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Abstract: Plague, a zoonosis caused by Yersinia pestis, is
still found in Africa, Asia, and the Americas. Madagascar
reports almost one third of the cases worldwide. Y. pestis
can be encountered in three very different types of foci:
urban, rural, and sylvatic. Flea vector and wild rodent host
population dynamics are tightly correlated with modula-
tion of climatic conditions, an association that could be
crucial for both the maintenance of foci and human
plague epidemics. The black rat Rattus rattus, the main
host of Y. pestis in Madagascar, is found to exhibit high
resistance to plague in endemic areas, opposing the
concept of high mortality rates among rats exposed to the
infection. Also, endemic fleas could play an essential role
in maintenance of the foci. This review discusses recent
advances in the understanding of the role of these factors
as well as human behavior in the persistence of plague in
Madagascar.

Introduction

Plague is a flea-borne fatal zoonosis caused by the bacillus

Yersinia pestis. Primarily a disease of rodents and fleas, it has been

responsible for three pandemics resulting in millions of deaths [1].

Despite advances in its control and understanding, plague is far

from eradicated [2]. Due to its wildlife reservoirs, plague is still

endemic in Asia, the Americas, and Africa. It is also reemerging in

countries where the disease was thought to have disappeared [2,3].

Civil wars, urbanization, deforestation, and mining may also have

an impact on the disease.

Worldwide, bubonic plague is the predominant form and is

acquired after a fleabite. The bacteria multiply at the site of

inoculation and disseminate via the lymphatic system to the lymph

nodes. After two to six days, a painful swelling lymph node appears

(the bubo), along with high fever, headache, dizziness, and

prostration. Without treatment, the infection rapidly disseminates

to reach the spleen, liver, and sometimes the lungs, causing a fatal

septicaemia. Without treatment, lethality occurs in 40–70% of the

patients. Pneumonic plague is rare but even deadlier. It may arise

from a bubonic form, by haematogenous spread to the lungs, or

from inhalation of aerosols during human-to-human transmission.

After one to three days of latency, the onset is sudden and always

fatal without early efficient treatment. Here, we review different

factors that may explain how the disease is able and continue to

persist in Madagascar.

Methods

The review of the literature was conducted using the online

databases PubMed and HINARI. A thorough search was then

undertaken in Madagascar from earlier works to recent findings,

including dissertations and unpublished reports from the Ministry

of Health and Institut Pasteur de Madagascar (which hosts the

plague Malagasy reference center), with particular emphasis on

plague dynamic. Altogether, documents cover almost 50 years of

plague studies in Madagascar.

Brief Overview of Plague Epidemiology

Within the Enterobacteriaceae family, the genus Yersinia includes

three human pathogenic species: Yersinia enterocolitica, Yersinia

pseudotuberculosis, and Y. pestis, the causative agent of plague [1].

Although, Y. pestis and Y. pseudotuberculosis differs radically in their

virulence and transmission route, they share a high genetic

homology. Y. pestis diverged from Y. pseudotuberculosis within the last

20,000 years [4].

Twenty-five hundred species and subspecies of Siphonaptera

are described but only 80 of these are known to be susceptible to Y.

pestis [5], among which the genus Xenopsylla (especially Xenopsylla

cheopis) plays a major role in pandemics. Fleas of this genus are

found in all domestic and peridomestic settings where humans are

at risk of infection with Y. pestis due to its high vector efficiency and

broad host preference [6]. In sub-Saharan regions and in rural

areas of Brazil and India, Xenopsylla brasiliensis is the predominant

vector for plague [6]. Other species, like Xenopsylla astia (Indonesia,

Southeast Asia) and Xenopsylla vexabilis (Pacific Islands) are also

important vectors [7]. The flea specificity to rodent hosts varies

from one specific host to a broad affinity: in the northern United

States, Oropsylla hirsuta parasitizes a species of prairie dogs, Cynomys

ludovicianus [6], while in Zimbabwe, the four major rodent species

Gerbilliscus leucogaster, Rattus rattus, Rhabdomys pumilio, and Mastomys

natalensis are all hosts of X. brasiliensis [8].

The high vector efficiency of X. cheopis is reported to be related

to its ability to get ‘‘blocked,’’ which increases the transmission

potential of Y. pestis. The bacterium produces biofilm required for

proventricular blocking [5] of the flea leading to an increased
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biting rate and regurgitation of bacteria into the wound. Partial

biofilm blockage is sufficient to assure transmission, as for Oropsylla

montana (Baker) in the United States [9].

Around 200 species of rodents and lagomorphs have been

connected to the epidemiology of plague so far [6], but only few

are considered significant hosts [10]. Frequency of contact

between human and host varies depending on the species. R.

rattus is a tree dwelling species nesting often in the roof of huts,

whereas Rattus norvegicus is a ground dweller, preferably living in

sewer networks of large towns. Rattus spp. are the major reservoir

of plague in parts of Asia and Africa, especially in Madagascar

[3,11,12]. Its population dynamics determine plague dynamics

[13,14]. Other rodents are locally involved in plague epidemiology

such as the great gerbil (Rhombomys opimus) in Kazakhstan or the

black-tailed prairie dog (C. ludovicianus) and the ground squirrel

(Spermophilus beecheyi) in the United States [10].

Environmental conditions modulate seasonal transmission and

global distribution of plague [15,16]. In Asia and the United

States, epidemics occur at the end of winter when rodents leave

their burrows after hibernation. In other foci, seasonality in the

abundance of rodents is less obvious and flea dynamics seem more

important to take into account. Fleas, especially immature stages,

developing in host burrows are sensitive to air temperature and

humidity [17] and thus are affected by soil moisture in rodent

burrows. Larvae are susceptible to desiccation [15], and their

survival varies inversely with air dryness. Hot and dry days also

reduce blockage in fleas [17], and low temperatures delay bacterial

proliferation and early-phase transmission by X. cheopis [18].

Plague in Madagascar

Plague in Madagascar: A Long History
Plague arrived in the port city of Toamasina with steamboats

from India in 1898 [19]. It then spread to other harbors and

reached the central highlands in 1921 following the construction of

the railways. It invaded the central highlands while disappearing

progressively from the coasts.

From 1957 to 2001, a total of 20,900 suspected human cases

were declared with an increase in the number of districts affected.

Fortunately, over the years the case fatality rate decreased from

55.7% to 20.9% [20]. Still in 2004, 1,214 cases and 98 deaths were

reported, but since then the incidence of human plague cases has

declined continuously. However, Madagascar still accounted for

30% of human cases worldwide from 2004 to 2009 [21].

Nowadays plague is endemic in rural areas of the central

highlands above 800 metres of altitude. The northern plague focus

is located around the Tsaratanana Mountains (Figure 1). Addi-

tionally, plague has emerged more in the north at Ambilobe in

2011 (unpublished data) between the northern foci and Antsir-

anana.

From 2007 to 2011, bubonic plague accounted for 86.6% of

suspected cases while pneumonic and undocumented cases

accounted for 9.4% and 4%, respectively. The case fatality rate

was 13% for suspected cases and 18.6% for confirmed cases.

Reports of pneumonic plague cases were limited to the highlands

and most often evolved from bubonic plague.

The Bacterium-Reservoir-Flea Triad in Madagascar
In Madagascar, all Y. pestis strains belong to the biovar

Orientalis, which spread all over the world during the third

pandemic. Isolates can be subdivided into four ribotypes (B, Q, R,

and T), of which the most common is B, the original invading

strain, while the three others are specific to Madagascar [22].

Antibiotic-resistant Y. pestis strains were also first isolated in

Madagascar with one strain resistant to eight different antibiotics,

including those used for plague prophylaxis and therapy [23].

Thirteen genera of Siphonaptera (four of them endemic) were

described in Madagascar [24]; of those, two are involved in plague

transmission: Xenopsylla and Synopsyllus. The main vector is X.

cheopis, which parasitizes black rats living inside houses (Figure 2).

The endemic genus Synopsyllus is composed of five species, among

which S. fonquerniei is the most prevalent (Figure 2). It can be found

in the fur or burrows of black rats living outside houses but also in

open biotopes (rice fields, savannas) and in forests. This species is

involved in the plague cycle above 800 metres of altitude and

shows greater transmission efficiency than X. cheopis [25]. It also

parasitizes endemic hedgehogs, rodents, and occasionally a species

of lemur and insectivores.

Yet R. rattus remains the main plague reservoir host in

Madagascar (Figure 2). Its arrival is closely linked to the history

of the colonization of the island by humans [26]. The black rat is

the dominant rodent species and is found everywhere: in houses,

villages, fields, and also in the forests [19,26]. Its populations can

expand rapidly as it can breed inside houses all year round with an

average gestation period of only 21 days and a mean litter size of

5.4 (in Madagascar). Conversely, R. norvegicus is limited to large

towns since the 1950s, but is currently spreading on the western

side of the island.

Main Factors Impacting the Epidemiology of

Plague in Madagascar

Rural versus Urban Foci
In Madagascar, plague is predominantly a rural disease [21]

related to agricultural activities. In the highlands, there is a hot

and rainy season from October to April, followed by a cold and

dry season. Harvesting occurs from February to June in dry-

farming areas and in May in rice fields (in some places a second

rice harvesting may occur in December). Maximum abundance of

rodents in the fields is observed in July and August, followed by the

maximum abundance of fleas from September to November (see

[7] for more details). Villages provide three distinct habitats:

houses located on top of hills, sisal hedges around livestock

enclosures, and irrigated rice fields in lower areas (Figure 3A).

Habitat choice and population dynamics of rodents are mainly

driven by the availability of resources [14]. High plague

transmission to humans has been associated with low abundance

of rats and an increase in flea vectors [20]. This low number of rats

is due to food shortages and an interruption of reproduction of

outside rat populations during the cold season [26]. Conversely

during rice harvest, an increase in reproductive rate and migration

from houses to sisal hedges [14] are associated with low plague

transmission to humans (Table 1). These factors are impacted by

climate mediated by the availability of food and shelter.

Urban plague was mainly described in Mahajanga and

Antananarivo (Figure 3B). The seaport of Mahajanga first

experienced plague in 1902. A few human cases were reported

between 1907 and 1928, but the town was free from plague for the

next 60 years. A new outbreak occurred in 1991, followed by

subsequent epidemics from 1995 to 1998 during which 1,702

suspected cases were reported [27]. In the capital Antananarivo,

outbreaks of human plague were first recorded in 1921 [19]. After

58 years of silence, the disease reemerged in the city in 1979 with

sporadic cases. Rodent surveillance initiated in the 1990s

documented the replacement of R. rattus by R. norvegicus in the

town (Table 1), favored by the construction of modern houses and

sewage networks [3]. These changes were associated with a

decrease in contact between humans and rat fleas due to the
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behavior of R. norvegicus [3]. Additionally, a lower susceptibility of

R. norvegicus to plague also limited the risk of fleas leaving dead

rodents in search of a new host, thus reducing human plague cases

in Antananarivo [28].

The Role of Endemic Fleas and Climate on Plague
Epidemiology in Madagascar
Outside temperature may strongly affect flea abundance, thus

affecting spatial and temporal distribution of the disease [29]. In

Antananarivo and the surrounding highlands, plague cases are

mostly reported during the warm rainy season from October to

April. Conversely in Mahajanga, outbreaks of human plague

occurred during the dry and cool season (from July to November).

However, despite distinct plague seasons, the lowest temperature

recorded in these two places during transmission is between 17u

and 22uC [27], which can impact flea development. In the

highlands, S. fonquerniei is exclusively found on rats caught outdoors

and shows a clear seasonal cycle, thriving in the middle and at the

end of the dry and cold season suggesting its role in initiating

human plague epidemics [20]. This finding is supported by

laboratory experiments suggesting that the development rate of

flea larvae increases with temperatures below 30uC, and decreases

above it. Furthermore, high temperatures with low humidity or

temperatures below 9.3uC decrease the survival of the immature

stages of S. fonquerniei [29]. In contrast, X. cheopis, which is mostly

found on rats caught indoors, remains at relatively high

abundance throughout the rainy season.

Rats’ Susceptibility to Plague in the Highlands of
Madagascar
The susceptibility of rats to plague is undeniable. However,

resistant R. rattus and R. norvegicus were reported in Antananarivo,

which could explain the absence of epizootics and the mainte-

nance of plague in the city [28]. Furthermore, whereas all rats in

plague-free areas are sensitive to the disease, populations in

plague-endemic areas are composed of sensitive and very resistant

Figure 1. Madagascar plague mapping from 2007 to 2011. Dashed line: limits of the main plague foci (central and northern foci). Green area:
districts that have notified plague cases. Most plague cases were reported from the district of Tsiroanomandidy during this period. (Sources: OCHA,
Institut Pasteur de Madagascar).
doi:10.1371/journal.pntd.0002382.g001
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rats [28,30]. The same was previously described for R. pumilio and

M. natalensis in South Africa [31]. Yet the immune response to

infection may differ even for the same species of rat within the

same endemic area [32]. Dispersion of resistant rats with their fleas

could support plague dissemination [14]. Ecology seems to support

selection for resistance to plague as shown by genetic structure

analysis of R. rattus populations in plague foci [33]. In Mandoto

(peneplain area) no difference was found [33], whereas in Betafo

(mountainous area) genetic differences were observed between rats

from rice field populations compared to those from houses and

sisal hedges [34]. This resistance seems to be passed on to offspring

as also suggested for M. natalensis [31]. A 32-base pair deletion in

the chemokine receptor 5 gene (CCR5) used by HIV-1 to enter

cells has been proposed to confer resistance to HIV, smallpox, and

plague infections [35]. Although experimental challenges with Y.

pestis in normal and CCR5-D32 mice did not ascertain a protective

role [35,36], a unique substitution (H184R) in a region of the

CCR5 gene was found to be more prevalent in resistant animals

compared to susceptible ones and is more common in rats from

plague foci than from plague-free areas [37]. Other genetic

markers were investigated using an AFLP genome scan approach.

Twenty-two loci have been identified that may be involved in the

resistant phenotype of R. rattus found in the central highlands of

Madagascar. Two loci were associated with plague infection

outcome in experimentally challenged rats [38].

Diversity of Reservoir Species
Although much less frequent and documented, sylvatic plague

(Figure 3C) occurs in Malagasy primary forests where invasive R.

rattus and endemic small mammals coexist and can sustain

transmission through endemic fleas [25]. Human cases were

reported among hunters and charcoal burners in these areas [3].

Both susceptible rodents and highly resistant insectivores live in

these forests. Several endemic sylvatic small mammals such as

shrews (Oryzorictinae subfamily) and tenrecs (Tenrecinae subfam-

ily) were found infected by Y. pestis in sylvatic foci. They carry

nonconventional vectors like Paractenopsyllus spp., Tsaractenus sp.,

and Synopsyllus estradei (unpublished data.). This mix of susceptible

and resistant competent host species and potent vectors offers an

explanation for epizootics and human plague cases. Deforestation

also plays a major role in the dissemination of sylvatic plague to

humans as seen in the Ikongo district after the introduction of R.
rattus into this biotope. Endemic insectivores and hedgehogs in the

forest were found seropositive in anti-F1 antibodies and substan-

tiated an intense circulation of plague in this locality [39].

In the urban setting of Mahajanga, the Asian shrew, Suncus

murinus, is most likely involved in plague transmission (Table 1).

The abundance of X. cheopis on these shrews before the onset of

human plague [3], the isolation of Y. pestis strains from their

spleens [27], and their high seroprevalence after an epidemic

period strongly suggests their involvement in the plague cycle.

However, this hypothesis is questioned by the observation that Y.

pestis strains isolated from S. murinus had different pulsotypes from

those isolated from humans, rats, and fleas during the same

outbreak [3].

Plague Persistence in the Soil
During inter-epizootic periods, Y. pestis cannot be recovered

from fleas, rodents, or any other host. Persistence of the bacteria in

the soil was speculated in Iran and Madagascar [19,40,41]. Naive

rodents may thus become infected by burrowing in contaminated

soil (either via inhalation or ingestion), restarting a new cycle.

Although the exact mechanism remains unclear, previous studies

have demonstrated the survival of Y. pestis in soil for at least 24

days under natural conditions [42]. This was previously highlight-

ed in 1963 by inoculation of guinea pigs with soil samples collected

from burrows, containing remains of Meriones vinogradovi that had
been dead from plague for 7–11 months [40]. This mode of

persistence could explain inter-epizootic periods. However, the

virulence of Y. pestis experimentally kept for one month in soil

decreased considerably [19], and it was subsequently demonstrat-

ed that dry laterite highly inactivate Y. pestis [19]. Moreover,

although Y. pestis may remain viable and virulent in soil, recent

studies suggested that the transmission route by exposure of

susceptible mice to Y. pestis–contaminated soil seems unlikely

under natural conditions. Indeed, the infectious period was short-

lived and the transmission efficiency is low [43].

Human Behavior and Plague
Migration, poverty, and cultural practices can all have an

impact on the incidence of human plague in Madagascar. A recent

detailed SNP and MLVA analysis of Y. pestis strains evidenced

multiple transfers of Y. pestis isolates between the highlands and

Mahajanga harbor [44]. These transfers were most likely human-

mediated, by transportation of goods containing infected rats or

fleas by trucks or cars. In remote villages, people often prefer

visiting traditional healers instead of health centers, thus delaying

Figure 2. Main vectors and rodent reservoirs in Madagascar.
Fleas involved in plague transmission in Madagascar: Synopsyllus
fonquerniei female (1) and Synopsyllus fonquerniei male (3) are found
on outdoor rats, whereas Xenopsylla cheopis female (2) and Xenopsylla
cheopis male (4) live on indoor rats. Rat species involved in plague
transmission in Madagascar: Rattus rattus (5) and Rattus norvegicus (6).
doi:10.1371/journal.pntd.0002382.g002
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Figure 3. Plague transmission cycle. A) Plague cycle in the rural area of Madagascar. Rural plague foci of the highlands are organized into three
habitats: houses (arrow), sisal hedges (arrowhead), and rice fields (star). The black rat, R. rattus (3), is the main rodent involved in transmission
associated with X. cheopis (1) and the endemic flea S. fonquerniei (2). (Photo of plague foci: S. Rahelinirina). B) Plague cycle in the urban areas of
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the implementation of an effective antibiotic treatment. Funeral

ceremonies also favor the rapid spread of pneumonic plague

[7,20]. Indeed, a practice specific to Madagascar is to bury people

in family burial vaults and to perform ritual corpse exhumations

from time to time (Famadihana). Onsets of plague cases during

these ceremonies have been observed, suggesting that handling of

potentially plague-infected corpses may reactivate the disease. The

Ministry of Health therefore recommended respecting a seven-

year period between death and exhumation of a plague victim,

and before any transfer of a corpse from one village to another.

However, no study has been performed to determine the survival

time of Y. pestis in corpses.

Poverty associated with overcrowded dwellings is another factor

favoring rapid transmission and disease outbreaks in urban settings

[3]. In villages, storage of crops within houses to prevent robbery

attracts rats and their fleas [3,7]. Agricultural activities, defores-

tation, and bushfires also promote spread of rats and dissemination

of plague.

Finally, the discontinuation of plague surveillance since 2006

(due to financial shortages) has contributed to the reappearance of

plague in the capital’s suburbs six years after the last reported case.

Two human cases were recently confirmed there outside the

plague season, and Y. pestis was isolated from the spleen of R. rattus.

The rat population in this area showed a higher than usual flea

index, increasing the risk of Y. pestis transmission to humans and

confirming that the disease is not under control, threatening the

urban area of Antananarivo.

Effective plague prevention and control programs require up-

to-date information on the incidence and the distribution of the

disease. In Madagascar, plague surveillance (in humans and

rodents) is a key priority for the Plague National Control

Program (PNCP), established in 1993. The main objective of the

PNCP is to reduce mortality due to plague and especially the

mortality rate associated with the pneumonic form (,10% of

notified cases) [7]. Surveillance is conducted by the Central

Laboratory for Plague (CLP) of the Ministry of Health and the

Plague Unit of the Institut Pasteur of Madagascar, which are the

only facilities able to confirm plague in the country. Human

surveillance is based on compulsory notification by health

centers and on the biological confirmation of all suspected cases

by the CLP. Y. pestis resistance to antibiotics currently used in

plague treatment is also registered. The responsibility of health

centers is the early detection of cases using the rapid diagnostic

test at the patient’s bedside to implement i) an appropriate

treatment (streptomycin relayed by sulfonamide) for all suspect-

ed cases, ii) chemoprophylaxis (sulfonamide) for the contact

population, and iii) the control of fleas [7]. The community is

involved in passive surveillance of plague epizootics and rodent

density.

Conclusion

This review highlights the complexity of the epidemiology of

plague in Madagascar and the effort made by past and present

investigators to understand the reasons for the continuous

presentation of human plague cases. Recent advances in various

scientific fields have shown that the main host reservoir, the black

rat populations of the highlands, are 1,000 times more resistant to

plague than those from the coast. This is probably due to selective

pressure. Adaptation of the plague bacillus to local ecological

conditions may have also occurred, as suggested by the emergence

and spread of new Y. pestis ribotypes in the most active foci of the

highlands. The endemic flea S. fonquerniei may also play a

significant role in the onset of the human plague season, whereas

X. cheopis would be involved in sustaining disease transmission

during several months thereafter. These various factors, along with

human features, make the plague situation quite specific in

Madagascar and reinforce the need for better surveillance.

However, many questions still remain unanswered and represent

future important challenges.

Madagascar. Urban plague occurs mainly in the cities of Antananarivo (Isotry Market, left) (7) and Mahajanga (Abattoir suburb, right) (6). R. norvegicus
(4) and X. cheopis (1) are involved in each focus. The Asian shrew (S. murinus) (5) has long been suspected to play a major role in the epidemiological
cycle of plague in Mahajanga. C) Plague cycle in the forest area. A sylvatic transmission occurs in Madagascar with R. rattus (3) and endemic
micromammals (such as Setifer setosus) (8) as reservoirs. S. fonquerniei (2) is the major vector of the disease in this area. The role of other endemic fleas
(9) is not yet determined. (Photo of forest of Ampahitra: S. Telfer; Setifer setosus: V. Soarimalala).
doi:10.1371/journal.pntd.0002382.g003

Table 1. Factors related to human plague.

Rural settings High human plague season Low human plague transmission

Period of the year October to April May to September

Weather Warm and rainy Dry and cold

Food availability Absence of crops in the fields Rice harvest in the fields

Rat population (R. rattus) Low abundance (low reproduction/outbreaks due to
plague)

High rat reproduction (inside houses)

Flea abundance X. cheopis in the houses/S. fonquerniei outside

Urban settings Antananarivo city Mahajanga coastal city

Average altitude 1,200 metres 125 metres

Period of the year October to April July to November

Weather Warm and rainy Dry and cool

Major small mammal population R. norvegicus (the sewer rat) Suncus murinus (the Asian shrew)

Flea abundance X. cheopis X. cheopis

According to [3,14,20,27,28].
doi:10.1371/journal.pntd.0002382.t001
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