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Abstract. In a seminal work at EUROCRYPT ’96, Coppersmith showed how to find all
small roots of a univariate polynomial congruence in polynomial time: this has found many
applications in public-key cryptanalysis and in a few security proofs. However, the running
time of the algorithm is a high-degree polynomial, which limits experiments: the bottle-
neck is an LLL reduction of a high-dimensional matrix with extra-large coefficients. We
present in this paper the first significant speedups over Coppersmith’s algorithm. The first
speedup is based on a special property of the matrices used by Coppersmith’s algorithm,
which allows us to provably speed up the LLL reduction by rounding, and which can also
be used to improve the complexity analysis of Coppersmith’s original algorithm. The exact
speedup depends on the LLL algorithm used: for instance, the speedup is asymptotically
quadratic in the bit-size of the small-root bound if one uses the Nguyen-Stehlé L2 algo-
rithm. The second speedup is heuristic and applies whenever one wants to enlarge the root
size of Coppersmith’s algorithm by exhaustive search. Instead of performing several LLL
reductions independently, we exploit hidden relationships between these matrices so that
the LLL reductions can be somewhat chained to decrease the global running time. When
both speedups are combined, the new algorithm is in practice hundreds of times faster for
typical parameters.

Keywords: Coppersmith’s Algorithm, Small Roots of Polynomial Equations, LLL, Com-
plexity, Speedup, RSA.
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1 Introduction

At EUROCRYPT ’96, Coppersmith [7, 6, 8] showed how to find efficiently all
small roots of polynomial equations (modulo an integer, or over the integers).
The simplest (and perhaps most popular) result is the following: Given an in-
teger N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of de-
gree δ , Coppersmith’s lattice-based algorithm finds all integers x0 ∈ Z such that
f (x0) ≡ 0 (mod N) and |x0| ≤ N1/δ in time polynomial in logN and δ . This
has many applications in public-key cryptanalysis (e.g. attacking special cases
of RSA and factoring with a hint), but also in a few security proofs (such as
in RSA-OAEP [22]). Accordingly, Coppersmith’s seminal work has been fol-
lowed up by dozens of articles (see May’s survey [14] for references), which
introduced new variants, generalizations, simplifications and applications.

All these small-root algorithms are based on the same idea of finding new
polynomial equations using lattice basis reduction: it reduces the problem of
finding small roots to finding LLL-short vectors in a lattice. This can theoret-
ically be done in polynomial time using the LLL algorithm [13], but is by no
means trivial in practice: the asymptotic running time is a high-degree poly-
nomial, because the lattice is huge. More precisely, May’s recent survey [14]
gives for Coppersmith’s lattice-based algorithm the complexity upper bound
O(δ 5 log9 N) using the Nguyen-Stehlé L2 algorithm [18] as the reduction al-
gorithm. A careful look gives a slightly better upper bound: asymptotically, one
may take a matrix of dimension O(logN), and bit-size O((log2 N)/δ ), resulting
in a complexity upper bound O((log9 N)/δ 2) using L2. In typical applications, δ

is small ≤ 9 but logN is the bit-size of an RSA modulus, i.e. at least 1024 bits,
which makes the theoretical running time daunting: log9 N is already at least
290. For more powerful variants of Coppersmith’s algorithm, the running time
is even worse, because the lattice dimension and/or the bit-size increase: for
instance, Coron [9] gives the upper bound O(log11W ) for finding small roots
over bivariate equations over the integers (W plays a role similar to N in the
univariate congruence case), using L2.

The bottleneck of all Coppersmith-type small-root algorithms is the LLL re-
duction. Despite considerable attention, no significant improvement on the run-
ning time has been found, except that LLL algorithms have improved since [8],
with the appearance of L2 [18] and L̃1 [20]. And this issue is reflected in ex-
periments (see [10]): in practice, one settles for sub-optimal parameters, which
means that one can only find small roots up to a bound lower than the asymptotic
bound. To illustrate this point, the celebrated Boneh-Durfee attack [1] on RSA
with short secret exponent has the theoretical bound d ≤ N1−1/

√
2 ≈ N0.292, but



the largest d in the Boneh-Durfee experiments is only d ≈N0.280 with a 1000-bit
N, and much less for larger N, e.g. d ≈ N0.265 for 4000-bit N.

OUR RESULTS. We present two speedups over Coppersmith’s algorithm for
finding small roots of univariate polynomial congruences, which can be com-
bined in practice.

The first speedup is provable and depends on the LLL algorithm used: if
one uses L2 [18], the total bit-complexity is upper bounded by O(log7 N), which
gives a speedup Θ((log2 N)/δ 2) quadratic in the bit-size of the small-root bound
N1/δ ; and if one uses L̃1, the total complexity is upper bounded by O(log6+ε N)
for any ε > 0 using fast integer arithmetic, which gives a speedup O((logN)/δ )
linear in the bit-size of the small-root bound N1/δ . This speedup comes from
combining LLL reduction with rounding: instead of LLL-reducing directly a
matrix with huge entries, we suitably round the coefficients before LLL re-
duction to make them much smaller, and show that the LLL output allows to
derive sufficiently short vectors in the original lattice. In practice, this means
that for any instantiation of Coppersmith’s algorithm achieving a small-root
bound X , we can drastically reduce the size of the coefficients of the matrix
to be LLL-reduced and achieve essentially the same small-root bound: asymp-
totically, the bit-size is reduced by a factor (logN)/δ , which implies that the
speedup is quadratic when using the popular L2 algorithm, or quasi-linear using
the more theoretical L̃1 algorithm. This rounding strategy is very natural, but it
is folklore that it fails in the worst case: when an arbitrary non-singular matrix
is rounded, it may even become singular, and the situation is worse for LLL
reduction. However, we show that a well-chosen rounding strategy surprisingly
works for the special matrices used by Coppersmith’s algorithm: this is because
the matrices to be reduced are triangular matrices whose diagonal entries are
reasonably balanced, which can be exploited. Interestingly, this peculiar prop-
erty can also be used to improve the complexity upper bound of Coppersmith’s
original algorithm, without changing the algorithm: if one uses L̃1 [20], one can
obtain the same complexity upper bound as in our rounding-based algorithm,
up to constants.

Our second speedup is heuristic and applies whenever one wants to enlarge
the root size X of Coppersmith’s algorithm by exhaustive search: it is well-
known that any root size X can be extended to mX by applying m times the
algorithm on “shifted” polynomials. This enlargement is necessary when one
wants to go beyond Coppersmith’s bound N1/δ , but it is also useful to optimize
the running time below N1/δ : beyond a certain root size below N1/δ , it is folk-
lore that it is faster to use exhaustive search than Coppersmith’s algorithm with
larger parameters. In this setting, one applies Coppersmith’s algorithm with the
same modulus N but different polynomials which are all “shifts” of the initial



polynomial f (x): ft(x) = f (X · t + x) for varying t, where 0 6 t < N1/δ/X . We
show that this creates hidden relationships between the matrices to be LLL re-
duced, which can be exploited in practice: instead of performing LLL reductions
independently of say, matrices B1 and B2, we chain the LLL reductions. More
precisely, after LLL reducing B1 into a reduced basis C1, we reduce a matrix of
the form C1×P for some well-chosen matrix P, instead of the matrix B2. And
this process can be iterated to drastically reduce the global running time.

When both speedups are combined, the new algorithm is in practice hun-
dreds of times faster for typical parameters. Finally, our work helps to clarify
the asymptotic complexity of Coppersmith’s algorithm for univariate polyno-
mial congruences. Despite the importance of the algorithm, it seems that the
dependence on the polynomial degree δ was not well-understood: as previously
mentioned, May’s survey [14] gave an upper bound including a factor δ 5, and
Coppersmith’s journal article [8] gave an upper bound growing exponentially in
δ . Our final complexity upper bound is independent of δ : it only depends on the
bit-size of the modulus N.

Surprisingly, our improvements only apply for now to Coppersmith’s algo-
rithm for finding all small roots of polynomial univariate equations, and not to
more sophisticated variants such as the gcd generalization used for factoring
with a hint. This seems to be the first significant difference between Copper-
smith’s algorithm and its gcd generalization. It is an interesting open problem
to obtain significant speedup for other small-root algorithms.

RELATED WORK. Our first speedup is based on rounding. Rounding has been
used in lattice reduction before: for instance, Buchmann [2] used rounding to
rigorously estimate when a computation with real lattices can be alternatively
performed using integer bases; and the L̃1 [20] algorithm is also based on round-
ing. However, it seems that none of the previous work identified the special
structure of matrices which we exploit. Our second speedup is based on chain-
ing. Chaining has also been used in lattice reduction before, e.g. in the MIMO
context [15], but our technique and analysis seem to be a bit different. Thus,
both rounding and chaining are folklore strategies, but our work seems to be
their first application to Coppersmith’s algorithm.

ROADMAP. In Sect. 2, we recall background on lattices and Coppersmith’s
small-root algorithm. In Sect. 3, we present and analyze our first speedup of
Coppersmith’s algorithm: rounding LLL. In Sect. 4, we present and analyze
our second speedup of Coppersmith’s algorithm: chaining LLL. In Sect. 5, we
present experimental results with both speedups. Finally, we discuss the case of
other small-root algorithms in Sect. 6.



We refer the reader to the full Eprint version of this paper for further details,
especially for all missing proofs.

2 Background and Notation

We use row representation for matrices: vectors are row vectors denoted by
bold lowercase letters, matrices are denoted by uppercase letters, and their co-
efficients are denoted by lowercase letters. All logarithms are in base 2. Let ‖‖
and 〈,〉 be the Euclidean norm and inner product of Rn. The Euclidean norm
is naturally extended to polynomials as follows: if f (x) = ∑

n
i=0 fixi ∈ R[x], then

‖ f‖ = (∑0≤i≤n f 2
i )

1/2. We use the following matrix norms: if M = (mi, j) is an
n×m matrix, then ‖M‖2 = max‖x‖6=0

‖xM‖
‖x‖ , and ‖M‖∞ = max1≤ j≤m ∑

n
i=1 |mi, j|.

Then: ‖M‖2 ≤
√

n‖M‖∞. If x ∈ R, we denote by dxc a closest integer to x.

2.1 Lattices

LATTICES. A lattice L is a discrete subgroup of Rm: there exist n(≤ m) linearly
independent vectors b1, . . . ,bn ∈ Rm s.t. that L is the set L (b1, . . . ,bn) of all
integral linear combinations of the bi’s. Here, we mostly consider full-rank lat-
tices, i.e. n = m. The (co-)volume of L is vol(L) =

√
det(BBt) for any basis B of

L, where Bt denotes B’s transpose. If B is square, then vol(L) = |detB|, and if B
is further triangular, then vol(L) is simply the product of the diagonal entries of
B in absolute value.

GRAM-SCHMIDT ORTHOGONALIZATION. Let b1, · · · ,bn ∈Rm be linearly inde-
pendent vectors. The Gram-Schmidt orthogonalization is the family (b?

1, . . . ,b?
n)

defined recursively as: b?
1 = b1 and for i ≥ 2, b?

i is the component of the vec-
tor bi which is orthogonal to the linear span of b1, · · · ,bi−1. Then b?

i = bi−
∑

i−1
j=1 µi, jb?

j , where µi, j = 〈bi,b?
j〉/‖b?

j‖2 for 1≤ j < i≤ n.

SIZE-REDUCTION. A basis B=(b1, · · · ,bn) is size-reduced if its Gram-Schmidt
orthogonalization satisfies |µi, j| ≤ 1/2, for all 1 ≤ j < i ≤ n. There is a classi-
cal (elementary) algorithm which size-reduces a basis (b1, . . . ,bn) of an integer
lattice L ⊆ Zm, in polynomial time, without ever modifying the Gram-Schmidt
vectors b?

i : this algorithm is included in the original LLL algorithm [13] (e.g.
it is the sub-algorithm RED in the description of LLL in [4]). In the special
case that the input basis is (square) lower-triangular, the running-time of this
size-reduction algorithm is O(n3b2) without fast integer arithmetic, and n3Õ(b)
using fast-integer arithmetic, where b = max1≤i≤n log‖bi‖.

LLL AND SHORT LATTICE VECTORS. Coppersmith’s small-root method re-
quires the ability to efficiently find reasonably short vectors in a lattice. This



can be achieved by the celebrated LLL algorithm [13] which outputs a non-
zero v ∈ L s.t. ‖v‖ ≤ 2

n−1
4 vol(L)1/n. Nguyen and Stehlé [18] introduced the L2

algorithm, a faster variant of LLL which can output similarly short vectors in
time O(n4m(n+ b)b) without fast integer arithmetic. The recent L̃1 algorithm
by Novocin et al. [20] can output similarly short vectors for a full-rank lattice in
time O(n5+εb+nω+1+εb1+ε) for any ε > 0 using fast integer arithmetic, where
ω ≤ 2.376 is the matrix multiplication complexity constant. However, this algo-
rithm is considered to be mostly of theoretical interest for now: L̃1 is currently
not implemented anywhere, as opposed to L2. When assessing the complexity
of LLL reduction, it is therefore meaningful to mention two complexities: one
(closer to the real world) using L2 without fast integer arithmetic, and another
using L̃1 using fast integer arithmetic and fast linear algebra.

The complexity upper bound of LLL reduction can sometimes be decreased
by some polynomial factor. In particular, when the Gram-Schmidt norms of the
input basis are balanced, the LLL algorithm requires fewer loop iterations than
in the worst case. More precisely, [11, Th. 1.1] showed that the classical upper
bound O(n2b) on the number of iterations can be replaced by O

(
n2 log max‖b?

i ‖
min‖b?

i ‖

)
.

2.2 Coppersmith’s method for finding small roots

At EUROCRYPT ’96, Coppersmith [7, 6, 8] showed how to find efficiently all
small roots of polynomial equations (modulo an integer, or multivariate over
the integers), which is surveyed in [14, 16]. We now review the simplest result,
following the classical Howgrave-Graham approach [12]: In Sect. 6, we will
discuss the main variants of this result.

Theorem 1 (Coppersmith [7, 8]). There is an algorithm which, given as input
an integer N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of
degree δ and coefficients in {0, . . . ,N−1}, outputs all integers x0 ∈ Z such that
f (x0)≡ 0 (mod N) and |x0| ≤ N1/δ in time polynomial in logN and δ .

In all the paper, we consider polynomials verifying 2 < δ +1 < (logN)/2 since
other cases are trivial. Furthermore, Coppersmith’s algorithm does not directly
achieve the bound N1/δ : indeed, it finds efficiently all roots up to some bound
X (< N1/δ ) depending on an integer parameter h≥ 2, chosen asymptotically to
be h = O((logN)/δ ). When h is sufficiently large, then X becomes sufficiently
close to N1/δ so that one can find all roots up to N1/δ . However, it is well-
known that the bound X = N1/δ should not be reached by taking such a large
h. Instead, it is faster to use a smaller h, and perform exhaustive search on the
most significant bits of the solutions (see Section 4 for more details).

We now explain Coppersmith’s algorithm. The core idea consists in reduc-
ing the problem to solving univariate polynomial equations over the integers, by



transforming modular roots into integral roots. More precisely, it constructs a
polynomial g(x) ∈ Z[x] such that: if x0 ∈ Z is such that f (x0) ≡ 0 (mod N) and
|x0| ≤ X , then g(x0) = 0 and can be solved easily over Z. To do so, it uses the
following elementary criterion:

Lemma 1 (Howgrave-Graham [12]). Let g(x) ∈ Z[x] be a polynomial with at
most n non-zero coefficients. Let M be an integer ≥ 1. Assume that ‖g(xX)‖ <
M√

n for some X ∈ R. If x0 ∈ Z is such that g(x0)≡ 0 (mod M) and |x0| ≤ X, then
g(x0) = 0.

Lemma 1 will be used with M = Nh−1 and g(x) found by lattice reduction. Let
h≥ 2 be an integer and define the following family of n = hδ polynomials:

gi, j(x) = (x) jNh−1−i f i(x) 0≤ i < h,0≤ j < δ (1)

These n polynomials satisfy: if f (x0)≡ 0(modN) for some x0 ∈Z, then gi, j(x0)≡
0 (mod Nh−1). In order to apply Lemma 1 for a bound X ≥ 1 to be deter-
mined later, Coppersmith’s algorithm constructs the n-dimensional lattice L
spanned by the rows of the n× n matrix B formed by the n coefficient vec-
tors of gi, j(xX), where the polynomials are ordered by increasing degree (e.g.
in the order (i, j) = (0,0),(0,1), · · · ,(0,δ −1),(1,0), · · ·(h−1,δ −1)) and the
coefficients are ordered by increasing monomial degree: the first coefficient is
thus the constant term of the polynomial. The matrix B is lower triangular, and
its n diagonal entries are:(

Nh−1,Nh−1X , . . . ,Nh−1Xδ−1, . . . ,N0Xδh−δ , . . . ,N0Xδh−2,N0Xδh−1
)
, (2)

because f (x) is monic. In other words, the exponent of X increases by one
at each row, while the exponent of N decreases by one every δ rows. It fol-
lows that vol(L) = det(B) = N

1
2 n(h−1)X

1
2 n(n−1). The LLL algorithm is applied

to the matrix B, which provides a non-zero polynomial v(x) ∈ Z[x] such that
‖v(xX)‖ ≤ 2

n−1
4 vol(L)

1
n = 2

n−1
4 N

h−1
2 X

n−1
2 . It follows that the polynomial v(x)

satisfies Lemma 1 with M = Nh−1 and g(x) = v(x) if X ≤ 1√
2
N

h−1
n−1 (n+ 1)−

1
n−1 .

The dimension of B is n = hδ , and the entries of the matrix B have bit-size
O(h logN), therefore the running time of L2 without fast integer arithmetic is
O(δ 6h7 logN+δ 5h7 log2 N), which is O(δ 5h7 log2 N) because δ +1< (logN)/2,
and the running time of L̃1 is O(h6+εδ 5+ε logN+hω+2+2εδ ω+1+ε log1+ε N) for
any ε > 0 using fast integer arithmetic and L̃1, where ω ≤ 2.376 is the matrix
multiplication complexity constant. We obtain the following concrete version of
Th. 1:



Corollary 2 Coppersmith’s algorithm of Th. 1 with h = blogN/δc and X =

b2−1/2N
h−1
n−1 (n+1)−

1
n−1 c runs in time O((log9 N)/δ 2) without fast integer arith-

metic using L2, or O((log7+ε N)/δ ) for any ε > 0 using fast integer arithmetic
and L̃1.

Sketch of Proof: One can show that the cost of the root computation step per-
formed at the end of Coppersmith’s algorithm is less than the one of the LLL
reduction. Moreover the number of loop iterations performed by Coppersmith’s
algorithm to find all solutions smaller than N1/δ by exhaustive search is at most
O(N1/δ/X) which can be shown to be O(1). Thus, from the analysis preceding
Cor. 2, the asymptotic complexity of Coppersmith’s algorithm is the one of one
call to LLL (L2 or L̃1), with h = blogN/δc. ut

We will later see that the complexity upper bounds of Cor. 2 with L2and
L̃1can actually be decreased. Indeed, we will uncover a special property of Cop-
persmith’s matrix (see Lemma 2), which implies that O

(
max‖b?

i ‖
min‖b?

i ‖

)
= O(N), so

that the number of loop iterations O
(

n2 log max‖b?
i ‖

min‖b?
i ‖

)
on the input basis used

by Coppersmith’s algorithm is O(n2 logN) instead of the all-purpose bound
O(n2h logN) [11]. By taking this observation into account, the upper bounds
O((log8 N)/δ ) and O(log6+ε N) are respectively achieved for the L2and L̃1algo-
rithms. In the sequel, we present another method improving Cor. 2, based on
the same special property of Coppersmith’s matrix, and which can be easily
implemented.

3 Speeding up Coppersmith’s Algorithm by Rounding

Our first main results is the following speedup over Coppersmith’s algorithm:

Theorem 3. There is an algorithm (namely, Alg. 1) which, given as input an
integer N of unknown factorization and a monic polynomial f (x) ∈ Z[x] of de-
gree δ and coefficients in {0, . . . ,N− 1}, outputs all integers x0 ∈ Z such that
f (x0)≡ 0 (mod N) and |x0| ≤ N1/δ in time O(log7 N) without fast integer arith-
metic using the L2 algorithm [18], or O(log6+ε N) for any ε > 0 using fast
integer arithmetic and the L̃1 algorithm [20] in Step 7.

3.1 Rounding for Coppersmith’s Algorithm

The bottleneck of Coppersmith’s algorithm is the LLL reduction of the matrix B,
whose dimension is n = hδ , and whose entries have bit-size O(h logN). Asymp-
totically, we have h = O(logN/δ ) so the dimension is O(logN) and the bit-size



is O((log2 N)/δ ). We will modify Coppersmith’s algorithm in such a way that
we only need to LLL-reduce a matrix of the same dimension but with much
smaller entries, namely bit-length O(logN).

To explain the intuition behind our method, let us first take a closer look at
the matrix B an uncover one of its special property:

Lemma 2. Let X ≤ N1/δ . The maximal diagonal coefficient of Coppersmith’s
matrix B is Nh−1Xδ−1 < Nh, the minimal diagonal coefficient is Xhδ−δ ≤ Nh−1,
and Nh−1Xδ−1

Xhδ−δ
≥ N1−1/δ if h≥ 2. Furthermore, if X ≥Ω(N

h−1
n−1 ), h≥ 2 and hδ =

O(logN) then Xhδ−δ ≥ Nh−O(1)

Proof. The ratio Nh−1Xδ−1

Xhδ−δ
is exactly Nh−1/Xhδ−2δ+1 which is clearly ≥ N1−1/δ

if X ≤ N1/δ and h ≥ 2. Now, let X0 = N
h−1
n−1 so that X = Ω(X0). We have

N1/δ/N
h−1
n−1 ≤ N1/(hδ−1), therefore X0 ≥ N1/δ−1/(hδ−1) = N(hδ−1−δ )/(δ (hδ−1)).

Hence Xδ
0 ≥ N(hδ−1−δ )/(hδ−1) = N1−δ/(hδ−1) and thus Xhδ−δ

0 > Nh−2. Since
X = Ω(X0) and hδ = O(logN), we obtain Xhδ−δ ≥ Nh−O(1) . ut

This implies that the diagonal coefficients of B are somewhat balanced: the
matrix B is not far from being reduced. In fact, the first row of B has norm
Nh−1 which is extremely close to the bound Nh−1/

√
n required by Lemma 1:

intuitively, this means that it should not be too difficult to find a lattice vector
shorter than Nh−1/

√
n.

To take advantage of the structure of B, we first size-reduce B to make sure
that the subdiagonal coefficients are smaller than the diagonal coefficients. Then
we round the entries of B so that the smallest diagonal coefficient becomes bcc
where c > 1 is a parameter. More precisely, we create a new n× n triangular
matrix B̃ = (b̃i, j) defined by:

B̃ =
⌊

cB/Xhδ−δ

⌋
(3)

By Lemma 2, we have: bi,i≥Xhδ−δ and b̃i,i≥bcc . We LLL-reduce the rounded
matrix B̃ instead of B: let ṽ= xB̃ be the first vector of the reduced basis obtained.
If we applied to B the unimodular transformation that LLL-reduces B̃, we may
not even obtain an LLL-reduced basis in general. However, because of the spe-
cial structure of B, it turns out that v = xB is still a short non-zero vector of L,
as shown below:

Lemma 3. Let B = (bi, j) be an n× n lower-triangular matrix over Z with
strictly positive diagonal. Let c > 1. If B̃ = bcB/minn

i=1 bi,ic and xB̃ is the first
vector of an LLL-reduced basis of B̃, then 0< ‖xB‖<

(
n‖B̃−1‖2 +1

)
2

n−1
4 det(B)

1
n .



Proof. Let α = minn
i=1 bi,i/c, so that B̃ = bB/αc. Define the matrix B̄ = αB̃

whose entries are b̄i, j =α b̃i, j. Then 0≤ bi, j− b̄i. j <α , therefore ‖B− B̄‖2 < nα .
We have:

‖xB‖ ≤ ‖x(B− B̄)‖+‖xB̄‖ ≤ ‖x‖×‖B− B̄‖2 +α‖xB̃‖< n‖x‖α +α‖xB̃‖.

Let ṽ= xB̃. Then ‖x‖≤‖ṽ‖‖B̃−1‖2, and we obtain ‖xB‖<
(
n‖B̃−1‖2 +1

)
α‖ṽ‖.

The matrix B̃ is lower-triangular with all diagonal coefficients strictly positive
because c > 1. Since ṽ = xB̃ is the first vector of an LLL-reduced basis of B̃,
and B̃ is non-singular, xB 6= 0 and we have:

α‖ṽ‖ ≤ α2
n−1

4 det(B̃)
1
n = 2

n−1
4 det(B̄)

1
n ≤ 2

n−1
4 det(B)

1
n ,

where we used the fact that matrices B̃, B̄ and B are lower-triangular. The result
follows by combining both inequalities. ut

If xB is sufficiently short, then it corresponds to a polynomial of the form
v(xX) for some v(x)∈Z[x] satisfying Lemma 1, and the rest proceeds as in Cop-
persmith’s algorithm. The whole rounding algorithm is given in Alg. 1, which
will be shown to admit a lower complexity upper-bound than Coppersmith’s al-
gorithm to compute all roots up to N1/δ .

Algorithm 1 Coppersmith’s Method with Rounding
Input: Two integers N ≥ 1 and h≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N−1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0)≡ 0 mod N.
1: Let n = hδ , X the bound given in Th. 4, c = (3/2)n and t = 0.
2: while Xt < N1/δ do
3: ft(x) = f (Xt + x) ∈ Z[x].
4: Build the n×n matrix B whose rows are the gi, j(xX)’s defined by (1).
5: Size-reduce B without modifying its diagonal coefficients.
6: Compute the matrix B̃ = bcB/Xhδ−δ c obtained by rounding B.
7: Run the L2 algorithm [18] on the matrix B̃.
8: Let ṽ = xB̃ be the first vector of the reduced basis obtained.
9: The vector v = xB corresponds to a polynomial of the form v(xX) for some v(x) ∈ Z[x].

10: Compute all the roots x′0 of the polynomial v(x) ∈ Z[x] over Z.
11: Output x0 = x′0 +Xt for each root x′0 which satisfies ft(x′0)≡ 0 (mod N) and |x′0| ≤ X .
12: t← t +1.
13: end while

We now justify the bound X given in Alg. 1. In order for Lemma 3 to be
useful, we need to exhibit an upper bound for ‖B̃−1‖2 :



Lemma 4. Let B = (bi, j) be an n× n size-reduced lower-triangular matrix
over Z with strictly positive diagonal. Let c > 1. If B̃ = bcB/minn

i=1 bi,ic, then
‖B̃−1‖2 ≤

√
n
(3c−2

2c−2

)n−1
/bcc.

By combining Lemmas 3 and 4, we obtain the following small-root bound
X for Alg. 1:

Theorem 4. Given as input two integers N ≥ 1 and h ≥ 2, a rational c > 1,
and a univariate degree-δ monic polynomial f (x) ∈ Z[x] with coefficients in
{0, . . . ,N − 1}, one loop of Alg. 1, corresponding to t < N1/δ/X, outputs all
x0 = Xt + x′0 ∈ Z s.t. |x′0| ≤ X and f (x0) = 0 mod N, where n = hδ and

X =

⌊
N

h−1
n−1 κ

−2/(n−1)
1√

2n1/(n−1)

⌋
with κ1 = n3/2

(
3c−2
2c−2

)n−1

bcc−1 +1 .

Proof. Combining Lemma 4 with Lemma 3 where det(B)1/n = N
h−1

2 X
n−1

2 ,
we get 0 < ‖xB‖ < κ12

n−1
4 N

h−1
2 X

n−1
2 . It follows that Lemma 1 is satisfied with

M = Nh−1 and v(xX) corresponding to xB if ‖xB‖ ≤ Nh−1/
√

n. This gives the
following condition on the bound X : X ≤ N(h−1)/(n−1)2−1/2n−1/(n−1)κ

−2/(n−1)
1 .

ut
The bound X of Th. 4 is never larger than that of Cor. 2. However, if one

selects c ≥ (3/2)n, then the two bounds are asymptotically equivalent. This is
why Alg. 1 uses c = (3/2)n.

3.2 Running time: proof of Theorem 3

The original matrix B had entries whose bit-size was O(h logN). Let β = NhXδ−1

Xhδ−δ

be the ratio between the maximal diagonal coefficient and the minimal diago-
nal coefficient of B̃. If B is size-reduced, the entries of the new matrix B̃ =⌊
cB/Xhδ−δ

⌋
are upper bounded by cβ .

By Lemma 2, we know that if h ≥ 2, then β ≥ N1−1/δ , and if further X ≥
Ω(N

h−1
n−1 ) and hδ =O(logN), then β =NO(1). Hence, the bit-size of B̃’s entries is

≤ logc+O(logN). And the dimension of B̃ is the same as B, i.e. hδ . It follows
that the running time of L2 in Step 7 is O(δ 6h6(logc+ logN)+ δ 5h5(logc+
logN)2) without fast integer arithmetic, which is O(δ 5h5(logc + logN)2 be-
cause δ < (logN)/2−1, and is O((hδ )5+ε(logc+ logN)+(hδ )ω+1+ε(logc+
logN)1+ε) for any ε > 0 using fast integer arithmetic and L̃1 in Step. 7, where
ω ≤ 2.376 is the matrix multiplication complexity constant.

This leads to our main result (Th. 3), a variant of Coppersmith’s algorithm
with improved complexity upper bound. More precisely, as in Coppersmith’s
algorithm, one can easily prove that the number of loops performed in Alg. 1



is at most constant. Indeed, when c = (3/2)n, then κ

−2
n−1

1 converges to 1. This
means that the bound X achieved by Th. 4 is asymptotically equivalent to the
one achieved by Cor. 2, which completes the proof of Th. 3, because logc =
O(logN) when c = (3/2)n.

Remark: Surprisingly, Lemma 2 also allows to prove that the L̃1algorithm, when
carefully analyzed using the balancedness of the Gram-Schmidt norms, already
achieves the complexity bound O(log6+ε N) given in Th. 3. Indeed, using Th. 6
from [20] which gives the L̃1complexity upper bound O(n3+ετ) =O(log3+ε Nτ)
where τ is the total number of iterations, and combining it with [11] applied to
Coppersmith’s matrix (Lemma 2), which gives τ =O(n2 logN) =O(log3 N), al-
lows to retrieve the above complexity O(log6+ε N). However, we propose in this
paper a direct improvement of Coppersmith’s method based on elementary tools
and which can therefore be easily implemented on usual computer algebra sys-
tems (e.g. Sage, Magma, NTL) with immediate practical impact on cryptanal-
yses. Furthermore, we are not aware of any implementation of the L̃1algorithm
for the time being, which makes a practical comparison tricky.

In the sequel, we present a method that allows to speed up the exhaustive
search which is performed to reach Coppersmith’s bound N1/δ .

4 Chaining LLL

As recalled in Section 2.2, in order to find all solutions which are close to the
bound N1/δ , one should not use a very large dimension (i.e. n = O(logN)).
Instead, it is better to use a lattice of reasonable dimension and to perform
exhaustive search on the most significant bits of x until finding all solutions.
Namely, we consider polynomials ft(x) = f (X · t + x) where 0 6 t < N1/δ

X and

X = b2−1
2 N

h−1
n−1 (n + 1)−

1
n−1 c. Thus, an initial solution x0 that can be written

x0 = X · t0 + x′0 is obtained by finding the solution x′0 of the polynomial ft0 .
In this case, this solution satisfies |x′0| < X and it has a correct size for LLL to
find it using a lattice of dimension n. For each polynomial ft , one runs LLL on
a certain matrix (Step 4 of Alg. 1). In Section 4.1, we describe a method that
allows to take advantage of the LLL performed for the case t = i to reduce (in
practice) the complexity of the LLL performed for the case t = i+1. There-
after, in Section 4.2 we combine this improvement with the rounding approach
described in Section 3. The proofs of the results presented in this section can be
found in the full version of this paper.



4.1 Exploiting Relations Between Consecutive Lattices

The following proposition discloses a surprising connection between the lattice
used for the case t = i and the next lattice used for t = i+1. This connection is
based on the well-known Pascal matrix P = (ps,t) defined as the n× n lower-
triangular matrix whose non-zero coefficients are the binomials: ps,t =

(s
t

)
for

0≤ t ≤ s≤ n−1.

Proposition 1. Let B be a basis of the n-dimensional lattice used by Copper-
smith’s algorithm to find all small roots of the polynomial fi(x) = f (X · i+ x),
where X is the small-root bound. Then B ·P is a basis of the “next” lattice used
for the polynomial fi+1(x).

Proof. Because all lattice bases are related by some unimodular matrix, it suf-
fices to prove the statement for a special basis B. We thus only consider the
special basis B = Bi formed by the n shifted polynomials constructed from fi(x)
and written in the basis B =

(
1,xX−1,(xX−1)2, . . . ,(xX−1)n−1

)
. For the case

t = i+1, one tries to solve the polynomial

fi+1(x) = f (X · (i+1)+ x) = f (X · i+ x+X) = fi(x+X) .

Therefore, the shifted polynomials constructed from fi+1 are the same as for
the case t = i, but written in the different basis B′ = (1,xX−1 + 1,(xX−1 +
1)2, . . . ,(xX−1 +1)n−1). Yet, we need to return to the original representation of
the polynomials, i.e. in the basis B. To this end, we use the following property
regarding the lower triangular Pascal matrix P: B′T =P ·BT . As a consequence,
left-multiplying each side of this equality by the matrix Bi proves that the matrix
Bi · P is a basis of the lattice used for finding small roots of the polynomial
fi+1(x). ut

The proposition allows us to use different matrices to tackle the polynomial
fi+1(x) than the one initially used by Coppersmith’s method. In particular, we
can use a matrix of the form BR ·P where BR is an LLL-reduced basis of the
previous lattice used to solve fi(x): intuitively, it might be faster to LLL-reduce
such matrices than the initial Coppersmith’s matrix. Although we are unable to
prove this, we can show that the vectors of such a matrix are not much longer
than that of B:

Corollary 5 Let BR
i be the LLL-reduced matrix used for solving ft for t = i and

P be the Pascal matrix. The matrix Bi+1 = BR
i ·P spans the same lattice used for

solving the case t = i+1. This matrix consists of vectors bi+1, j whose norms are
close to vector norms of the LLL-reduced matrix BR

i . Namely, for all 1 6 j 6 n
we have: ||bi+1, j||<

√
n ·2n−1 · ||bR

i , j||. In particular, for the case i = t0 the first
vector of Bi+1 has a norm bounded by 2n−1 ·Nh−1.



Cor. 5 shows us that vectors of Bi+1 are relatively close to the ones in the
LLL-reduced matrix BR

i . Thus, we intuitively expect the LLL-reduction of Bi+1
to be less costly than the one of the original Coppersmith’s matrix. However, our
bounds are too weak to rigorously prove this. Yet, one can use this property iter-
atively to elaborate a new method which chains all LLL reductions as follows.
First, one LLL-reduces B0 for the case t = 0. This gives a reduced matrix BR

0 .
Then, one iterates this process by performing LLL reduction on Bi+1 = BR

i ·P
(for i≥ 0) to obtain BR

i+1 and so forth until all solutions are found (each time by
solving the polynomial corresponding to the first vector of BR

i ).
In the sequel, we study this chaining method by performing similar round-

ings as in Section 3 before each call of LLL reduction.

4.2 Rounding and Chaining LLL

During the exhaustive search described in Section 4.1, we perform the LLL
algorithm on the matrix Bi+1 = BR

i ·P for 0 6 i < N1/δ/X , where BR
i is LLL-

reduced. It is worth noticing that the structure of BR
i and thereby of Bi+1, is

different from the original Coppersmith’s matrix B0 (in particular, it is not trian-
gular anymore). Yet, we are able to show that under certain conditions on Bi+1
verified experimentally, one can combine the rounding technique of Section 3
with the chaining technique of Section 4.1. Indeed, we show that during the
chaining loop, one can size-reduce Bi+1 and then round its elements for all i≥ 0
as follows:

B̃i+1 =

⌊
cBi+1/ min

1≤i≤n
‖b?

i ‖
⌋
, (4)

where b?
i are Gram-Schmidt vectors of Bi+1 and c is a rational that will be de-

termined later. Then, one applies LLL on the rounded matrix B̃i+1 as performed
in Section 3. We obtain an LLL-reduced matrix B̃R

i+1 and a unimodular matrix
Ũi+1 such that Ũi+1 · B̃i+1 = B̃R

i+1. Then one shows that by applying Ũi+1 on Bi+1,
the first vector of this matrix Ũi+1 ·Bi+1 is a short vector that allows to find the
solutions provided that they are smaller than a bound X that will be determined
latter. For the sake of clarity, in the sequel we denote by B the matrix Bi+1, and
by xB, the first vector of matrix Ũi+1 ·Bi+1. We would like to exhibit an upper-
bound on ‖xB‖. To this end, we will need, as in Section 3, to upper-bound the
value ‖B̃−1‖2. This is done in the following lemma:

Lemma 5. Let B = (bi, j) be an n× n non-singular integral matrix and α ≥ 1
such that nα‖B−1‖2 < 1. Then the matrix B̃= bB/αc is invertible with ‖B̃−1‖2≤
α‖B−1‖2(1−nα‖B−1‖2)

−1.



As one can see, this value depends on ‖B−1‖2 which is given in Lemma 6.

Lemma 6. Let B be an n× n non-singular size-reduced matrix, with Gram-
Schmidt vectors b?

i . Then ‖B−1‖2 ≤
√

n(3/2)n−1/min1≤i≤n ‖b?
i ‖.

One can now give an upper-bound on ‖xB‖:

Corollary 6 Let B= (bi, j) be an n×n size-reduced non-singular matrix over Z.
Let α ≥ 1 such that n2α‖B−1‖2 < 1. Then B̃ = bcB/min1≤i≤n ‖b?

i ‖c = bB/αc
is non-singular. And if xB̃ is the first vector of an LLL-reduced basis of B̃, then:

0 < ‖xB‖< c
n+1

n

(c−n3/2(3/2)n−1)(c−n5/2(3/2)n−1)1/n 2
n−1

4 det(B)
1
n .

Again, if ‖xB‖ is sufficiently short, then it corresponds to a polynomial of
the form v(xX) for some v(x) ∈ Z[x] satisfying Lemma 1. In particular, for the
case t = t0, solving this polynomial equation would allow to retrieve the solution
x0. Note that the condition n2α‖B−1‖2 < 1 specified in Cor. 6 gives a condition
on the rational c. Indeed, since α = min1≤i≤n ‖b?

i ‖/c and using Lemma 6, one

gets: n2α‖B−1‖2 6 n2 min1≤i≤n ‖b?
i ‖

c

√
n(3/2)n−1

min1≤i≤n ‖b?
i ‖

6 n5/2(3/2)n−1

c < 1 that is c should

be such that c > n5/2(3/2)n−1. The whole chaining and rounding algorithm is
depicted in Algorithm 2. Note that in practice, we do not need to perform Step 8
of Alg. 2 and that min1≤i≤n ‖bt+1

?
i ‖ can be estimated instead of being computed

in Step 9 (see Section 4.3 for more details).
In the following, we give a small-root bound X on the solution x′0 sufficient

to guarantee success:

Theorem 7. Given as input two integers N ≥ 1 and h ≥ 2, a rational c >
n5/2(3/2)n−1, and a univariate degree-δ monic polynomial f (x) ∈ Z[x] with
coefficients in {0, . . . ,N−1}, one loop of Alg. 2, corresponding to t < N1/δ/X,
outputs all x0 = Xt + x′0 ∈ Z s.t. |x′0| ≤ X and f (x0) = 0 mod N, and n = hδ ,
where

X =

 N
h−1
n−1 κ

−2
n−1

2√
2n1/(n−1)

 and κ2 =
c

n+1
n

(c−n3/2(3/2)n−1)(c−n5/2(3/2)n−1)1/n .

The bound X of Th. 7 is never larger than that of Cor. 2. However, if one selects
c > n5/2(3/2)n−1, then the two bounds are asymptotically equivalent. This is
why Alg. 2 uses c = n5/2(3/2)n.

4.3 Complexity Analysis: A Heuristic Approach

The complexity of Alg. 2 relies on the complexity of the LLL-reduction per-
formed in Step 10. The cost of this reduction depends on the size of coefficients



Algorithm 2 Coppersmith’s Method with Chaining and Rounding
Input: Two integers N ≥ 1 and h≥ 2, a univariate degree-δ monic polynomial f (x) ∈ Z[x] with

coefficients in {0, . . . ,N−1} and 2 < δ +1 < (logN)/2.
Output: All x0 ∈ Z s.t. |x0| ≤ N1/δ and f (x0)≡ 0 mod N.
1: Performs Step 1 and Steps 3 to 7 of Alg. 1. Step 7 returns B̃R

0 and Ũ0 such that Ũ0 · B̃0 = B̃R
0 .

2: Let n = hδ , X the bound given in Th. 7, c = n
5
2 ( 3

2 )
n, t = 0, P is the n× n lower triangular

Pascal matrix.
3: Compute the matrix Ũ0 ·B0, where B0 is the matrix computed in Step 5 of Alg. 1.
4: The first vector of Ũ0 ·B0 corresponds to a polynomial of the form v(xX) for some v(x)∈Z[x].
5: Compute and output all roots x0 ∈ Z of v(x) satisfying f (x0)≡ 0 (mod N) and |x0| ≤ X .
6: while Xt < N1/δ do
7: Compute the matrix Bt+1 = Ũt ·Bt ·P.
8: Size-reduce Bt+1.
9: Compute the matrix B̃t+1 = bcBt+1/min1≤i≤n ‖bt+1

?
i ‖c obtained by rounding Bt+1.

10: Run L2 algorithm on matrix B̃t+1 which returns B̃R
t+1 and Ũt+1 s.t. Ũt+1 · B̃t+1 = B̃R

t+1.
11: Compute the matrix Ũt+1 ·Bt+1.
12: The first vector of Ũt+1 ·Bt+1 corresponds to a polynomial of the form v(xX).
13: Compute all the roots x′0 of the polynomial v(x) ∈ Z[x] over Z.
14: Output x0 = x′0+Xt for each root x′0 which satisfies f (x′0+Xt)≡ 0(modN) and |x′0| ≤ X .
15: t← t +1.
16: end while

in matrix B = B̃t+1, which itself depends on the value min1≤i≤n ‖b?
i ‖. The exact

knowledge of this value does not seem straightforward to obtain without com-
puting the Gram-Schmidt matrix explicitly. However, experiments show that
the Gram-Schmidt curve is roughly decreasing, i.e. min1≤i≤n ‖b?

i ‖ ≈ ‖b?
n‖ and

is roughly symmetric: i.e. log‖b?
i ‖− log‖b?

n/2‖ ≈ log‖b?
n/2‖− log‖b?

n−i+1‖ . If

we assume these two experimental facts, we deduce that ‖b?
n/2‖ ≈ |det(B)|1/n.

By duality, this means that ‖b?
n‖ ≈ |det(B)|2/n/‖b?

1‖. Furthermore, from the
definition of the Gram-Schmidt orthogonalization, we know that ‖b?

1‖ = ‖b1‖,
where b1 is the first vector of matrix B. Therefore we have:

min
1≤i≤n

‖b?
i ‖ ≈ ‖b?

n‖ ≈ |det(B)|2/n‖b?
1‖−1 = Nh−1Xn−1‖b1‖−1 , (5)

Thus, we need an estimation on ‖b1‖. Since in practice matrix B = Bi+1 =
Ũi ·Bi ·P is already nearly size-reduced, one can skip Step 8 of Alg. 2. There-
fore, vector b1 is the first vector of matrix Ũi ·Bi ·P. Using Cor. 6, one deduces
that the first vector matrix Ũi ·Bi is roughly as short as the first vector of an
LLL-reduced matrix. From the well-known experimental behavior of LLL [17],
we can model the first vector of the LLL-reduced basis as a “random” vec-
tor of norm ≈ 1.02n|det(B)|1/n . Since the Pascal matrix P has a norm smaller
than 2n−1 , one gets the bound ‖b1‖ 6

√
n2n−11.02n|det(B)|1/n. Therefore, we



deduce that: min1≤i≤n ‖b?
i ‖ ≈ |det(B)|1/n/(

√
n2n−11.02n) . In practice, we con-

jecture that min1≤i≤n ‖b?
i ‖> |det(B)|1/n/β n, where β < 2 (see Fig. 5 in Sec. 5).

This discussion leads to the following heuristic approach regarding the me-
thod: firstly, one should rather use the estimation (5) in Step 9 of Alg. 2, instead
of explicitly computing the Gram-Schmidt matrix; secondly, one can skip Step 8
of Alg. 2. This heuristic version of Algorithm 2 is the one we used during our
experiments, all these assumptions were always verified.

To conclude our analysis, it suffices to reduce a rounded matrix such that
max1≤i≤n ‖b̃?

i ‖ ≤ cmax1≤i≤n ‖b?
i ‖/min1≤i≤n ‖b?

i ‖6 cβ 2n, instead of being such
that max1≤i≤n ‖b̃?

i ‖ ≤ β n|det(B)|1/n. This means that we are trading entries of
size O(n). Therefore, by considering n = O(logN), we obtain the same com-
plexity as in Theorem 3 but in a heuristic way. However, even if both asymptotic
complexities are identical, in practice for reasonable dimensions the speed-up
brought by using Alg. 2 rather than Alg. 1 is considerable (see Section 5). In-
deed, the LLL-reduction of matrix Ũi ·Bi ·P (Step 10 of Alg. 2) performs sur-
prisingly faster than expected. This comes from the fact that for reasonable di-
mensions, the Gram-Schmidt curve of this matrix remains quite close to the one
of matrix Ũi ·Bi, where Ũi ·Bi turns out to be LLL-reduced (or nearly). Besides,
the overall running-time of Alg. 2 is approximately the time spent to perform
one LLL-reduction, multiplied by the number of executed loops, i.e. by N1/δ/X .

5 Experiments

We implemented Coppersmith’s algorithm and our improvements (Algs. 1 and
2) using Shoup’s NTL library [21]. However, for the LLL reduction, we used the
fplll implementation [3] by Cadé et al., which includes the L2 algorithm [18]:
fplll is much faster than NTL for Coppersmith’s matrices. It should be stressed
that fplll is a wrapper which actually implements several variants of LLL, to-
gether with several heuristics: L2 is only used as a last resort when heuristic
variants fail. This means that there might be a discrepancy between the practical
running time and the theoretical complexity upper bound of LLL routines. Our
test machine is a 2.93-GHz Intel Core 2 Duo processor E7500 running on Fe-
dora. Running times are given in seconds. Like in [10], we used the case δ = 3,
and N an RSA-type modulus: the exact polynomial congruence is derived from
RSA encryption with public exponent δ . Then, one loop of Coppersmith’s algo-
rithm , with n= 3h, can find all roots x0 as long as |x′0| ≤X = b2−1/2N

h−1
n−1 n−

1
n−1 c.

For a fixed h, the rounding strategy (Alg. 1) gives a worse bound than X , but the
difference can be made arbitrarily small by increasing the parameter c: in our

experiments, we therefore chose the smallest value of c such that κ

−2
n−1

1 and κ

−2
n−1

2
are larger than 0.90, so that the new bound is never less than the old bound X by



more than 10%, which is essentially the same. However, we note that the value
c can be taken smaller in practice.

Furthermore, it is worth noticing that since the value α is not significant in
itself, in order to increase the efficiency, one can round matrices at negligible
cost by taking α := 2blog2(α)c and performing shifts of blog2(α)c bits. In the
same vein, one can increment t by 2 instead of 1 in Coppersmith’s algorithm
or in Step 12 of Alg. 1, and one can multiply the matrix Ũi ·Bi by P2 instead
of P in Step 7 of Alg. 2. This comes from the fact that if 0 < x′0 < X (resp.
−X < x′0 < 0), then x′0−X (resp. x′0+X) is also a valid solution. This refinement
allows to divide by 2 the global timing of Coppersmith’s algorithm and Alg. 1.
However, it seems to be much less relevant when applied to Alg. 2.

Figures 1 and 2 summary our limited experiments respectively comparing
one loop of Coppersmith’s algorithm with Alg. 1 and Alg. 2 in practice. They
provide the bit-length of X and the corresponding running times of the lattice
reduction only, because the cost of solving a univariate equation over Z turns
out to be much less in practice. Running times are given as averages over 5
samples. For a typical case where dlogNe = 2048, the whole Coppersmith’s
algorithm would perform in ((b2048/3− 666c)/2)× 6431.2 ≈ 6.7 years and
the new Alg. 2 would perform in (b2048/3−666c)×15.52≈ 11.8 days, which
is about 207 times faster (see Fig. 2 and 6).

Fig. 1. Bounds and running time of rounding
method for cubic congruences

Size Data Parameter h
of N type 10 15 20 25 30

Size of X 318 324 328 331 332
Toriginal 2.54 30.48 216.3 793.4 3720.8

1024 Trounded 0.68 4.49 18.22 48.17 175.9
Speed-up 3.74 6.79 11.87 16.47 21.16
Size of X 634 650 658 663 666
Toriginal 13.47 150.7 865.7 3078 10146.7

2048 Trounding 3.14 17.79 63.3 166.4 379.8
Speed-up 4.29 8.40 13.67 18.50 26.72
Size of X 1270 1302 1318 1327 1333
Toriginal 41.45 582.6 3162 11968 42053

4096 Trounded 7.07 43.25 157.5 449.8 1301.5
Speed-up 5.86 13.47 20.07 26.61 32.31

Fig. 2. Bounds and running time of rounding plus
chaining method for cubic congruences

Size Data Parameter h
of N type 10 15 20 25 30

Size of X 316 323 327 330 332
Toriginal 2.14 23.55 161.55 646.37 1955.1

1024 Trc 0.04 0.42 1.71 5.56 12.71
Speed−uprc 53.5 56.07 94.47 116.25 153.83

Size of X 633 649 657 663 666
Toriginal 8.21 95.12 641.22 2299.5 6431.2

2048 Trc 0.07 0.55 2.39 7.75 15.52
Speed−uprc 117.28 172.95 268.29 296.71 414.38

Size of X 1270 1302 1318 1327 1333
Toriginal 27.64 378.62 2226 8303.2 25813

4096 Trc 0.11 0.87 3.73 11.72 29.65
Speed−uprc 251.27 435.19 596.78 708.46 870.6

From Figure 3, we see that we already get significant speedups (say, larger
than 10) even for small values of h and typical sizes of N, by using the round-
ing method (Alg. 1). The speedup grows when logN or h grows: for fixed
N, the speedup grows roughly a bit less than quadratically in h, whereas the
theoretical analysis gives a speedup linear in h. From Figure 4, we see that
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Fig. 3. Speed-up of rounding method
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Fig. 4. Speed-up of rounding plus chaining
method

we can obtain more speedups as the sizes of N or h increase, by using the
rounding and chaining method (Alg. 2). Hence, our improvement is practi-
cal and allows to get much closer to the asymptotic small-root bound. Fur-
thermore, we verify the assumption on value min1≤i≤n ‖b?i ‖ for matrix B. Let
max1≤i≤n ‖b?

i ‖ ≈ β n
1 vol(L)1/n and min1≤i≤n ‖b?

i ‖ ≈ β n
2 vol(L)1/n. In this paper,

we have assumed that β1 = 1/β2. We summary the results of our experiments
for dlogNe = 512 with dimensions 30,60,90,120,150 in Table 5. We can see
that β1×β2 ≈ 1 and that β1 ≤ 2. This means our assumptions are reasonable.

Fig. 5. Beta values for dlogNe= 512
Data Parameter h
type 10 20 30 40 50
β1 1.7582 1.8751 1.9093 1.9218 1.9435
β2 0.5460 0.5271 0.5155 0.5091 0.5077

product 0.9600 0.9883 0.9842 0.9785 0.9867

Fig. 6. Timings comparisons for the total method
logN

1024 2048 4096
Original 5.8 days 6.7 years 1757782 years
Alg. 2 1.8 hours 11.8 days 4038 years

Speed-up 77 207 435

6 Other Small-Root Algorithms

Other small-root algorithms (see the surveys [14, 16]) are based on the same
main ideas where LLL reduction plays a crucial role. Due to the different struc-
ture of the matrices in these settings, a direct application of our new approach
does not seem to provide the same speedup. We leave it as an open problem
to obtain polynomial (non-constant) speedups for these other small-root algo-
rithms: this might be useful to make practical attacks on certain fully homomor-
phic encryption schemes (see [5]). See the extended version of this paper for a
further discussion on these generalizations.

Acknowledgements. We would like to thank the anonymous reviewers of PKC’14
for their valuable comments.



References
1. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. IEEE

Transactions on Information Theory, 46(4):1339, 2000.
2. J. Buchmann. Reducing lattice bases by means of approximations. In Algorithmic Number

Theory – Proc. ANTS-I, volume 877 of Lecture Notes in Computer Science, pages 160–168.
Springer, 1994.

3. D. Cadé, X. Pujol, and D. Stehlé. FPLLL library, version 3.0. Available from
http://perso.ens-lyon.fr/damien.stehle, Sep 2008.

4. H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate
Texts in Mathematics. Springer-Verlag, Berlin, 1993.

5. H. Cohn and N. Heninger. Approximate common divisors via lattices. IACR Cryptology
ePrint Archive, 2011:437, 2011.

6. D. Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits
known. In Advances in Cryptology - Proc. EUROCRYPT ’96, volume 1070 of Lecture Notes
in Computer Science, pages 178–189. Springer, 1996.

7. D. Coppersmith. Finding a small root of a univariate modular equation. In Advances in
Cryptology - Proc. EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 155–165. Springer, 1996.

8. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnera-
bilities. J. Cryptology, 10(4):233–260, 1997. Journal version of [7, 6].

9. J.-S. Coron. Finding small roots of bivariate integer polynomial equations: A direct ap-
proach. In Advances in Cryptology – Proc. CRYPTO ’07, volume 4622 of Lecture Notes in
Computer Science, pages 379–394. Springer, 2007.

10. C. Coupé, P. Q. Nguyen, and J. Stern. The effectiveness of lattice attacks against low-
exponent RSA. In Public Key Cryptography – Proc. PKC ’99, volume 1560 of Lecture
Notes in Computer Science, pages 204–218. Springer, 1999.

11. H. Daudé and B. Vallée. An upper bound on the average number of iterations of the lll
algorithm. Theor. Comput. Sci., 123(1):95–115, 1994.

12. N. Howgrave-Graham. Finding small roots of univariate modular equations revisited. In
Cryptography and Coding – Proc. IMA ’97, volume 1355 of Lecture Notes in Computer
Science, pages 131–142. Springer, 1997.

13. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coef-
ficients. Mathematische Ann., 261:513–534, 1982.

14. A. May. Using LLL-reduction for solving RSA and factorization problems: A survey. 2010.
In [19].

15. H. Najafi, M. Jafari, and M.-O. Damen. On adaptive lattice reduction over correlated fading
channels. Communications, IEEE Transactions on, 59(5):1224–1227, 2011.

16. P. Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent Trends in Cryptography,
volume 477 of Contemporary Mathematics. AMS–RSME, 2009.

17. P. Q. Nguyen and D. Stehlé. LLL on the average. In Algorithmic Number Theory – Proc.
ANTS, LNCS, pages 238–256. Springer, 2006.

18. P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM J. of
Computing, 39(3):874–903, 2009.

19. P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applications. Informa-
tion Security and Cryptography. Springer, 2010.

20. A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-linear time
complexity: extended abstract. In Proc. STOC ’11, pages 403–412. ACM, 2011.

21. V. Shoup. Number Theory C++ Library (NTL) version 5.4.1. Available at
http://www.shoup.net/ntl/.

22. V. Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249, 2002.


