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Abstract: A computational formalism is presented that structures a C++ library which aims at the modelling, simulation

and statistical analysis of stochastic non-linear discrete dynamical system models. Applications concern the

development and analysis of general plant growth models.

1 INTRODUCTION

With the increasing need in modelling in all fields of

science, and sometimes a lack of precautions in the

way models are developed and used, some authors

tried to define and promote good modelling practices

for environmental sciences (Van Waveren et al., 1999)

or in physiology and medicine (Carson and Cobelli,

2001) by proposing different steps in the modelling

process, from conceptual work to model applications.

These steps include the use of statistical analysis tools

like parameter estimation, sensitivity analysis, uncer-

tainty analysis or model selection.

Some existing numerical platforms like R, Scilab

or Matlab propose existing algorithms belonging to

these categories but no real standardization for the

inputs and outputs of these tools. Moreover some

existing modelling platforms like Modelica, Xcos or

Simulink have a good modelling framework but are

mainly deterministic and stream oriented which pre-

vents implementing powerful estimation methods in

a proper statistical framework. Finally all these plat-

forms are disconnected in the sense that going from

one to another for analyzing a model is not an easy

task in terms of engineering. Each tools and algo-

rithms have a different set of required inputs.

In this context, our objective is to design a single li-

brary that allows to create, to evaluate and to analyze

models with a common language among modellers

and statisticians. This library has the following char-

acteristics :

• it uses a multi-paradigm programming style with

emphasis on generic and functional paradigms.

• it uses a common syntax for modelling, simula-

tion and analysis algorithms.

• it provides a flexible template for model observa-

tions, adapted to the heterogeneous and irregular

observations of biological systems.

• it is adapted to stochastic systems, particularly

the implementation of modelling and observations

noises.

• implements statistical methods for model analysis

and evaluation

In section 2, we describe the modelling framework

of the platform. In section 3, we show how to repre-

sent the simulation framework with a projection on a

3D-grid that eases the implementation of numerical

methods and their parallel computation. In section 4,

we present an overview of the implemented methods.

In section 5, we illustrate the potentials of the library

on a complex test case of data assimilation of a plant

model. Finally, we will discuss about the perspectives

of this library.

2 MODELLING

Better understanding of plant development and

growth is a key issue to make agriculture practice

more competitive and more respectful of the environ-

ment.

Agronomic researchers and engineers have built sev-

eral models for this purpose. Geometrical or empir-



ical at first, models are more and more mechanistic,

with the development of agro-environmental ((Bris-

son et al., 2003)), and functional-structural models

((de Reffye et al., 2008), (Vos et al., 2010)) which

are used for the description at macro and mesoscale

levels.

These mechanistic models have the following charac-

teristics:

• complexity in terms of the numbers of interacting

processes and of parameters.

• difficult parameter estimation due to the non-

linearity of the model and irregularity of data.

• sophisticated and costly methods for their analy-

sis.

• possibly high memory need during computation

for models of plants with complex structures like

trees.

A general representation of plant growth can be given

in the general state-space form, with model equa-

tions describing the discrete evolution of the state

variables X ∈ R
x across time steps, and observation

equations, giving the system observation variables

X ∈ R
y as functions of the state variables (Cournède

et al., 2011). For biological systems, these observa-

tion functions may be very rare (no observation at

most time steps) and heterogeneous (different types

of observations at different observation times).

Let us decompose the observation vectors Y in k el-

ementary sub-vectors Y = (Y1,Y2, . . . ,Yk), such that

at each step of system observation j, the observa-

tion function G j can be described by a subset of the

{Yi}1≤i≤k, corresponding to the set of variables that

are observed at step j. The elementary sub-vectors Yi

are called observers (their choice is not unique) and

τi = { j such that Yi is observed at step j} is called the

timeline of observer i.

Equation (1) describes the general state-space form

taking into account the irregularity and heterogeneity

of data.

{

Xn+1 = Fn (Xn,Un,P,εn)
Yn = Gn (Xn,P,ε

′
n) = (YiΛτi

(n))1≤i≤k

(1)

with Λτi
(n) = 1 if n ∈ τi, else 0.

In order to translate Equation (1) into an effective

code for simulation, we first give the following def-

initions:

• A dynamical model denotes a 6-tuple M =

{X ,U,P,εM , INIT,NEXT} where:

– {X ,U,P} denote respectively the set of state

variables, the set of control variables, the set

of parameters of the full model.

– εM denotes the set of stochastic variables of

the model errors. The space dimension corre-

sponds to the dimension of the random vector

used in the model equations.

– INIT denotes an initialization function to deter-

mine the initial state X0 such as X0 = INIT (P)
and INIT : X ×P → X

– NEXT represents the transition function of the

dynamical model such as NEXT : X ×U ×P×
εM → X

• An observation model denotes a 5-tuple O =
{X ,P,Y,εO ,OBSERV E} where:

– Y denotes the output of the observation model.

– εO denotes the set of stochastic variables for the

observation errors.

– OBSERV E denotes an observation function

such as OBSERV E : X ×P× εO → Y

• An observer denotes a 2-tuple O = {O, T ML}
where T ML is a timeline which controls the ob-

servation of the dynamical system.

Thus the global stochastic dynamic sys-

tem model (with observations) is de-

noted by a 8-tuple S = {X ,U,P,Y,εM +

{εO}1≤i≤k, INIT,NEXT,{OBSERV E,T ML}1≤i≤k}

where:

• the indexes i, 1 ≤ i ≤ k represent different ob-

servers. We do not consider a unique observer be-

cause of the irregularity and diversity of observed

variables. It is a very important specificity of bi-

ological systems for which experiments are diffi-

cult or costly (Cournède et al., 2011). The error

models for each observer will also be specific.

• ε
M
+{εO}1≤i≤k represents the total set of stochas-

tic vectors for model simulation.

To generate the random sequences (εn)0≤n≤N−1 ∈

(εM )N
, with N the maximum simulation time and

(ε′n)0≤n≤N−1 ∈ (εO)
N

, for each of the k different ob-

servers, we also define a random vector model by a

3-tuple V = {P,εV ,LAW} such as:

• P denotes the set of parameters of the LAW .

• εV is the set of stochastic vectors

• LAW represents the law of the probability distribu-

tion such as LAW : P× [0;1]v → εV , where v is the

dimension of the random vector: if εV ⊂ R
v is a

probability space of dimension v, there exists a bi-

jection ψ from [0;1]v onto εV given by the inverse

of the marginal cumulative distribution function

of each component.

A simulation of the random vector is thus built from

a random model V and a generator that generates a



sequence in [0;1]v. Different types of generators ex-

ist (pseudo-random based on congruential sequences

for example as Mersenne-Twister (Matsumoto and

Nishimura, 1998), quasi-random (Kocis and Whiten,

1997), ...). The sequence generated by the generator is

usually uniquely determined by a seed, corresponding

to the first element of the sequence in [0;1]v. There-

fore, a simulation of the random vector is a 5-tuple

{V , p,N,S0,GENERAT E} where S0 is the seed of

generator and GENERAT E the function that gener-

ate the random sequence in [0;1]v, p ∈ P and N the

maximal time of the simulation.

Such random variable simulation is used in the dy-

namical system simulation to generate both model

and observation noises (for each of the k observers).

3 SIMULATION

In this section we detail how the modelling frame-

work can be projected onto a ’simulation grid’ to cate-

gorize and formalize the different algorithms used for

model analysis. This also helps to consider the tran-

sition to parallel computing. The categorization will

be conducted both in terms of input arguments of the

algorithms and pathways.

We give the following definitions:

• a context c denotes the initial conditions and as-

sociated control variables. In our case, the control

variables are given by the environmental condi-

tions and are supposed to be fully known at the

beginning of the simulation. Therefore c is com-

posed of X0 and (Un)0≤n≤N , where N represents

the last time step of the simulation.

• parameters p are the full vector of parameters of

the observation model and dynamical model.

• an observer list [o] denotes the composition of

several observers i.e. a several observation func-

tions with their timelines.

• a list of seed [seed] is given to either dynamical

model or observation model for initializing the

random generators.

• an observation list y denotes the result of ob-

servers during a simulation

• a simulation is the combination of a dynamical

model, an observer list, a context and a set of pa-

rameters

• simulate denotes a function that applies a param-

eters set to a list of simulations.

Left of the figure 1 summarizes all these concepts in

a syntax tree.

Figure 1: Simulation syntax tree.

Moreover a key feature for interacting with users is

to rebuild simulations from experimental data by ex-

tracting the list of context and observer list. For this

purpose we define:

• an experimental data ed denotes data that have

been observed for a given context.

• experiment e denotes observations that will be ob-

served for a given context. Experiment is a tuple

composed of a context and an observer list.

Right of the figure 1 summarizes these two concepts.

We have thus defined data structures for represent-

ing observation data and simulations, and a simula-

tion function.

As we will see in section 4 most algorithms use a

combination of contexts and parameters as inputs. As

a result, these algorithms manipulate lists of simula-

tion.

A conceptual grid helps to classify the algorithms of

interest for model analysis and estimation detailed in

section 4. The classification is done regarding which

part of the grid is used and how we go through it.

For the sake of clarity, we leave aside the notion of

observer and use only context and parameters.

Algorithms in section 4 have to simulate a list of sim-

ulations by the combination of:

• a lot of contexts for a given parameter set.

• a single context with a lot of parameter sets.

• a lot of contexts with a lot of parameter sets.

On figure 2 we give a representation of the simulation

grid, with the following axis:

• x-axis for contexts.

• y-axis for parameter sets.

• z-axis for time steps.

For each triple (x,y,z) we associate an equivalent

triple (Ci,P
j,n) and its transformation [Yn]

j
i through

the simulation function which is the result of doing

observations at time n on cell (i, j).
There are two ways for going through the grid:



Figure 2: Grid for simulation.

• in one single run which corresponds to obtaining

a full observation vector for all simulations.

• per step which corresponds to obtaining a slice of

observations as shown in figure 2.

Both model and observation equations might be per-

turbed by noises. There is a unique random generator

for each noise, that is to say for each stochastic vari-

able.

In figure 2 each cell of the plane (corresponding to

one context and one parameter set) has its own gen-

erator list denoted by a black dot. This black point is

composed of several dots which are the seed of each

random generator. ∼{εM } is the generator associated

to the model noises and ∼ {(εO)i} is the generator as-

sociated to the observer Oi, for all i, 1 ≤ i ≤ k. The

curves illustrate the random trajectories.

4 ANALYSIS

Key steps in the modelling process concern analysis

and parameter estimation.

The following methods are implemented in the

platform:

• frequentist parameter estimation approaches,

like generalized least squares estimator (GLSE)

or maximum likelihood estimator (MLE).

Generally, the estimation involves a context

list and an observer list, and handles at each

algorithmic step a single parameter set. It

is not the case however, for Monte-Carlo

methods such as stochastic expectation-

maximization (see (Trevezas and Cournède,

2013) in the context of plant growth). The

equivalent function signature with previous no-

tations is f requentist_parameter_estimation(<
M, [ed], p >). We only go through the first row

of the grid to compute all observation lists [Y ]i0

with only one parameter set. Then we compare

all these lists to the experimental one and select

another parameter set to minimize this distance.

• Bayesian inference approaches based on fil-

tering methods, like convolution particle filter

(Chen and Cournède, 2012) or unscented kalman

filter (Julier et al., 2000), take a single con-

text and an observer list with a list of param-

eter sets. The equivalent function signature is

f iltering_parameter_estimation(< M,ed, [p] >
). We only go through the first column of the grid

and stop at each observation time step to imple-

ment the filtering process based on the experimen-

tal data: at each observation step, the parameters

and states are updated for all the selected simula-

tions. The idea is to provide estimations with re-

liable uncertainty that are appropriately assessed

with the population of parameter sets. A more

detailed presentation of convolution particle filter

can be found in 5.

• sensitivity analysis approaches, like standard re-

gression coefficient or Sobol (Saltelli et al., 2008)

(Wu et al., 2012), take a single context and an

observer list with a list of parameter sets. The

equivalent function signature with previous no-

tation is sensitivity_analysis(< M,e, [p] >). The

way of going trough the grid is slightly the same

as for filtering parameter estimation methods. The

exception concerns the different triggers. In sensi-

tivity analysis parameters are not changed during

the algorithm.

• uncertainty analysis approaches, using Monte

Carlo samples or the unscented transform (Julier

et al., 2000), follow the same rules as sensitiv-

ity analysis. The equivalent function signature is

uncertainty_analysis(< M,e, [p]>).

• model selection (Baey et al., 2012) computes cri-

terion like mean square prediction error or Akaike

information criterion for a list of models. A cri-

terion follows the signature model_selection(<
M, [ed], p >) but the general method will use a list

of models [M] for making comparison among the

criterion results.

5 TEST CASE

In this section we describe the context of convolu-

tion particle filtering and its characteristics. Previous

elements are not specifically related to plant growth

models. In this test case, we consider the param esti-

mation of a plant growth model. Some specific char-

acteristics have to be taken in account.



As said in section 1 plant growth models are generally

characterized by complex interacting processes and

a great number of model parameters. Moreover ex-

perimental data acquisition tends to be costly (experi-

ments in fields), inaccurate (coming from satellite im-

ages), and irregular (sometimes observations can not

be done). Thus the parametrization of these models

is a key issue which may affect the quality of model

prediction. Therefore we use the convolution parti-

cle filter method. (Campillo and Rossi, 2009) and an

adaptation developed by (Chen et al., 2012).

The objective of this method is to estimate jointly the

parameters and the hidden states of the system from

online data i.e. data that comes from time to time im-

proving the database. This kind of technique is known

as data assimilation. The idea is to sample M parti-

cles (i.e. a parameter set and a state) and to propagate

them through the model until the next available mea-

surement to compare with the predicted states. Then

we compute for each particle a weight, according to

experimental data and prediction, which helps to clas-

sify and select the best particles that are closer to the

real experimental case.

The following results are based on the CPF method

applied to the Log Normal Allocation and Senescence

(LNAS) daily crop model with real experimental data

(Chen et al., 2013). The equations of the LNAS model

are derived for sugar beet with three main processes

during the plant growth period: biomass production,

allocation and senescence. Two compartments are

taken into account: foliage and root system.

Based on the parameter estimation results from the

2010 dataset with an iterative version of the CPF

method, we conducted the data assimilation approach

with the CPF algorithm by recalibration the parame-

ters and readjusting the hidden states of interest based

on the data of early growth stage (five first data) of the

2006 dataset. The predictive capacity of the model

for the last two dates of measurements is compared

in two cases: with data assimilation and from pure

uncertainty analysis (based on the calibration result,

propagation of the uncertainty with the 2006 context).

In our example we consider data collected at 12 dif-

ferent dates in 2010 for the calibration step: O2010 =
{54,68,76,83,98,104,110,118,125,132,145,160}.

We also have 7 measurement dates in 2006:

O2006 = {54,59,66,88,114,142,198}

Figure 3 illustrates the prediction results given by the

two cases. In the case of data assimilation with CPF,

not only the point predictions are more accurate, but

the related uncertainty is also reduced. On the con-

trary, the predicted confidence interval given by un-

certainty analysis (without data assimilation) does not

even contain the real measurements (last two points).

Figure 3: Comparison of CPF Data Assimilation with
Monte Carlo UA method

This result clearly suggests an obvious advantage of

the CPF data assimilation method in terms of predic-

tion capacity.

However such method is rather time and memory con-

suming since for a run with 40 000 particles we need

8 Gb of RAM and 18 hours of computation for a se-

quential job. The advantage and feasibility of paral-

lel computation is obvious with the formalization as

a simulation grid, and we are currently working on

the implementation. Of course, the computation time

depends also of the analyzed model.

6 DISCUSSION

We have shown the basic principles that structure our

library and how they are related to the domain of ap-

plication, discrete nonlinear, stochastic models, with

potentially heterogeneous or rare observations, with

the example of plant growth. There are still some

steps to fulfill in order to call it a domain-specific lan-

guage.

6.1 TOWARDS AN EMBEDDED

DOMAIN SPECIFIC LANGUAGE

An embedded domain specific language is a language

hosted into another one with a semantic dedicated

to a domain. It has the characteristic to exploit the

host language syntax which helps to focus on domain-

specific question and reduce maintenance.

The choice of C++ has been made in regards of :

• developers skills inside the project

• the number of reliable libraries in the community

like Boost, MKL or Armadillo

• the philosophy of "abstractions that do not impose

space or time overheads" (Stroustrup, 2012)



• its performance compared to other existing lan-

guages (Hundt, 2011)

Our current work is to formalize the ideas that have

been developed in section 2 and section 3 by defining

the abstract syntax tree and inference rules.

Genericity of the library is an important goal, espe-

cially the ability to analyze any model that can be for-

mulated by equation 1.

We use templates because of its capacity of emu-

lating structural sub-typing and by experience this

kind of sub-typing is more convenient to our activity

than nominal sub-typing with the original inheritance

mechanism of object-oriented programming. More-

over this orientation could allow us to use structures

or tuples in conjunction with Vexcl or Thrust libraries

in an easy way through tag dispatching technique.

6.2 WORKFLOW

This framework was built with constant exchanges

between the modellers, the mathematicians develop-

ing the methods, and software engineers. It helped us

to understand the domain of course but also the way

we were working on this domain. Most of the time a

given model is associated to a given modeller and the

transmission and integration in terms of code is quite

complex if it does not follow a strict interface. There-

fore we have defined a terminology and tool for man-

aging this workflow. The tool is developed in python

and is inspired by management tool frequently avail-

able with web framework like Rails or Symfony. The

platform itself cannot be seen without its managing

tool in order to establish a way of communication dur-

ing the development of models and methods.

6.3 CONCLUSION

The above formalism has been designed with a

bottom-up approach and is used in our team for the

implementation of our tools. It unifies our thinking

about modelling, simulation and analysis.

We did not linked yet our work to existing formal-

ism like DEVS, stochastic petri nets, P-DEVS, pi-

calculus. We expect to find a way for the support

of concurrency models for biological systems like

plant-soil interaction by looking at DEVS/P-DEVS

and DESS. (Zeigler et al., 1995)

In the long term we believe that that a DSL can be

derived from our EDSL for delivering a GUI tool to

end-users.
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