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Abstract. Multispectral images, including red and near-infrared bands, have proved efficient for vegetation-soil 

discrimination and agricultural monitoring in remote sensing applications. However, they remain little used in 

ground-based and unmanned aerial vehicle (UAV) imagery, due to a limited availability of adequate 2D imaging 

devices. A methodology is proposed to obtain simultaneously the near-infrared and red bands from a standard 

single RGB camera, after having removed the near-infrared blocking filter inside. Its ability to provide 

satisfactory NDVI computation for vegetation and soil has been assessed through spectral simulations. 

Application in field conditions with Canon 500 D and Canon 350D cameras have then been considered, taking 

into account signal noise and demosaicing concerns. The results obtained have proved the practical usability of 

this approach, opening new technical possibilities for crop monitoring and agricultural robotics. 

 

Keywords: NDVI, aerial imaging, multispectral, near-infrared band 

 

Nomenclature 

UAV  unmanned aerial vehicle 

RVI  ratio vegetation index 

NDVI   normalised difference vegetation index 

R, G, B, NIR red, green, blue and near-infrared band digital count respectively 

CFA  colour filter array 

BSOP  band simulation by orthogonal projection 

DC  digital count [ ] 

  wavelength  [nm] 
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e()  spectral irradiance at wavelength   [W.m-2.nm-1] 

s()  spectral sensitivity  at wavelength   [m2.W-1] 

E  irradiance vector for a set of n wavelengths [W.m-2, n dimensions] 

S  sensitivity vector for a set of n wavelengths [m2.W-1, n dimensions] 

Vi  sensitivity vector of the ith band of a sensor [m2.W-1, n dimensions] 

Vt  target sensitivity vector  [m2.W-1, n dimensions] 

Vti   ith target sensitivity vector  [m2.W-1, n dimensions] 

P(V)  projection of the sensitivity vector V on a given subspace [m2.W-1, n dimensions] 

B  base matrix of a set of p sensitivity vectors [m2.W-1, nxp dimensions] 

ait ith coordinate of a projection P(Vt) on the subspace base defined by matrix B [] 

At vector of ait coordinates of a projection P(Vt)  [p dimensions ] 

SAM(V1,V2)   spectral angle mapper between sensitivity vectors V1 and V2  [rad] 

[V1*,...,Vp*] set of initial sensitivity vectors of the p channels of a sensor [m2.W-1, nxp dimensions] 

F()  transmittance value  of an optical filter for the wavelength  [] 

F  transmittance vector  of an optical filter for a set of n wavelengths [n dimensions] 

Fc  transmittance vector  of a long-wave pass filter with a cutting wavelength c [n dimensions] 

Bc  base matrix of a set of p sensitivity vectors modified by a filter Fc [m
2.W-1, nxp dimensions] 

Pc (V)  projection of the sensitivity vector V on the subspace defined by Bc [m
2.W-1, n dimensions] 

QP(c)  cost function of the projection of a set of target sensitivity vectors on the subspace defined by 

Bc [rad] 

PN(V)  normalised projection of the sensitivity vector V on a given subspace [m2.W-1, n dimensions] 

k  normalisation factor applied to a projection P(V) to obtain PN(V) [ ] 

ki  normalisation factor applied to the projection P(Vti) of a target sensitivity Vti   [ ] 

ANt  vector of coordinates of a normalised projection PN(Vt) on a base matrix B [p dimensions ] 

Vt1 rescaled target sensitivity vector for the red band [n dimensions ]  

Vt2 rescaled target sensitivity vector for the near-infrared band  [n dimensions ] 

[V1*, V2*, V3*]Canon rescaled initial sensitivity vectors of the Canon camera [nx3 dimensions] 

[V1*, V2*, V3*]Sigma rescaled initial sensitivity vectors of the Sigma camera [nx3 dimensions] 

Fw  transmittance vector  of a long-wave pass Wratten filter n°25 [n dimensions] 

B Canon base matrix of the Canon rescaled sensitivity vectors modified by the filter Fw [nx3 dimensions] 

Author-produced version of the article published in Biosystems Engineering, 2014, 117(1), 2-14. 
The original publication is available at http://www.sciencedirect.com/science/journal/15375110 
DOI :  10.1016/j.biosystemseng.2013.06.008 



B Sigma base matrix of the Sigma rescaled sensitivity vectors modified by the filter Fw [nx3 dimensions] 

[a1, a2, a3]R coordinates of the normalised projection P(Vt1) on the subspace base defined by matrix B [] 

[a1, a2, a3]NIR coordinates of the normalised projection P(Vt2) on the subspace base defined by matrix B [] 

EGI excess green index [ ] 

NEG  normalised excess green index [ ] 

r(), g(), b()  colour matching functions CIE 1931 [ ] 

C1, C2, C3 digital counts  of the three channels  of the modified Canon camera [ ] 

b1, b2, b3  additive noise of the three channels  of the modified Canon camera [ ] 

M linear combination applied to the three digital counts of a camera [ ] 

S digital count resulting from the linear combination M [ ] 

bS  additive noise of the digital count S [ ] 

SNRS signal noise ratio of the digital count S [ ] 

NPI noise propagation index [ ] 

NPIR, NPINIR noise propagation index for the simulated digital counts R and NIR [ ] 

g1,g2 digital counts issued from the two green patterns of the Bayer CFA [ ] 

w smoothing filter width [pixels] 

w  Wilks’ lambda [ ] 

1. Introduction 

The normalised difference vegetation index, or NDVI, introduced by Rouse, Haas, Schell and Deering (1973), 

remains today a very popular tool in the remote sensing community that deal with agricultural monitoring.  This 

is mainly due to its remarkable ability to discriminate green vegetation from other material in multispectral 

satellite images. The reflectance spectrum of any green vegetation material is characterised by a sharp transition 

between low reflectance in the visible domain (typically 10 to 20%), and high reflectance in the near-infrared 

domain (typically 50 to 80%). This difference is further accentuated if the red wavelengths in the visible domain 

due to chlorophyll absorption are considered. 
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Therefore, any scalar  index built to exhibit the contrast between reflectance in red and near-infrared bands, 

using a multispectral sensor, will be a good candidate for vegetation discrimination, especially if this index is 

independent from the absolute digital count levels  R (for the red band) and NIR (for the near-infrared band).  

The “ratio vegetation index” RVI = NIR/R is such a candidate. It can take values from zero to infinity, 

depending of the amount of vegetation in the observed area. The NDVI, expressed as: 

 

NDVI = (NIR-R)/(NIR+R)  = (RVI-1)/(RVI +1)     (1) 

 

is a non-linear transformation of the RVI, transposing the same spectral information in the range [-1, +1]. 

According to Jackson, (1991), NDVI is more sensitive to sparse vegetation densities in case of “mixed” pixels, 

as encountered in remote sensing imagery with low spatial resolution. Other vegetation indices have also been 

proposed in various soil and vegetation conditions, with respect to their relationship to agronomic indices such as 

biomass and LAI (leaf area index) (Huete, Liu, Batchily and van Leeuwen, 1997), (Zhengwei, Hu Zhao,  Liping 

Di, Yu, 2009) (Jindong, Dong and Bauer, 2007). Most of these indices (ratio normalized difference vegetation 

index or RNDVI, soil-adjusted vegetation index or SAVI, transformed normalized difference vegetation index 

or TNDVI, etc.) rely on the same red and near-infrared bands. It confirms the better ability, already observed by 

Tucker (1979), of red and near-infrared band combination  for crop monitoring, compared to combinations based 

on green and red bands in the visible domain (e.g. R/G or (R-G)/(R+G), where G is the digital count for the 

green band). 

In remote sensing, the popularity of NDVI and NDVI-derived vegetation indices has been widely supported by 

the availability of red and near-infrared channels on most satellite-embedded multispectral sensors (Landsat, 

SPOT, etc.). Unfortunately, this is not the case for crop monitoring applications at lower spatial scales:  most 

vision systems embedded on ground vehicles or UAV are still based on standard colour cameras, leading to 

issues of robustness in vegetation detection and characterisation. 

This is due to both technical and economic reasons. In satellite technology, image acquisition is based on line-

scanning sensors, combined with satellite motion to get 2D images. A wavelength separation can thus easily be 

obtained through prisms or diffraction gratings associated with several parallel line sensors. However, ground or 

UAV vision systems generally use 2D acquisition sensors. Two main technical solutions are thus available to get 

multispectral channels from 2D systems: 
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- to separate the image into several ones behind the lens, using optical separators. A specific band path 

filter and CCD sensor can then be allocated to each image (multi-CCD). This solution offers some 

flexibility in the choice of the channel bands, but it requires accurate mechanical adjustments, leading to 

limited spatial resolution and high costs. 

 

- to settle a colour filter array (CFA) directly on the CCD (or CMOS) sensor, so that neighbouring pixels 

are assigned to different channels. The most commonly used CFA is the Bayer (1976). It is widely used 

on commercial colour cameras, leading to low-cost devices, but it requires a very large production scales. 

Therefore, it cannot be envisaged for the vegetation monitoring market since it would require the 

development of specific sensors equipped with NIR micro-filter matrices. 

 

Currently, some camera manufacturers propose multi-CCD devices including a NIR channel, e.g. the  MS-4100 

(Geospatial Systems Inc., West Henrietta, NY, USA), or the  AD-080 (JAI AS, Copenhagen, Denmark). 

However, the price of such devices remains prohibitive for most applications in the agricultural sector. 

Moreover, their limited spatial resolution is hardly sufficient for UAV image acquisition. 

 

To overcome this situation, some camera end users requiring a NIR channel have developed alternative solutions 

around standard Bayer matrix RGB cameras, taking advantage of an “undesirable” property of the silicon 

sensing array: because the colour filters in the Bayer matrix have a filtering action limited to the visible domain, 

the camera manufacturers are constrained to adding a near-infrared blocking filter to match standard colorimetric 

requirements. By removing this additional filter, a “modified” camera sensitive to near-infrared wavelengths can 

be obtained. 

A possibility to obtain separate R and NIR channels is to simultaneously use a standard and a modified colour 

camera, the second being equipped with a near-infrared pass-band filter. However, important issues can arise 

concerning the pixel alignment of the two images obtained (Dare, 2008). 

 

Another possible approach, which is the focus of this article, is to use a single modified camera associated with a 

long-wave pass filter, and to build the required R and NIR bands as specific linear combinations of the three 

resulting channels. This concept can be illustrated by the following. 
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On the assumption that an “ideal” modified RGB camera is being considered, where the three R,G,B channels 

deliver digital counts respectively equal to R+NIR, G+ NIR, B+NIR, if a long-wave pass filter is added in front 

of the lens that blocks the blue wavelengths, then only the NIR component is received on the blue channel. This 

component can be subtracted from the other channel digital counts leading to R, G and NIR components. 

In practise, the sensitivity of each channel cannot be modelled so simply, and a specific study is necessary to 

determine the best long-wave pass filter and the best linear combination for a given camera. This approach has 

been used by the Tetracam company (Tetracam Inc. Chatsworth, CA, USA) in its “agricultural cameras” (ADC 

series).  However, the spatial resolution of these cameras (about 3 M pixels) does not meet the present standard 

of RGB still cameras (> 10 M pixels).  

The purpose of this paper is to investigate how this approach can be extended to the current generation of 

commercial RGB imaging sensors, in order to combine robust spectral information on vegetation with high 

spatial resolution. A generic method is proposed to determine the optimal long-wave pass filter and linear 

combination for virtually any modified RGB camera, provided its sensitivity curves are known. This method, 

named BSOP (band simulation by orthogonal projection), has been applied through spectral simulation with two 

commercial imaging devices representative of the recent developments in sensor technology, the Canon 500D 

(Canon, Tokyo, Japan) and the Sigma SD14 (Sigma, Kawasaki, Japan). In another section, the Canon camera, 

which gave the best simulation results, is tested in field conditions. Practical issues in terms of image noise and 

Bayer filter demosaicing are considered, and NDVI computation results are presented. 

2. The BSOP approach: theory and spectral simulation 

The basic idea developed here is to simulate a desired spectral sensitivity (further referred to as “target 

sensitivity”) by a linear combination of the real spectral sensitivities available for a given sensor associated with 

a long-wave pass filter. In the following, this linear combination will be defined and a method to determine the 

optimal long-wave pass filter associated with the sensor will be proposed. 

 

2.1 The BSOP theory 
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2.1.1 Orthogonal projection of a sensitivity spectrum 

The spectral sensitivity of a sensor channel (or band) can be characterised by a function s() of the wavelength 

. It will generate, for a given spectral irradiance e(), a digital count DC : 





0

).().(  dseDC                                                 (2) 

For practical reasons, a limited range of wavelengths and a limited spectral resolution  will be considered, 

allowing any spectral function to be considered as a vector in a spectral space of dimension n, leading to the 

discrete expression: 

SEseDC ii

n

i

.)(.).(
1




                                             (3) 

where E=[ e(i). ] and S=[ s(i)]are vectors of dimension n and E.S is their scalar product. 

 

Assuming V1, …, Vp  are the actual sensitivities of the p bands of an imaging sensor, by linear combination of 

V1, …, Vp, any virtual sensitivity V belonging to the subspace generated by the vectorial base (V1, …, Vp) can 

be simulated.  Considering a given target sensitivity Vt that requires simulation,  in the general case, Vt will not 

belong to this subspace, and the better approximation of Vt will be its orthogonal projection P(Vt) on the (V1, …, 

Vp) subspace (Fig. 1). 
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(V1,…,Vp) subspace

Vt

P(Vt)

 

Fig. 1:  Illustration of the orthogonal projection of the target sensitivity Vt 

 

Defining B = [V1 … Vp] the matrix whose columns are the V1, …,Vp vectors,  the orthogonal projection of Vt 

on B can be expressed as: 

 

P(Vt) = B. (BTB)-1 .BT . Vt           (4) 

 

The coordinates of  P(Vt)  in the base (V1 … Vp), i.e. the coefficients of the linear combination giving P(Vt) 

from V1 … Vp, are given by the vector At  of dimension  p: 

 

At = [at1 … atp]
T = (BTB)-1 .BT . Vt     (5)         

According to Eqs. (4) and (5): 

 

P(Vt) = B.At = [V1 … Vp] .At =  at1.V1 + … +atp.Vp                                             (6) 

2.1.2 Optimal long-wave pass filter  

Whatever the set of spectral sensitivities V1 … Vp and the target sensitivity Vt, the projection vector P(Vt) 

defined above will always exist. However, this does not guarantee a satisfactory result. It has to be verified that 

P(Vt) is close to the target vector Vt. A commonly used measure of the similarity of spectral data is the SAM, or 

spectral angle mapper (Yuhas, Goetz and Boardman, 1992). This measure evaluates the angle between two 

vectors X1 and X2 of the Euclidian norms |X1|, |X2|, as: 
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SAM(X1,X2) = acos (X1.X2/(|X1|.|X2|))      (7) 

 

In this case, the value SAM(Vt, P(Vt)) should be ideally equal to zero, meaning that Vt belongs to the subspace 

(V1,…,Vp).  In the real case, where the initial spectral sensitivities of the different channels are a specification of 

the sensor, there is no a priori reason to meet this requirement. Defining V1*, …, Vp* as these initial 

sensitivities, the only degree of freedom to optimise the situation consists in adding an optical filter (e.g. by 

setting it in front of the lens) which has a spectral transmittance F, leading to a modified set of sensitivities: 

(V1,…,Vp) = (F.V1*, …, F.Vp*)                                               (8) 

Thus, our objective is  to determine the optical filter F that will minimise the SAM between the target Vt and its 

projection P(Vt), according to Eqs. (4) and (8). 

 

A possible method would be to directly search for an optimal filter F in the spectral space by minimisation 

techniques. Such a method would be rather complex to develop and it could lead to non-realisable optical filters, 

unless constraints of positivity and smoothness were introduced. In the present case, we have chosen to reduce 

the complexity of the problem by considering only simple long-wave pass filters as F candidates. The main 

advantage of this approach is the possibility of implementing the solution with off-the-shelf gelatine or glass 

filters. 

 

Let us define a candidate long-wave pass filter by its cutting wavelength c: 

Fc () = 1 if >c ; Fc () = 0 otherwise;                     (9) 

 

and let us consider k target sensitivities Vt1, .., Vtk . 

 

Then for a given wavelength c the following can be computed: 

- the subspace matrix Bc = [V1c,…, Vpc ] = [V1*. Fc,…, Vp*. Fc ]   

- the projected vectors Pc (Vt1), …, Pc (Vtk) , according to Eq. (4) 

- a global cost function taking into account the similarity between every target and its projection: 
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QP(c) = SAM(Vt1, Pc (Vt1)) + … + SAM(Vtk, Pc (Vtk))              (10) 

 

The optimal long-wave pass filter Fc will be the one that minimise QP (c). 

2.1.3 Balance of the projected vectors 

The SAM criterion above was used to determine a set of vectors P(Vt1), …, P(Vtp) matching as well as 

possible an initial set Vt1, …, Vtp of target sensitivities, in terms of spectral shape. Another important point, 

especially if these vectors are devoted to the computation of ratio indices such as NDVI, is to balance their 

relative amplitude, so that the ratios of their digital counts remain as close as possible to the original. Though this 

cannot obviously be obtained for every irradiance spectrum, an approximate solution is to ensure that the 

projected vector and the target vector have the same L1-norm1. 

 

Therefore, the following renormalisation is finally applied to each projected vector: 

 

  i  [1,p],  PN(Vti) = P(Vti). (|Vti|L1/ |P(Vti)|L1) = P (Vti) . ki                  (11) 

 

This set of balance correction factors (ki) have also to be applied to the linear coefficients defined in (5): 

 

ANti = ki. Ati      (12) 

 

 

2.2 BSOP spectral simulation 

 

In this subsection, the theoretical concepts described above are applied to a set of commercial cameras in order 

to evaluate the possibility to simulate simultaneously the R and NIR bands. For this purpose, after laboratory 

measurement of the camera sensitivities, optimal linear combinations are determined, as well as their application 

to NDVI computation on a set of vegetation and soil spectral data. 

                                                           
1 The L1-norm of a vector is defined as the sum of the absolute values of its components. If its components are all positive, 

the L1-norm of a sensitivity vector is equal to its scalar product with a flat spectrum Ef = (1,…,1), i.e. is equal to its digital 
count for a non-colored irradiance source Ef. 
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2.2.1 Material and methods  

2.2.1.1 Camera sensitivity measurement 

Two commercial still cameras were selected for the BSOP assessment: the Canon 500D (Canon, Tokyo, 

Japan), representative of recent high resolution Bayer matrix sensors (15 M pixels), and the Sigma SD14 (Sigma, 

Kawasaki, Japan), for the original technology of its Foveon X3 sensor. The Foveon sensor is made of three 

separate layers of photodetectors. Since silicon absorbs different wavelengths at different depths, each layer 

captures a different colour and no Bayer matrix is required, leading to a better spatial resolution. However, there 

is less control on the spectral sensitivity curve of each channel. 

 

Each camera was opened and its near-infrared blocking filter removed. The spectral sensitivity of each 

“modified” camera was then measured in the range 440-990 nm, with 10 nm steps. For this purpose, a tunable 

monochromatic light source of a laboratory spectrometer (V-570, Jasco Inc, Easton, USA) was placed in front of 

the camera lens via an optical fiber, at a 300 mm distance. Images were taken for each wavelength in the 

following conditions: no ambient light; focal length 50 mm; sensitivity 100  ISO; Integration time 5 s. 

 

The average level of the light source image was collected for each channel using the raw camera images (see 

3.1.3 for more detail on raw images), using home-made image analysis software. 

 

It should be noted that due to the numerous parameters involved (intensity of the light source, camera exposure, 

etc.), the procedure described here cannot be considered as a radiometric measurement. Sensitivity curves 

defined in Eq. (3), theoretically expressed as m2.W-1, are obtained here up to an arbitrary scaling factor.  

2.2.1.2 Definition of the target sensitivities 

Two target sensitivities Vt1, Vt2 corresponding respectively to the R and NIR bands have been considered. 

Because no standardised sensitivity data are clearly defined in the literature for the NDVI computation (some 

authors use the bands TM3 and TM4 of Landsat, others simply use 660 nm and 760 nm wavelengths), the 

following procedure has been used: 
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- the R band has been derived from the CIE 1931 colorimetric data (CIE, 2004), by taking the positive part of 

the standard curve r() and applying a 30 nm shift,  leading to a bandwidth 600-670 nm at mid-height.  

- the NIR band was computed by a 160 nm shift of the R band, leading to a bandwidth 760-830 nm at mid-

height.  

 

Both target sensitivity curves have been reported on Fig. 5. 

2.2.1.3 BSOP computation 

In order to be used on real hyperspectral data, all the data defined above were resampled according to the 

spectral resolution of a hyperspectral camera Hyspex VNIR-1600 (Norsk Elektro Optikk A/S, Norway), i.e. 160 

spectral bands from 415 to 993 nm. 

According to the notations defined in section 2.1, this led to two sets of vectors V1*, V2*, V3* (one for each 

type of camera) and two vectors Vt1, Vt2 of dimension 160.  All related computations were made using Matlab 7 

(The MathWorks, Natick, MA, USA). 

Once the optimal cutting wavelength was determined, the closest existing gelatin Wratten filter was chosen. Its 

actual transmittance curve was measured with the Jasco V-570 spectrometer, and resampled according to the 

Hyspex 160 bands, leading to a filter vector Fw. Finally, for each type of camera, the projected vectors PN(Vt1) 

and PN(Vt2) on the subspace (Fw.V1*, Fw.V2*, Fw.V3*), as well as the corresponding coefficients At1 and At2, 

were computed and renormalised according to Eqs. (11) and (12). 

2.2.1.4 Simulation on field hyperspectral images 

Hyperspectral images of wheat durum were acquired in experimental fields (INRA, Domaine de Melgueil, 

France) in March 2011, using the Hyspex VNIR-1600 camera. The camera was set on a motorised translation 

rail one metre above the ground (Vigneau, Ecarnot, Rabatel and Roumet, 2011). The images included durum 

wheat at an early stage, as well as various types of dicotyledonous and monocotyledon weeds. A total of 2210 

luminance spectra were then collected in the hyperspectral images by manually selecting areas, including wheat, 

weeds and soil categories (Fig. 2). 
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For every collected spectrum S, the digital counts R and NIR corresponding to red and near-infrared target 

sensitivities Vt1, Vt2 were computed using Matlab as R = S.Vt1 and NIR = S.Vt2, according to Eq.  (3). A 

reference NDVI value was computed using these R and NIR values.  

The same operation was made using PN(Vt1) and PN(Vt2) instead of (Vt1, Vt2) to compute an estimated NDVI 

for each type of still camera.  

 

 

 

Fig. 2. Luminance spectrum examples on a durum wheat crop hyperspectral image 

(NB: the atmospheric absorption peaks can be observed on the spectra) 

 

 

2.2.2   Simulation results  

2.2.2.1 Camera sensitivity measurement 

As mentioned in section 2.2.1.1, sensitivity spectra were obtained up to an arbitrary scale factor. They were 

rescaled so that their maximum value was equal to 1 (initially 1033 and 1632.8 for the Canon and the Sigma 

cameras, respectively). These rescaled sensitivity curves [V1*,V2*,V3*]Canon and [V1*,V2*,V3*]Sigma , which were 

used for further computations, are given in Fig. 3. 
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Fig.3. Spectral sensitivities of the Canon 500D and Sigma SD14 without near-infrared blocking filter 

(sensitivities were rescaled for a maximum value equal to unity) 

2.2.2.2 Optimal long-wave pass filter 

In Fig.4, the BSOP quality curves QP (c) according to Eq. (10) is shown.  It can be seen that in both cases, 

QP (c) is undefined for  c > 728 nm, because the projection of Vt1 (i.e. red band) becomes null. The best 

BSOP quality is obtained for c  600 nm, and is much better for the Canon camera.  
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Fig 4. BSOP quality QP (c) of Canon and Sigma cameras 

2.2.2.3 Red and near-infrared bands 

According to the results above, a standard Wratten filter Kodak n°25 (gelatin, cutting wavelength: 600 nm) was 

selected. The actual transmittance Fw was measured with the Jasco spectrometer, and scaled for a maximal value 

equal to 1, according to Eq. (9). The corresponding projection base for each camera was then computed 

according to Eq. (8): 

 

BCanon = [V1 V2 V3]Canon =  [Fw.V1*, Fw.V2*, Fw.V3*]Canon  (13) 

 

BSigma = [V1 V2 V3]Sigma =  [Fw.V1*, Fw.V2*, Fw.V3*]Sigma  (14) 

 

 

Finally, the BSOP linear coefficients and balance factors were computed according to Eqs. (4), (5) and (12). 

They are reported in Table 1 along with the SAM values between target sensitivity and projection: 
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 R NIR 

 k 
SAM 

(rad) 
a1 a2 a3 k 

SAM 

(rad) 
a1 a2 a3 

Canon 500D 0.876 0.273 0.863 -1.430 0.620 0.743 0.588 -0.333    0.0902   1.745 

Sigma SD14 0.774 0.321 0.668 0.008 -3.295 0.858 0.783 -0.324 0.811 5.035 

 

Table 1:  Balance correction factors (k), SAM(Vt, P(Vt)) and linear coefficients (ai) 

 for simulated R and NIR bands with a filter Wratten N°25 

 

It should be noted  that the coefficients (ai) given in Table 1 are up to a scale factor, according to the scaling 

applied on matrices BCanon and  BSigma above.  However, the corresponding simulated sensitivity curves, 

computed using Eqs. (4) and (12), do not depend on the BCanon and  BSigma scaling. These curves are given in 

Fig.5, as well as the reference, for comparison. It appears that for both cameras, the simulated NIR band is the 

less satisfactory since its domain is not limited to wavelengths above 750 nm with wavelengths from 600 to 750 

nm also contributing both negatively and positively. This was particularly noticeable for the Sigma camera, 

where the contribution of lower wavelengths was as high as the contribution of near-infrared wavelengths. These 

observations confirm the different SAM values reported in Table 1, recalling that the sum of these two values for 

a given camera corresponded to the minimal value of  QP (c)  in Fig. 4.  
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Fig. 5. BSOP bands for Canon and Sigma cameras with Wratten filter n°25. Thin lines: target sensitivities Vt1, Vt2. Thick 

dash line: BSOP red band; thick solid line: BSOP near-infrared band 

2.2.2.4 NDVI computation 

Figure 6 shows the NDVI values computed with the simulated bands of Fig.5, versus the reference NDVI values 

computed with the target sensitivities Vt1,Vt2, for the 2210 luminance spectra collected in the durum wheat crop 

(see section 2.2.1.4). 

 

It can be seen that there are two clearly separated groups of NDVI values. They correspond respectively to soil 

and vegetation (wheat, monocotyledons and dicotyledons), confirming the remarkable efficiency of NDVI for 

crop-soil discrimination. For comparison purposes, Fig.7 shows the histograms of EGI or excess green index 

(Woebbecke, Meyer, Von Bargen & Mortensen, 1995)  and NDVI for the whole set of samples, and the better 

separation between the two groups obtained with NDVI  (EGI was simulated for each luminance spectrum using 

the CIE 1931 standard curves r(), g(), b() as mentioned in section 2.2.1.2). 

 

The prediction quality using the Canon camera was significantly better since the NDVI values obtained are 

nearly equal to the reference except for the highest values (NDVI > 0.8) where the error remains less than 10%. 
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Fig. 6 Predicted versus reference values of NDVI 
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Fig. 7 EGI histogram versus Canon NDVI histogram 

 

2.2.2.5 Choice of the Canon camera 

From the results above, it appears that the spectral characteristics of the Sigma sensor were not appropriate for a 

BSOP of R and NIR bands. Concerning the Canon camera, although the shape of simulated bands was not 

completely satisfactory, the good results in terms of NDVI computation motivated further assessments in real 

field conditions. This is the purpose of the next section. 
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3. The BSOP approach: practical implementation 

It was shown in the previous section that an efficient simulation of R and NIR bands could be obtained from a 

Canon 500 D camera after removing its near-infrared blocking filter. The study was based on laboratory 

measurement of camera characteristics and spectral simulation of image acquisition process. In the present 

section, the situation under field conditions will be investigated, dealing directly with image digital counts and 

taking in account practical aspects such as signal-noise ratio and channel demosaicing. 

 

3.1 Material and methods 

 

3.1.1 Image acquisition 

 

Various aerial images were acquired using modified cameras (no near-infrared blocking filter). Depending on 

their availability, either a Canon 500D or a Canon 350D was used, both use similar sensors. A 58 mm red glass 

filter Hama Rot R8 (25 A) (Hama GmbH & Co, Monheim, Germany) was placed in front of the lens as a long-

wave pass filter. Although this filter was specified as being equivalent to the Wratten n°25, its transmittance 

curve was measured in the laboratory using the Jasco V-570, and the corresponding BSOP coefficients computed 

again using the Canon 500D sensitivity data. Images were acquired by a private company (AvionJaune, 

Montferrier, France) using microlight aircraft or UAV, depending on the flight altitude. 

For comparison purpose, the same aerial scenes were also acquired using standard RGB cameras. In order to 

illustrate the plant/soil discrimination ability in both cases, the following procedure has been followed: 

- for images acquired with the modified cameras, NDVI values were computed using the R and NIR 

digital counts obtained from the procedure described in section 2. 

- for standard RGB images, the EGI = 2G-R-B as well as its normalised version NEG = EGI/(R+V+B) 

(normalised excess green) were computed. RGB channels were computed from raw images and exported as 

TIFF files (Tagged Image File Format), in order to avoid JPEG (Joint Photographic Experts Group) compression 

artefacts. 

- NDVI, EGI and NEG images were then computed by scaling their index values in the range 0-255 (8 

bits), and thresholded automatically according to their grey level histogram. For this purpose, the Otsu method 

was used (Otsu, 1979), which minimises the ratio between inter-class inertia and total inertia for the two classes 
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issued from thresholding. This ratio, known as Wilks’ lambda (w) in multivariate analysis, gives an indication 

on the thresholding quality and robustness. 

In the following examples, NEG results will not be presented, because their w values were always lower than 

those obtained with EGI. In every case, the focus of the modified camera was set manually. An example of aerial 

scene is given in Fig. 8. 

 

 

 

Fig. 8 Example of aerial image (Canon 500D, altitude 1000m, vineyard area, September  2011, south of France)) 

Manual rectangles show selected areas for further detailed analyses 

 

3.1.2 Channel linear combination and signal-noise ratio 

 

In section 2, digital counts R and NIR were computed from hyperspectral data according to equation (3). Under 

field conditions, they have to be computed directly from the digital counts of the camera raw channels, using the 

linear coefficients [a1, a2, a3]R and [a1, a2, a3]NIR issued from Eqs. (5) and (12).  

 

Defining [V1 V2 V3] as the raw sensitivity curves of the camera, and e() the  irradiance spectrum for a given 

pixel, the digital count corresponding to a linear combination [a1 a2 a3] is given by: 

 

 



0

332211 .)(.)(.)(.).(  dVaVaVaeDC    (15) 
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where C1, C2, C3 are the digital counts of the raw channels for this pixel, after integration by the camera sensor. 

 

 As explained in section 2.2.2.3, the coefficients [a1, a2, a3]R and [a1, a2, a3]NIR range up to a scale factor. 

However, especially when computing NDVI, the important point is not the absolute value of the NIR and R 

digital counts, but their signal-noise ratio (SNR) which is linked to the SNR of raw signals and to the way noise 

is propagated through a1, a2, a3 coefficients. 

 

Let us consider again a linear combination M = [a1 a2 a3] to be applied to the raw digital counts (C1, C2, C3), and 

let us call S= M.[ C1 C2 C3 ]
T the resulting digital count . Now let us consider that the signals C1, C2, C3 are 

respectively affected by the additive, centered noises b1, b2, b3. Then S will be affected by an additive noise bs 

such that: 

 

   TT
S bbbMSbCbCbCMbS 321332211 ..     (17) 

 

The variance of bs can be computed as: 

 

     
ji

jiji
TT

s aabbbbbMMbbbb
,

321321
2 ...)...(   (18) 

 

If we make the hypothesis that b1, b2, b3 are independent noises with the same variance b², it comes: 
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Now let us consider the square of the signal S: 
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leading to a SNR: 
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In the case where C1 = C2 = C3 =c, we can directly express SNRS from the raw signal-noise ratio c/b : 
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The value NPI (noise propagation index), which only depends on matrix M, can be considered as an indicator of 

the SNR propagation due to the linear combination. Its value can be higher or lower than unity, depending on the 

sign of the cross-terms ai.aj (i ≠ j). While addition of the raw channels will increase the SNR (making a noise 

average), subtraction operations reduce the output signal level for a given noise level and thus decrease the SNR. 

 

The NPI value will be considered for both R and NIR linear combinations in the results section. 

 

3.1.3 Raw image importation and demosaicing 

 

Most commercial still cameras provide images in JPEG format. Such a format is not appropriate in our 

application for several reasons.  Radiance signals are coded on 8 bits (256 grey values), limiting the accuracy of 
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further linear combinations, and internal colorimetric corrections are applied to the each channel. Also, JPEG 

format includes spatial image compression. However, up market cameras also provide “raw” images, which 

deliver exactly the sensor output in an uncompressed format. In Canon products, the raw images are available as 

files that can easily be read using open source software such as DCraw 

(http://www.cybercom.net/~dcoffin/dcraw/). The result is a set of four images corresponding to each position in 

the Bayer filter pattern (Fig. 9). Pixel values are coded with 16 bits, the effective range depending on the camera 

(14 bits for Canon 500D). As an option, the dark current level of the CCD sensor can be automatically measured 

in image margins and subtracted from each pixel’s value.  

 

r

g2 b

g1r

g2 b

g1

 

 

 

Fig. 9: Bayer filter pattern (left) and image detail for one raw channel (right) 

 

 

Before using raw channels, a demosaicing step is necessary, which consists in filling black pixels of each 

channel by interpolating neighbouring active pixels. For this purpose, many interpolation algorithms have been 

specifically developed (King-Hong & Yuk-Hee, 2006) (Hirakawa & Parks, 2005). However, such algorithms are 

mainly designed to optimise the picture quality in terms of human visual perception, rather than the absolute 

pixel value accuracy. 

 

In our case, a demosaicing procedure based on spline interpolation (Thevenaz, Blu, Unser, 2000) was 

implemented as following: 

- each raw channel image was reduced by 2x2  keeping only the active pixels 
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- the reduced image was smoothed, according to Nyquist–Shannon sampling theorem requirements 

(Marks, 1991), using a 1st order Deriche (1990) recursive filtering. This filter acts like a convolution 

mask  g(x,y) expressed as: 

w

y

w

x

e
w

y
e

w

x
yxg


 ).1.(.).1.(),(      (24) 

where (x,y) are image coordinates,  is a normalization factor, and w is the convolution width. A main 

interest of this type of filter is that w, expressed in pixels, may be adjusted to any floating point value 

with no computational change. 

- missing pixel values in the original image were then computed by floating point interpolation in the 

reduced image 

- finally, both processed images issued from g1 and g2 were averaged to provide the DC count C2, while 

C1 and C3 were directly given by the processed images issued from r and b respectively. 

 

It should be noted that after demosaicing, the two images issued from g1 and g2 should be identical for every 

pixel. This provides a way to assess the demosaicing quality, as illustrated further (section 3.2.2). 

 

3.2 Results and discussion 

 

3.2.1 Channel linear combination and signal noise ratio 

 

The linear coefficients for the Hama filter as well as the noise propagation indices according to Eq. (23) have 

been computed, and are given in Table 2.  

 

R NIR 

a1 a2 a3 NPIR a1 a2 a3 NPINIR 

0.9744 -1.7329 0.8477 0.0413 -0.3761 0.0082 2.1522 0.8167 

 

Table 2 : Linear coefficients and noise propagation index for Canon 500D with Hama red filter 
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It can be seen that the linear coefficients with the glass filter are slightly different from the ones obtained with 

the gelatine filter in section 2 (indeed, a detailed observation shows significant differences in the shape of their 

transmittance curves above the 600 nm cutting wavelength). Moreover, it is important to notice that the SNR 

propagation index NPIR is very low. This is due to the fact that the R band is roughly obtained by subtracting the 

second channel from the sum of the other ones (see coefficients a1, a2, a3), leading to a significant signal 

reduction. However, the NIR digital count was mainly due to the third channel contribution, leading to a better 

NPINIR value. 

In the following sections, all R and NIR bands were computed using these coefficients, and their values 

truncated to zero if negative. 

 

3.2.2 Image demosaicing 

 

In order to tune the smoothing step in the demosaicing procedure, a small portion of the 1000 m altitude aerial 

image (Fig. 7) with significant local variations and similar levels on computed R and NIR bands has been 

selected. The standard deviation of the difference between the two raw channels g1 and g2, after demosaicing, 

was reported for various values of the smoothing filter width w. The results are given in Table 3. 

 

 

Smoothing g1 channel average Standard deviation of (g1-g2) Ratio (demosaicing SNR) 

none 267.69 17.22 15.54529617 

w = 0.1 270.86 17.32 15.63856813 

w = 0.2 270.74 16.18 16.73300371 

w = 0.5 270.08 9.51 28.39957939 

w = 1 269.84 4.66 57.9055794 

w = 2 270.15 1.99 135.7537688 

 

Table 3: Standard deviation between raw channels g1 and g2 after demosaicing on a textured image area for 

various smoothing widths, and corresponding SNR 
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Figure 10 shows some examples of R and NIR computation for this image portion. It confirms that the R band 

exhibits more demosaicing noise (due to low NPIR), and that a smoothing width of at least 0.5 pixels is 

necessary.  

 

R .    

  152.1    152.8    152.7 

No smoothing   w = 0.5    w = 1 

 

NIR .    

  181.4    183.4    183.1 

No smoothing   w = 0.5    w = 1 

 

Fig. 10: Computed R  and NIR bands for various smoothing widths 

up: R band ; low: NIR band. Average band level (before 8 bits image scaling) is reported under each image 

 

 

 

3.2.3 NDVI computation 

 

Figure 11 shows an example of NDVI computation and thresholding using a single modified Canon 350D 

camera, as well as standard colour acquisition for comparison. Images have been acquired in March 2012 on a 
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wheat field plot (INRA, Mauguio, France) through two separate UAV flights. The flight altitude was about 30 m, 

and the spatial resolution was 10 mm. Only portions of the image are shown here. 

 

a    b  

 

c  d  

 

Fig. 11: EGI and NDVI computation on a wheat parcel. a: colour image; b: EGI thresholding (W=0.66); 

 c : NDVI; d: NDVI thresholding (W=0.81). Bare soil zone is due to moisture sensor implementations 

 

The better accuracy of NDVI thresholding compared to EGI thresholding in Fig.11 is confirmed by the W 

values (0.81 and 0.66 respectively). Also, it is important to notice that the linear coefficients of Table 2, 

determined from Canon 500D characteristics, are still suitable for the Canon 350 D. 

 

Figure12 shows a particular case including various types of vegetation. The corresponding images (standard and 

modified Canon 500D cameras, one flight for each) are issued from the scene of Fig. 8. They were acquired in a 

vineyard area (Camargue, south of France) in September 2011, with a flight altitude of 1000 m and a 50 mm lens 

(spatial resolution ~ 100 mm). 
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According to W values (0.7527 and 0.7531 respectively), EGI and NDVI have similar thresholding quality. 

However, with EGI, only the trees are discriminated from the soil. The vine rows (dark green) are only detected 

using NDVI. In that sense, NDVI appears as more robust for plant detection. 

Computed R and NIR bands are also given for illustration. 

 

 

 

a  b   c  

 

d   e  f   g  

 

 

Fig. 12: EGI and NDVI computation on a vine parcel. a: colour image; b,c: EGI computing and thresholding 

(W =0.7527); d,e: NIR and R computed bands; f,g: NDVI computing and thresholding (W =0.7531) 

 

4. Discussion and conclusion 
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We have shown that NIR and R bands for NDVI computation can be obtained from a single standard digital 

RGB still camera, by removing the near-infrared blocking filter inside the camera and adding an external long-

wave pass filter. A generic method, called BSOP, has been proposed to determine the optimal external filter. 

This method was initially evaluated through simulation using field spectral data, showing the good potential of 

the Canon 500D camera in this context. 

 

Further tests in field conditions with a Canon 500D and a Canon 350D (using the same linear combination 

coefficients) confirmed the simulation study, with the following limitations: 

 

- due to the Bayer filter matrix, a slight smoothing step is necessary, reducing the spatial resolution 

compared to one announced by the camera producer. 

- especially when computing the R band, the linear combination amplify the image noise, because it 

involves subtractions of the raw signals. Therefore, a particular attention must be paid to get a correct 

image exposure and take benefits of the depth of the raw signals (14 bits for the Canon 500D). 

- NDVI resulting values were assessed on vegetation and soil samples. However, because the R and NIR 

sensitivities issued from BSOP computation are approximations of the standard values, the results for 

other materials are not guaranteed. 

 

 

Due to these limitations, comparisons with alternative approaches have to be considered again at this stage. 

Compared with multi-CCD NIR sensors, practical tests have shown that the resulting spatial resolution remains 

widely higher, at a very lower cost. However, a solution associating a standard and a modified camera, such as in 

(Dare, 2008), remains attractive for the following reasons: 

- it provides a better control of the NIR band shape, by using a near-infrared pass-band filter. 

- it has less concerns about SNR 

- it allows the standard RGB colour imaging, which can be of a great practical interest, to be kept even if 

not used for image processing. 
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As stated above, the main concern associated with using two cameras is about image registration, due to the 

intrinsic difference of grey-level distributions between NIR and visible images of a same scene. This can be 

partially overcome when a simple geometric transformation model (typically homography) can be assumed 

between the two images, i.e. when the imaging elevation is sufficient. Such a problem does not exist in our 

proposed solution, which remains usable with any camera-scene distance. 

 

A final point to be discussed is the influence of ambient light. NDVI has initially been defined using R and NIR 

reflectance values, independent from the ambient lighting conditions. In remote-sensing, reflectance is obtained 

from luminance digital counts using sky spectrum and atmospheric correction models.  At lower spatial scales, it 

is usually obtained by means of a reference material such as Spectralon® (Labsphere Inc, North Sutton, NH, 

USA) placed in the scene. In our case, as with any other alternative approach, it is clear that such reference 

material should be used in order to balance the R and NIR signal and obtain normalised, comparable NDVI 

values. 

 

In the section 3, another type of NDVI usage, related to vegetation discrimination, was investigated. In this 

context, the NDVI was computed directly from luminance signals, and thus the results are formally depending 

on lighting spectral conditions, as it is the case with most standard RGB discrimination approaches. But a strong 

underlying hypothesis in the case of NDVI is precisely that the significant gap between vegetation and non-

vegetation values (as observed in Fig. 7) allows light spectral variations to be overcome much more efficiently 

than with RGB. This hypothesis is not specific to our approach.  

 

In conclusion, the approach proposed here can provide an efficient solution for cost-effective, high resolution 

acquisition of NDVI images. Compared to alternatives, this solution can be particularly interesting in the case of 

short range imaging for NDVI computation (in association with light measurement reference material) or robust 

vegetation detection. This opens up new possibilities for crop monitoring, as well as vision for agricultural 

robotics.  
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