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émanant des établissements d’enseignement et de
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Abstract

Polar NURBS surface is a kind of periodic NURBS surface, one boundary of which shrinks to a degenerate polar

point. The specific topology of its control-point mesh offers the ability to represent a cap-like surface, which is

common in geometric modeling. However, there is a critical and challenging problem that hinders its application:

curvature continuity at the extraordinary singular pole. We first propose a sufficient and necessary condition of

curvature continuity at the pole. Then, we present constructive methods for the two key problems respectively:

how to construct a polar NURBS surface with curvature continuity and how to reform an ordinary polar NURBS

surface to curvature continuous. The algorithms only depend on the symbolic representation and operations of

NURBS, and they introduce no restrictions on the degree or the knot vectors. Examples and comparisons demon-

strate the applications of the curvature-continuous polar NURBS surface in hole-filling and free-shape modeling.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Curve, surface, solid, and object representations; Splines

1. Introduction

Most CAD systems and many geometric modeling sys-

tems in computer graphics represent free-form surfaces by

NURBS (non-uniform rational B-splines) and its special

case NUPBS (non-uniform polynomial B-splines). They

have become de facto industrial standards for model rep-

resentation, processing and data exchange [Far97, PT97a].

However, the rectangular parametric domain also has been

pointed out not to be well-suited for capping disc-shaped

circular regions [MP11, SYSP11], which are common in in-

dustrial geometric modeling, for example, the head of an air-

plane, the end of an aerofoil or a screw propeller (see Fig-

ure 1). A natural way to adapt the quadrilateral untrimmed

NURBS surface to a cap-like shape is as follows. First, roll

up the surface and glue two opposite boundary edges to-

gether to form a periodic NURBS surface. Then, shrink a

loop edge to a single polar point as shown in Figure 2. The
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Figure 1: A transitional structure of a mechanical part de-

signed by SolidWorks 2007 in (a). The 14 surface patches in

(a) can be replaced by a single polar NURBS surface in (b).

result is called the polar NURBS surface. It makes up for the

lack of ability of standard NURBS to represent a cap-like

loop-bounded surface. Not only does this specific topology

extend the application of NURBS, but also it preserves the

NURBS form for CAD compatibility. It can be converted

to a standard NURBS by knot-insertion. The conversion is

bidirectional and theoretically free from error. It is also sup-

ported by the industrial standard IGES 5.0 [KR90].

c© 2013 The Author(s)

Computer Graphics Forum c© 2013 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

���	
���������������



K.-L. Shi, J.-H. Yong, L. Tang, J.-G. Sun & J.-C. Paul / Polar NURBS Surface with Curvature Continuity

������

Figure 2: (a) A non-polar periodic NURBS surfaces; (b) A

polar NURBS surface which has triangular fans in a polar

configuration of its control points.

However, at the pole of the polar NURBS surface, there

is still a challenging issue about curvature continuity (G2

continuity), which is essential and sometimes the minimum

standard in geometric modeling such as class-A car-body de-

sign. At an interior point of a polar NURBS surface, the in-

fimum order of parametric continuity, which is determined

by the multiplicity of knots, has nothing different from ordi-

nary periodic NURBS surface. However at the pole, which

is actually a degenerate boundary edge, continuity also de-

pends on the surrounding control points. The polar curvature

of a non-well-formed polar NURBS surface is usually multi-

valued and that violates curvature continuity at the pole (see

Figure 7). This problem prevents the polar NURBS surface

from achieving higher-order continuity in practice. In order

to solve the problem, we analyze the local differential feature

of the singular pole and then propose methods to construct

polar NURBS surfaces with curvature continuity. To be spe-

cific, the contributions of this paper are as follows. For the

polar NURBS surface, we

- propose a sufficient and necessary condition of the polar

curvature continuity;

- present a method to construct the control points that sur-

round the pole to satisfy curvature continuity;

- present a method to reform a non-curvature-continuous

polar NURBS surface to curvature-continuous, preserv-

ing the overall shape of the surface.

Not like other subdivision or spline-based methods, our

work focuses on the relation between curvature continuity

and radial cross-boundary derivatives in the NURBS form.

All the procedures are based on the symbolic representation

and operations of NURBS [PT97b], which introduce no re-

strictions on the input, for example, the degree and the knot

vectors can be arbitrary.

Overview. After reviewing the related work in Section 2

and preliminaries in Section 3, we start from a sufficient and

necessary condition of curvature continuity at the pole in

Section 4. Based on the condition, Sections 5 and 6 then

give a construction method and a reformation algorithm,

respectively. The applications of n-sided hole filling and

free-shape design in Section 7 illustrate the practicability of

the curvature-continuous polar NURBS surfaces in CG and

CAD. Section 8 concludes the paper.

2. Related work

Some methods of shrinking one edge of a NURBS sur-

face to a single point have been proposed since the intro-

duction of NURBS. For example, in Ref. [PT97a] §8.7, a

method was presented to construct a three-sided spherical

surface with one degenerate boundary. Ref. [SYSP10] in-

troduced a polar parametric domain in blending multiple

surfaces around an n-sided region. In Ref. [SYSP11], the

periodic B-spline surface was used to fill n-sided holes.

They assumed that the polar curvature is zero to avoid the

problem of curvature continuity at the pole. Besides the

NURBS form, studies on G2 continuity at the extraordi-

nary vertices have also yielded substantial results by subdi-

vision [KMP06,KP07,Lev06,MP09]. However as discussed

in Ref. [MP11], those subdivision methods do not readily fit

into existing CAD frameworks, and the construction process,

which may consist of an infinite sequence of surfaces, is

unfriendly in further geometric processing such as intersec-

tion and trimming. There are also many methods to generate

curvature-continuous splines from coarse quad meshes, for

example, Hartmut and Prautzsch’s free-form splines [Pra97],

Karčiauskas and Peters’ guided spline surfaces [KP09] and

Reif’s TURBS [Rei98]. Recently, Myles and Peters [MP11]

gave a spline solution to the problem of curvature continuity

for polar configurations in quad-dominant meshes. Their C2

polar spline surface consists of one tensor-product spline of

degree (3,6), which is bi-3 C2 compatible. It is more CAD-

friendly than polar subdivision. However, in real industrial

CAD/CAM applications, we normally cannot limit the knot

vectors, the degrees and the weights to this single pattern,

and moreover, especially for mechanical modeling, the in-

puts are usually trimmed NURBS surface patches instead of

two-manifold quad-dominant meshes. The degrees of the in-

put patches may be different, and therefore the control points

of two adjacent surfaces may not coincide even though they

share the same edge geometrically. From a different aspect,

this paper presents a more adaptive solution especially for

CG/CAD/CAM modeling. The methods are derived from

the symbolic representation of the cross-boundary derivative

curves, which will not be limited by the inconsistent con-

trol meshes, degrees or knot vectors. In implementation, the

symbolic operators can be applicable to both NURBS and

NUPBS without changing the formulae.

3. Definitions

The periodic NURBS surface discussed in this paper is a

NURBS surface that has a periodic knot sequence in only

one parametric coordinate. It can be formulated as follows.

S
w (u,v) = ∑

i, j

Ñi,p(u)N j,q(v)P
w [i, j] (1)

c© 2013 The Author(s)
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Figure 3: The periodic knot sequence in u-direction of the

domain (blue band) and the corresponding basis functions.

Parameter (u,v) is defined in a horizontal band in Euclidean

space (see Figure 3). Pw [i, j] are the control points. In this

paper, the superscript w always denotes four-dimensional

vectors in homogeneous space, and the corresponding nota-

tions without w represent their three-dimensional Euclidean

projections. A pair of square brackets denotes the index of

the control points of NURBS. The B-spline basis functions

Ñi,p(u) and N j,q(v) have the same recursive form with the

standard NURBS in Ref. [PT97a]. The only difference is

that in u-direction, or the so-called periodic direction, the

knot sequence Ũ is infinite and periodic. We denote a com-

plete nondecreasing subsequence of it in one period by U =
{u0,u1, . . . ,um}. In the other direction, the knot sequence

V = {v0,v1, . . . ,vl} is a standard knot vector. Without loss

of generality, we assume u0 = 0, v0 = v1 = . . . = vq = 0,

vl−q = . . .= vl−1 = vl = 1 and the period of Ũ is 1.

The topology of a non-degenerate periodic NURBS sur-

face, as well as its control quads, is usually isomorphic with

a cylindrical surface. It has two opposite periodic bound-

ary edges as shown in Figure 2(a). We can construct a cap-

shaped polar NURBS surface by shrinking a boundary edge

of it to a single degenerate point in the center. The control

mesh of it is in the polar configuration [MP11], which has

triangular fans surrounding the the central pole. Formally,

we denote the pole by P0 = P[i,0] for all valid i. As shown

in Figure 2(b), a polar NURBS surface are isomorphic with

a cap or a disk, and therefore, it can be used to represent

some cap-shaped features, which are usually difficult to be

represented by untrimmed standard NURBS surfaces with

four boundary edges. Figure 1 shows an example.

Further analysis indicates that a p-degree B-spline basis

function is Cp−k continuous at a knot with multiplicity k,

which denotes the number of overlapping knots of the same

value. However the polar NURBS surface has an exception

at the degenerate pole: the polar curvature continuity also de-

pends on the two rings of the surrounding control points be-

sides the multiplicities of the knots. In order to focus on this
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Figure 4: Polar continuity. P[i, j] (i = 0,1, . . . ,5; j = 1,2)

are the control points. The surrounding black arrows show

the radial cross-boundary derivatives. X and Y span the tan-

gent plane τ of the pole P0. T is an arbitrary direction on

the local plane spanned by Du and Dv at parametric point

(u0,0), and the radial curve C(t) is in that direction.

special case and study the relation between polar curvature

continuity and the zeroth-, the first- and the second-order

derivatives determined by these control points, we assume

that the multiplicities of the knots satisfy C2 condition of the

corresponding basis functions.

4. Condition of curvature continuity at the pole

First, we introduce a simplified notation of the derivatives.

Du . . .u
︸ ︷︷ ︸

r

v . . .v
︸ ︷︷ ︸

s

(u) = ∂r+s
S(l,v)

/

∂l
r∂v

s
∣
∣
∣ l=u

v=0

We omit the parameter “(u)” in the following derivation. A

polar NURBS surface S(u,v) has a degenerate isoparametric

curve S(u,0) = P0 for all valid u. At point S(u,0), normal

(G1) continuity requires that all the derivatives T = αDu +
βDv (∀α,β ∈ R) should be on the polar tangent plane τ (see

Figure 4). So there exists a unit normal vector N that satisfies

T ·N = 0. Since P[∗,0] (“∗” denotes all valid indices) shrink

to P0, we have Du ≡ Duu ≡ 0 according to the derivative

formula on the boundary [PT97a]. It follows that N ·Dv = 0.

The NURBS derivative formula also presents that the radial

derivative Dv is a linear combination of the pole and the first

ring of the control points P[∗,1]. So we have the following

sufficient and necessary condition of G1 polar continuity.

Condition 1 The polar NURBS surface is G1 continuous at

the pole if and only if the control points P[i,0] and P[i,1] are

coplanar for all valid i.

Remark. Strictly, this paper only considers ordinary man-

ifolds that have neither overlap, fold or normal flip. We

can simply guarantee this by assuming that ((P[i,1]−P0)×
(P[(i+1) mod n,1]−P0)) ·N > 0, where n is the number of

control points in the periodic direction.

c© 2013 The Author(s)
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For curvature continuity, we first assume P[∗,1] �= P0 to

avoid the degenerate case: Dv = 0. The G1 continuity con-

dition guarantees the existence of two vectors X and Y sat-

isfying Dv(u) = α(u)X+ β(u)Y, where α(u) and β(u) are

scalar functions (see Figure 4). As a manifold without over-

laps, any direction on the polar tangent plane has a unique

corresponding parameter u satisfying that equation. So on

the parametric point (u,0) with the corresponding spatial di-

rection Dv(u), the normal curvature K of the curve C(t) =
S(γ · t+u,δ · t) can be formulated as follows according to the

definition and the expanding rule of the derivative of com-

posite functions.

K(u,γ,δ) =
∂2C(t)/∂t2 ·N

∂C(t)/∂t ·∂C(t)/∂t

∣
∣
∣
∣
∣
t=0

=
γ2Duu ·N+2γδDuv ·N+δ2Dvv ·N

γ2Du ·Du +2γδDu ·Dv +δ2Dv ·Dv
.

Note that we already have Du = Duu = 0. It follows that

Duu ·N = 0, Duv ·N = 0, Du ·Du = 0 and Du ·Dv = 0. So we

have K (u,γ,δ) = (Dvv ·N)
/
(Dv ·Dv). The directional nor-

mal curvature K is a constant at S(u,0). No matter how to

choose γ and δ, the polar curvature K only depends on the

parameter u, as well as the corresponding derivatives Dv(u)
and Dvv(u). That is,

K (u) = (Dvv(u) ·N)
/
(Dv(u) ·Dv(u)). (2)

According to the definition of geometric continuity, a sur-

face is Gk continuous at a specified point if and only if there

exists a reparameterization that can reform the surface to Ck

continuous locally. So the sufficient and necessary condition

of curvature continuity at the pole is that there exists a C2

continuous parametric surface Ŝ(x,y) that osculates the pole

in order two. We suppose that the local frame of the oscula-

tion surface is (P0,X,Y). That is, ∂Ŝ/∂x = X and ∂Ŝ/∂y = Y

at P0. Then, in the spatial direction Dv(u) = α(u)X+β(u)Y,

the directional normal curvature is as follows.

K (u) =
α2 (u)L ·N+2α(u)β(u)M ·N+β2 (u)R ·N

α2 (u)X ·X+2α(u)β(u)X ·Y+β2 (u)Y ·Y
,

(3)

where L = ∂2Ŝ/∂x2, M = ∂2Ŝ/∂x∂y and R = ∂2Ŝ/∂y2 at

P0. The osculation surface is C2 continuous if and only if

the three second-order partial derivatives L, M and R are

unique, respectively. Note that the denominator part equals

Dv(u) · Dv(u), and therefore, combining (2) and the non-

degenerate assumption of Dv(u), we have

α2 (u)L ·N+2α(u)β(u)M ·N+β2 (u)R ·N = Dvv (u) ·N.

We introduce two scalar functions ξ(u) and φ(u) to remove

“·N” in each items. That is,

Dvv (u) = α2 (u)L+2α(u)β(u)M+β2 (u)R+

ξ(u)X+φ(u)Y, (4)

or the equivalent form with three scalars L, M and R

Dvv (u) = (α2 (u)L+2α(u)β(u)M+β2 (u)R) ·N+

ξ(u)X+φ(u)Y. (5)

So we have the following sufficient and necessary condition

of curvature continuity at the pole.

Condition 2 The polar NURBS surface S(u,v) is curvature

continuous at the pole if and only if

1. the surface satisfies the G1 polar continuity condition;

2. with independent vectors X and Y (typically the two

principle directions) satisfying Dv(u) = α(u)X+β(u)Y,

there exist three vectors satisfying (4), or three scalars

satisfying (5).

5. Construction of a polar NURBS surface with

curvature continuity

A (p,q)-degree polar NURBS surface is G2 continuous if it

is a) C2 continuous and b) G2 continuous at the pole. For

the first condition, we only need to ensure that the multi-

plicity of each knot of U is not greater than p− 2 and of V ,

not greater than q−2 (p,q ≥ 3). Besides, as what geometric

modeling systems usually do, we should also ensure that the

control-point mesh has no superposition or flip. Then, the

key problem is to construct the control points to satisfy the

condition of polar curvature continuity.

According to the derivative properties of NURBS on the

boundary, once Pw[∗,0] are fixed, the radial derivative curve

Dv(u) and the first ring of control points Pw[∗,1] are inter-

convertible exactly (see Ref. [PT97a] §4.5, §5.3 and §5.5).

For the same reason, Dvv(u) and Pw[∗,2] are interconvert-

ible once Pw[∗,0] and Pw[∗,1] are fixed. So instead of the

control points, we discuss the first- and the second-order ra-

dial derivatives Dv(u) and Dvv(u) as symbols, since they are

equivalent to the corresponding control points. This sym-

bolic method helps to unify the formulae of NURBS and

NUPBS.

In practice, there are two cases when the pole is pre-

scribed: the first ring of the control points (or Dv(u)) are

specified, or not. For the case that Dv(u) is not given, we

first discuss how to construct Dv(u) to satisfy G1 continu-

ity. We freely specify N, the unit normal vector of the pole.

Then, we choose two linearly independent vectors X and Y

to satisfy X ·N = 0 and Y ·N = 0, which span the tangent

plane τ at the pole (see Figure 4). Condition 1 implies that

Dv(u) = α(u)X+β(u)Y, (6)

where α(u) and β(u) are scalar periodic NURBS functions,

and the constant vectors X and Y also can be treated as one-

degree one-control-point periodic NURBS curves. With the

symbolic operators of addition and scalar multiplication of

NURBS [PT97b], we directly compute the NURBS form of

Dv(u). Its degree is the maximum of the degrees of α(u) and

β(u). The introduction of the symbolic operators here makes

the formulae simple and clear, and it prevents the readers

from being lost in the detailed implementation.

c© 2013 The Author(s)
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α(u) and β(u) can be arbitrary. An ellipse-shaped radial

derivative curve like the one in Figure 4 can be formu-

lated by Dv(u) = cos(u)X + sin(u)Y. Compared with (6),

we choose α(u) ≈ cos(u) and β(u) ≈ sin(u). The quality

of approximation does not interfere with continuity however

only has slight consequences for the shape. So for simplicity,

we usually use a uniform knot vector and the same weight

of control points to construct α(u) and β(u). For example,

the control points of α(u) and β(u) can be {0,1,0,−1}
and {1,0,−1,0}, respectively. More strictly, the trigono-

metric functions can be exactly represented by NURBS af-

ter the following reparameterization: sin(u) = 2t/(1 + t2),
cos(u) = (1 − t2)/(1 + t2) where t = tan(u/2) (see Ref.

[PT97a] §7.5). Of course, Dv(u) also can be designed man-

ually satisfying Condition 1. Backwardly, α(u) and β(u) are

retrieved from Dv(u) (or indirectly from the first ring of con-

trol points). Once Dv(u), X and Y are determined, we have

α[i]X+β[i]Y = Dv[i] for each control point with index i. It

follows that [α[i],β[i],0]t = [XYN]−1Dv[i]. Both α(u) and

β(u) share the same degree, weights and knots with Dv(u).

Then we discuss the construction of Dvv(u) assuming

that Dv(u) (or Pw[∗,1]) has been determined. Condition 2

gives the construction formulae (4) and (5), where ξ(u) and

φ(u) are arbitrary scalar periodic NURBS curves. They in-

volve the symbolic operations of addition, inner product and

scalar multiplicity of NURBS [PT97b], and the final result

of Dvv(u) still preserves the NURBS form. Its degree is the

maximum of the twice of the degree of Dv(u), the degree

of ξ(u) and the degree of φ(u). Note if {X,Y,N} form an

orthonormal basis, (3) can be reduced to the following equa-

tion by assuming that M = 0.

K(u) =
α2(u)L+β2(u)R

α2(u)+β2(u)
.

At a prescribed parametric point u, the curvature K(u) is a

positive combination of L and R. In non-degenerate cases,

the continuous curves α(u) and β(u) have different zero

points. So the assumption of M ensures that L and R are

the maximum and the minimum of the curvature function

K(u), which are the so-called principle curvatures, respec-

tively. Thus, we can use that formula to construct Dvv(u) by

principle curvatures. For ξ(u) and φ(u), we usually first ig-

nore them in the construction of Dvv(u), and then move the

control points of Dvv(u) along the tangent plane spanned by

X and Y. This method assumes that ∆(u) = ξ(u)X+φ(u)Y

shares the same degree, weights and knot vector with Dvv(u).
So the addition of ∆(u) to Dvv (u) can be reduced to point-

wise additions of the control points.

Once P0, Dv(u) and Dvv(u) are determined, the three cen-

tral rings of control points can be constructed according to

the derivative formulae of NURBS surface on the bound-

ary [PT97a]. In practice, the radial derivatives are usually

polynomial (for example, n-sided hole filling), and in these

cases, the conversion algorithm from radial derivative curves

to control points can be as simple as follows.
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Figure 5: The flow chart of the construction method.

- Form a one-degree periodic NURBS curve Do(u) with

only one control point P0.

- Elevate the degrees of the curves Do(u), Dv(u) and

Dvv(u) to the maximum degree of them, denoted by p.

- Compute the union of the knot vectors of the three ra-

dial derivative curves, denoted by Ū , and then ensure they

share the same knot vector Ū by knot refinement (so the

numbers of control points are also the same).

- For the kth ring of the control points of the surface, we

use the same weight wk. For each column i, the three con-

trol points P[i,0], P[i,1] and P[i,2], as well as the corre-

sponding weights w0, w1 and w2, form the starting part

of a NURBS curve with degree q and knot vector V that

come from the radial direction of the polar NURBS sur-

face. Then, the three control points can be solved by Her-

mite interpolation using Do[i], Dv[i] and Dvv[i] as bound-

ary conditions at v = 0.

The entire construction process is summarized in Figure 5.

Our method employs the Hermite interpolation algorithm of

NURBS surface, which aims to compute the control points

of the result surface column by column, with the control

points of the specified cross-boundary derivatives. If Dv(u)
and Dvv(u) are rational, the formulae in the last step will be

more complicated in implementation. We do not discuss the

details of it here since it is a fundamental operation of con-

struction of NURBS surface [PT97a].

6. Reforming an ordinary polar NURBS surface to

curvature continuous

The reformation algorithm aims to achieve curvature conti-

nuity at the pole by moving the control points locally. First

we assume that the pole P0 and the first ring of the con-

trol points are coplanar so that G1 continuity is guaranteed

according to Condition 1. If not, we only need to project
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the control points onto an estimated polar tangent plane. So

the local frame {X,Y,N} at the pole can be constructed by

choosing two independent vectors X and Y that are perpen-

dicular to the polar unit normal vector N. Then, Dv(u) and

Dvv(u), as well as α(u) and β(u), can be retrieved from

the three central rings of the control points. We decom-

pose Dvv(u) into two orthogonal parts: the scalar normal part

Dvv(u) and the tangential part ∆(u). That is,

Dvv(u) = Dvv(u) ·N+∆(u), ∆(u) ·N ≡ 0. (7)

The NURBS curves Dvv(u) and ∆(u) share the same de-

gree, weights and knot vector with Dvv(u), and pointwise,

Dvv[i] = Dvv[i] ·N and ∆[i] = Dvv[i]−Dvv[i] ·N for all valid

i. Compared with (5), the surface is curvature continuous if

and only if there exist three scalar functions satisfying

Dvv(u)≡ α2(u)L+2α(u)β(u)M+β2(u)R. (8)

(8) is an alternative form of (5) in Condition 2. A randomly

constructed polar NURBS surface usually fails to achieve

curvature continuity because this equation can be rarely sat-

isfied without careful construction of the second-order radial

derivative curve Dvv(u).

The satisfaction of (8) depends on all valid u. Fortunately,

the NURBS form of the scalar functions allows this problem

to be converted to finite times of verification of the following

equation about the control points.

Dvv[i] = (α2)[i] ·L+2(αβ)[i] ·M+(β2)[i] ·R,∀i, (9)

where the NURBS functions Dvv, (α2), (αβ) and (β2) share

the same degree, weights and knot vector after degree eleva-

tion, knot refinement and uniformization of denominators.

Dv(u) of an ordinary surface has at least three independent

control points (or, the surface will be ill conditioned). So the

number of rows of the linear system (9) is no less than the

number of the unknowns (L, M and R). Thus, the surface is

curvature continuous at the pole if and only if the linear sys-

tem has a unique solution (where all equations are satisfied).

Otherwise, the overdetermined system only has a least-

square solution {L̄,M̄, R̄} by Moore-Penrose pseudoinverse

[Moo20], and that gives an approximation to the discontin-

uous pole. Substitute them to (8) and then to (7), we can

construct Dvv(u) to satisfy polar curvature continuity. The

final control points can be computed as the previous section.

A shortcoming of this method is the introduction of degree

elevation and knot insertion, which may cause the increment

of the number of control points. However this is necessary

if we need to exactly preserve the control points of the first

ring, as well as the pole. Otherwise, we should simplify α(u)
and β(u) before the computation of (8). Furthermore, if we

want to preserve the number of the control points of the orig-

inal surface, as well as their weights and knot vectors, it is

also practical to slightly move the control points of the sec-

ond ring to fit Dvv(u) to the ideal Dvv(u) that satisfies po-

lar curvature continuity. Both these fitting and simplification
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Figure 6: Curvature continuous polar NURBS surfaces.

They have (a) ellipsoidal, (b) saddle and (c)(d) spherical

poles, respectively. The red curves are the first order ra-

dial directive curves Dv(u). The Gaussian curvature charts

in (a), (b) and (c) show their continuity.

methods may introduce an error. The choice of strategy de-

pends on the application and the balance between precision

and simplicity. We do not expand the very details here since

they are surely beyond the limit of this paper.

7. Examples and applications

We first present examples of the results by our method. The

constructive method proposed in Section 5 is used to gener-

ate free-shape surfaces. Figure 6 demonstrates three cases,

which have an ellipsoidal (two different principle curva-

tures with the same sign), a saddle (principle curvatures with

different signs) and a spherical (same principle curvatures)

pole, respectively. The curvature charts illustrate the smooth-

ness and continuity of the shape. In order to ensure C2 con-

tinuity in the periodic direction, the first-order radial deriva-

tive curves are cubic. So the degrees of the final surfaces are

all (6, 3), which are acceptable in CG and CAD.

In Figure 7, we reform a non-G2 polar NURBS surface to

G2 continuous. The algorithm uses the pole and the first ring

of the control points to derive the zeroth- and the first-order

radial derivative curves. The second-order radial derivative

curve is then constructed according to (7) and (8). After en-

suring the consistence of the degree and the knots of it with

the periodic direction of the surface, the new positions of the

control points of the second ring are then solved. In this case,

the degree of the first-order radial derivative curve can be re-

duced to 3. Formula (8) doubles it to 6, so the final surface

has degree 6 in the periodic direction.
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Figure 7: Reforming a non-G2 polar NURBS surface to

G2. (a) shows the control points of the original discontinu-

ous surface, while (b) presents its Gaussian curvature chart.

Note that around the pole, the Gaussian curvatures converge

to different values in different directions. (c) shows the con-

trol points of the reformed surface. The blue dots are the

original control points before moving, and the red curve rep-

resents the first-order radial derivative. The Gaussian curva-

ture chart in (d) illustrates its G2 continuity.

Our G2 cap-like surface is also proved to be a powerful

tool in filling holes, which aims to provide one or more sur-

face patches to interpolate the hole’s boundary and cross-

boundary derivatives with continuity constraints. For ex-

ample, a recent work [SYSP11] used a polar NURBS sur-

face to cap a hole that has a loop-shaped boundary. This

method avoids the trimmed domain and is more CAD-

friendly than the other methods based on blending or sub-

division [GLZ90, NSY09, Rei98, SYSP10]. However it also

suffers from the problem of polar curvature continuity. As

a practical application, the following example demonstrates

how our method solves this continuity problem. In Figure 8,

we combine the methods in [SYSP11] and in this paper to

generate a G2 polar NURBS surface that contacts the spec-

ified five boundary surfaces with curvature continuity. We

achieves the curvature continuous pole with non-zero Gaus-

sian curvature compared to the artificial flat pole by their

method. Figure 9 shows a mechanical model in which we

fill the hole of the rounded tip of each propeller blade with a

single G2 polar NURBS surface. The boundary of the hole,

which is reconstructed from sectional views, is a quartic

NURBS curve that has non-uniform knots to represent the

sharp feature of the blade.
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Figure 8: Capping a loop-shaped five-sided hole with a G2

continuous periodic NURBS surface. (a) shows the control

points of the boundary surfaces (chromatic) and the filling

surface (white), respectively; the Gaussian curvature chart

in (b) presents G2 continuity; the following comparison is

between our algorithm (c) and Ref. [SYSP11] (d).
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Figure 9: The tip of each blade of the propeller in (a) is

filled with a single G2 polar NURBS surface (see the contin-

uous reflection stripes in (c)) which has non-uniform knots in

the periodic direction (denser near the sharp part), (40×6)
control points (c) and degrees (8,5).

In particular, the zeroth-, the first- and the second-order

periodic cross-boundary derivatives Bh(u) (h = o,v,vv)

are first constructed by joining the cross-boundary deriva-

tives from each boundary surfaces after reparameteriza-

tion [SYSP11]. Then we estimate the central point O and the

central normal vector N by the original algorithm. As sim-
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ply as we can, we form the first-order radial derivative curve

Dv(u) in periodic NURBS using the same degree and knot

vector with the boundary Bo(u). After that, we estimate the

control points of Dv(u) to achieve a better shape. For each

control point of Dv(u), we project the corresponding control

point of Bo(u) onto the polar tangent plane, and let it be the

vector from O to the projection point. That is,

Dv[i] = (Bo[i]−O)− ((Bo[i]−O) ·N) ·N, (10)

for all valid i. After choosing an arbitrary orthonormal ba-

sis {X,Y,N}, we can retrieve the scalar functions α(u) and

β(u), which have the same degree, weights and knot vector

with Dv(u). The three parameters L, M and R can be speci-

fied or estimated by finding a least-square fitting to the nor-

mal curvatures of each parabola through Bo[i], Bτ
o[i] and O.

That is, K[i] = 2((Bo[i]−O) ·N)/(Dv[i] ·Dv[i]). According

to the formula of directional curvature (3), we simply have

the following linear system of L, M and R.

K[i](α[i]+β[i])2 = α[i]2 ·L+2α[i]β[i] ·M+β[i]2 ·R,

for all valid i. Use Moore-Penrose pseudoinverse to get the

least-square solution {L̄, M̄, R̄} and then construct Dvv(u)
as the previous section. After degree elevation and knot re-

finement to ensure the consistence of the curves of boundary

conditions Dh(u) and Bh(u) (h = o,v,vv), we can generate

the final surface by the method in Ref. [SYSP11].

The algorithm in Ref. [SYSP11] assumes the zero polar

curvature to guarantee polar curvature continuity. It leads to

a flat region at the pole and a high-curvature area around the

pole (see Figure 8(d)). The comparison of the distribution of

Gaussian curvature illustrates that the non-flat pole improves

the quality (smoothness) of the surface. Note the control

meshes of the boundary surfaces may not coincide with the

filling surface although they share the same boundary geo-

metrically. This is common in NURBS surface modeling for

two possible reasons: 1) different degrees of NURBS, and

2) different parameterization. The final surface is friendlier

to CAD since periodic NURBS surfaces are interconvertible

with standard NURBS exactly (the control points in all fig-

ures are of the corresponding standard NURBS).

8. Conclusion

We proposes a sufficient and necessary condition of curva-

ture continuity at the pole of a polar NURBS surface. Based

on that criterion, we present two constructive algorithms to

generate a polar NURBS surface with curvature continuity

and to reform a polar NURBS surface to be curvature contin-

uous. These methods focus on more general cases compared

to [MP09,MP11] since for our methods, there are no limita-

tions on the degree, the knot vector, as well as the weights,

of the input data. Formulation in this paper only involves

the symbolic representation and operations of NURBS rather

than control points or subdivision formulae. Besides, a polar

NURBS surface can be directly and precisely converted to

standard NURBS without elevating the degree or introduc-

ing a tolerance. The methods are compatible with existing

CAD/CAM systems.
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[KP07] KARČIAUSKAS K., PETERS J.: Bicubic polar subdivi-
sion. ACM Transactions on Graphics 26, 4 (Oct. 2007), 14:1–
14:8. 2
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