P (S|O). This algorithm has been originally designed for the area of
automatic speech recognition and is adapted to the treatment of homogeneous
Markov chains and observations sequences starting at time t = 1. Its use for
the CR data needs some specific adaptations to:

1. allow for time varying parameters;

2. handle histories starting after date 1;

3. use a stopping criteria based on the cumulative probability of occurrence
i.e. our ’adapted’ generalized Viterbi algorithm doesn’t generate a fixed
number of state sequences but more precisely generates the Lα state se-
quences such that the cumulative probability

∑Lα

i=1 P
(

Si|O
)

reaches a
fixed threshold α. In this way, to obtain all the possible state sequences,
α must be fixed to 1.

3.1.2 LRS estimation

The parameters of the retained model, estimated using program E-SURGE
(Choquet et al., 2007), are used to calculate the different quantities needed
to define the Viterbi algorithm. The second step of this method is to apply
the algorithm to a particular encounter history O thus generating the Lα state
sequences and their associated probability. Finally the LRS is estimated as the
weighted mean of the number of offspring given by the different state sequences:

LRS =

∑Lα

i=1 ni
offspringP

(

Si|O
)

∑Lα

i=1 P (Si|O)

3.1.3 Examples

Let us illustrate this approach using two encounter histories taken from the data
set

1. O1 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 2 2 0 2 2 2 0

2. O2 = 0 0 0 0 0 0 0 0 0 0 0 1 3 2 3 2 0 3 2 2 2 1 0 0 0 0 0 0 0 0

the second one being ’less complete’ than the first in the sense that there are
fewer detection issues (number of 0 after the individual first capture) in O1 than
in O2.
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To illustrate this first method, we have chosen to fix α to one.

The application of our ’adapted’ generalized Viterbi algorithm to O1 provides
the nine following state sequences (in descending order of associated probabil-
ity):

• S1 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 B1 with P
(

S1|O1
)

≈ 0.2228;

• S2 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 B1 with P
(

S2|O1
)

≈ 0.1827;

• S3 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 B1 with P
(

S3|O1
)

≈ 0.1421;

• S4 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 † with P
(

S4|O1
)

≈ 0.1359;

• S5 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 † with P
(

S5|O1
)

≈ 0.1114;

• S6 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 † with P
(

S6|O1
)

≈ 0.0866;

• S7 = NB NB B3 B1 B1 B1 B1 B1 B1 B1 B2 with P
(

S7|O1
)

≈ 0.0482;

• S8 = NB B1 B3 B1 B1 B1 B1 B1 B1 B1 B2 with P
(

S8|O1
)

≈ 0.0395;

• S9 = NB B3 B3 B1 B1 B1 B1 B1 B1 B1 B2 with P
(

S9|O1
)

≈ 0.0307.

Thus, the LRS is estimated as:

LRS1 = 11 × 0.2228 + 12 × 0.1827 + 14 × 0.1421 + 10 × 0.1359 + 11 × 0.1114

+13 × 0.0866 + 12 × 0.0482 + 13 × 0.0395 + 15 × 0.0307

≈ 11.8965

The same method applied to the encounter history O2 generates 492 state
sequences! The ’best’ and ’worst’ sequences with their associated probability
are:

• S1 = NB B2 B1 B2 B1 B1 B2 B1 B1 B1 NB † † † † † † † † with P
(

S1|O2
)

≈
0.6991.

• S492 = NB B2 B1 B2 B1 B1 B2 B1 B1 B1 NB B2 B1 B2 B1 B2 B2 B1
B2 with P

(

S492|O2
)

≈ 6.1806e − 007.

The estimated LRS is, for this second encounter history: 12.7639.
The generalized Viterbi algorithm is thus a reasonable approach to estimate the
LRS but presents some limits in terms of computation time. The number of
reconstructed state sequences is variable depending on the associated encounter
history; the computation time can vary between few seconds like in case of O1

and tens of minutes for O2. However, as the mere calculation of the LRS does not
require the knowledge of the exact sequence of reproductive events but only the
total number of offspring produced and/or raised, we propose another approach
for estimating the LRS, which yields the same estimate as the generalized Viterbi
algorithm with a threshold α = 1 but is much less expensive in computation
time.
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3.2 Method 2: estimating LRS using the counting algo-

rithm

3.2.1 Method

Our general idea to calculate the LRS is to count the occurrences of the breeding
hidden states. More precisely, this counting algorithm determines, giving an en-
counter history O = oeoe+1 · · · oT , the probability P (Nk(T ) = n|oeoe+1 · · · oT )
that an underlying state k has occurred n times (n ∈ {0, 1, 2, · · · , T − e + 2},
e is the date of first capture and T the last capture occasion) by the end of the
study.

Let us so introduce the auxiliary quantities

βt(i, n) = P (St = i,Nk(t) = n,Oe = oe, · · · , Ot = ot) (1)

The quantity βt(i, n) is the unconditional probability that the underlying
state k has occurred n times until the date t and that the underlying state at
this date is i.

The probability P (Nk(T ) = n|oeoe+1 · · · oT ) that the state k occurs n times
can be expressed using these quantities as follows :

P (Nk(T ) = n|oeoe+1 · · · oT ) =

∑N

i=1 βT (i, n)
∑T

n=0

∑N

i=1 βT (i, n)
(2)

The denominator corresponds to the conditioning on the encounter history O.
The counting algorithm corresponds then to the recursive calculation of βt(i, n)
for all t in {0, 1, 2, · · · , T} and n in {0, 1, 2, · · · , t} (see Appendix A) .

3.2.2 LRS estimation

As in the Viterbi algorithm case, the first step is to introduce the estimated
parameters of the retained model in the algorithm. In a second step, applying
it to an encounter history O = oeoe+1 · · · oT , provides for each underlying state
k the probabilities: P (Nk(T ) = n|O) for n in {0, 1, 2, · · · , T} i.e. the distri-
bution of the number of occurrences of each state k.
For each state k, the conditionnal expectancy E [Nk(T )|O] can be interpreted
as the average number of occasions in state k. We can easily show that
∑

all states k E [Nk(T )|O] = T − e + 1 is the number of capture occasions since
the first capture of the individual (see Appendix B). Given these quantities, the
LRS is estimated in this way:

LRS =
∑K

k=1 k × E [NBk(T )|O] where K is the maximum number of off-
spring an individual can produce at each breeding season and Bk corresponds
to the status ”breeder with k offspring”.
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3.2.3 Examples

In our examples, only the states B1, B2 and B3 are interesting, so we will give
only the distributions relative to these particular states.

For the first encounter history O1 of section3.1.3:

n 0 1 2 3 4 5 6 7

P
(

NB1(T ) = n|O1
)

0 0 0 0 0 0 0 0.3015

P
(

NB2(T ) = n|O1
)

0.8815 0.1185 0 0 0 0 0 0
P

(

NB3(T ) = n|O1
)

0 0.7405 0.2595 0 0 0 0 0

n 8 9 10 11
P

(

NB1(T ) = n|O1
)

0.5158 0.1827 0 0

P
(

NB2(T ) = n|O1
)

0 0 0 0

P
(

NB3(T ) = n|O1
)

0 0 0 0

The estimated LRS is so:

LRS1 = 1 × E
[

NB1(T )|O1
]

+ 2 × E
[

NB2(T )|O1
]

+ 3 × E
[

NB3(T )|O1
]

= 1 × 7.8811 + 2 × 0.1185 + 3 × 1.2595

≈ 11.8966

For the second encounter history O2:

n 0 1 2 3 4 5 6

P
(

NB1(T ) = n|O2
)

0 0 0 0 0 0 0.7237

P
(

NB2(T ) = n|O2
)

0 0 0 0.9048 0.0729 0.0151 0.0049
P

(

NB3(T ) = n|O2
)

0.9971 0.0029 0 0 0 0 0

n 7 8 9 10 11 12

P
(

NB1(T ) = n|O2
)

0.1197 0.1095 0.0329 0.0099 0.0030 0.0009

P
(

NB2(T ) = n|O2
)

0.0016 0.0005 0.0002 0.0001 0 0

P
(

NB3(T ) = n|O2
)

0 0 0 0 0 0

n 13 14 15 16 17 18 19

P
(

NB1(T ) = n|O2
)

0.0002 0 0 0 0 0 0

P
(

NB2(T ) = n|O2
)

0 0 0 0 0 0 0
P

(

NB3(T ) = n|O2
)

0 0 0 0 0 0 0

The estimated LRS is so:

LRS2 = 1 × 6.4998 + 2 × 3.1282 + 3 × 0.0029

≈ 12.7649

In the two cases, the counting algorithm provides the same results as the
generalized Viterbi algorithm but with a computation time approaching few
seconds.
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4 Discussion

This article has presented new general methods to estimate Lifetime Reproduc-
tive Success with missing values for some reproductive events (generated either
by a lack of detection or by an uncertain reproductive status). The two meth-
ods provided identical LRS estimates. The main difference between the two
methods lies in the reconstruction or not of the possible reproductive sequences
associated with a given encounter history. The ’Viterbi approach’ is the more
detailed in that it reveals the state sequences associated with the encounter
history and their probability of occurrence. The LRS is then simply calculated
as the weighted average of the numbers of offspring provided by these state
sequences. However, this algorithm can be very expensive in terms of com-
putation time depending on the level of uncertainty of the encounter history.
The counting algorithm only provides the expected distribution of the number
of offspring produced and/or raised over the lifetime. The exact sequence of
reproductive events along the lifetime is not informed using this latter method
but is much faster than the Viterbi algorithm. The counting algorithm seems
thus the most appropriate method to estimate the LRS. However, LRS is just
one measure of single-generation individual fitness, and other single-generation
measurements have been proposed to be better in some situations. For instance,
the ’individual λ’ method (McGraw and Caswell, 1996) accounts for the timing
of reproductive events, which LRS does not (Käär and Jokela, 1998). Although
a recent comparative analysis of fitness measures showed that LRS generally
performs better than ’individual λ’ (Brommer et al., 2004), the latter measure
is likely to be preferred in markedly increasing or decreasing populations when
the timing of reproductive events has a major impact on fitness. By using the
Viterbi algorithm, biologists could not only obtain an estimate of LRS, but also
get estimates of reproductive output at each breeding attempt. Therefore, the
calculation of individual λ, or of the promising measure of individual contri-
butions (Coulson et al., 2006) would be straightforward by using the Viterbi
algorithm. On the other hand, only an estimate of LRS can be obtained using
the counting method.
In conclusion, the counting method we proposed here should allow biologists to
get a way of estimating quickly LRS in a large range of field conditions. By
using the Viterbi method, biologists could even obtain different time-sensitive
and time-insensitive fitness measures. These two methods are currently imple-
mented in MATLAB and will be soon available in program E-SURGE.

5 Appendices

5.1 Appendix A: the counting algorithm

As mentioned above for the adaptation of the generalized Viterbi algorithm, in
capture-recapture studies, probabilities are usually calculated conditionally on
the first capture of the individuals ; so the recursion will begin with t = e.
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1. Initialization

t = e,
i ∈ E,
n ∈ {0, 1},

If i = k,

βe(k, 0) = 0

βe(k, 1) = P (Se = k,Nk(e) = 1, Oe = oe)

= P (Se = k,Oe = oe)

= πe
kbe

k(oe)

Si i 6= k,

βe(i, 0) = P (Se = i,Nk(e) = 0, Oe = oe)

= P (Se = i, Oe = oe)

= πe
i b

e
i (oe)

βe(k, 1) = 0

2. Recursion

t ∈ {e + 1, e + 2, . . . , T},
i ∈ E,
n ∈ {0, 1, 2, · · · , t},

If i = k,

βt(i, n) = P (St = k,Nk(t) = n,Oe = oe, · · · , Ot = ot)

=

N
∑

j=1

P (St = k, St−1 = j,Nk(t − 1) = n − 1, Oe = oe, · · · , Ot−1 = ot−1, Ot = ot)

If i 6= k,

βt(i, n) = P (St = i,Nk(t) = n,Oe = oe, · · · , Ot = ot)

=
N

∑

j=1

P (St = i, St−1 = j,Nk(t − 1) = n,Oe = oe, · · · , Ot−1 = ot−1, Ot = ot)

But, for all time t, all state λ and all number m :

P (St = λ, St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1, Ot = ot)

= P (Ot = ot|St = λ, St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1)
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×P (St = λ, St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1)

= P (Ot = ot|St = λ) × P (St = λ|St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1)

×P (St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1)

= P (Ot = ot|St = λ) × P (St = λ|St−1 = j)

×P (St−1 = j,Nk(t − 1) = m,Oe = oe, · · · , Ot−1 = ot−1)

So :

If i = k,

βt(i, n) =

N
∑

j=1

bt
k(ot)φ

t−1
jk βt(j, n − 1)1[n>0]

= bt
k(ot)

N
∑

j=1

βt−1(j, n − 1)φt−1
jk 1[n>0]

If i 6= k,

βt(i, n) =
N

∑

j=1

bt
i(ot)φ

t−1
ji βt(j, n)

= bt
i(ot)

N
∑

j=1

βt−1(j, n)φt−1
ji

where
{

1[n>0] = 0, if n ≤ 0 (here, if n = 0) ;
1[n>0] = 1, if n > 0.

5.2 Appendix B:
∑

Eall states k [Nk(T )|O] =number of occa-

sions

For any state k and encounter history O = oeoe+1oe+2 · · · oT ,

E [Nk(T )|O] = E

[

T
∑

t=e

1[St=k]|O

]

=
T

∑

t=e

E
[

1[St=k]|O
]

=

T
∑

t=e

P (St = k|O)

Thus,

∑

all states k

E [Nk(T )|O] =
∑

all states k

T
∑

t=e

P (St = k|O)

12



=

T
∑

t=e

∑

all states k

P (St = k|O)

=

T
∑

t=e

1

= T − e + 1
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