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Abstract. We address the inference of discrete-state models for tree-structured data. Our
aim is to introduce parametric multitype branching processes that can be efficiently estimated
on the basis of data of limited size. Each generation distribution within this macroscopic model
is modeled by a partially directed acyclic graphical model. The estimation of each graphical
model relies on a greedy algorithm for graph selection. We present an algorithm for discrete
graphical model which is applied on multivariate count data. The proposed modeling approach
is illustrated on plant architecture datasets.

Keywords. Partially directed graphical model, graph selection, multivariate discrete distribu-
tion, tree pattern, branching process, plant architecture, multivariate count data

1 Introduction

We consider discrete-state stochastic processes indexed by a rooted tree. Our aim is to introduce
parametric models that can be efficiently estimated on the basis of data of limited size and that
are easily interpretable. These models rely on local dependency assumptions between parent and
child vertices and belong to the family of multitype branching processes (MTBPs). In our prac-
tical setting of plant architecture analysis, the combinatorics induced by the variable and high
number of child vertices in each state induces an inflation in the number of model parameters.
We thus introduce parametric MTBPs incorporating parsimonious discrete graphical models for
each generation distribution. In order to have interpretable results, we propose to focus on a
family of multivariate discrete generation distributions such that:
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e child states that tend to appear simultaneously or on the contrary to be incompatible can
be identified,

e multivariate parametric distributions can be used since the direct estimation of probability
masses on the basis of multivariate counts is unreliable except for very large data sets.

e these multivariate parametric distributions can have zero-inflated and right-skewed marginals,
so that multivariate Gaussian distributions are not appropriate.

e these multivariate parametric distributions can be easily simulated and probability masses
can be easily computed in order to investigate hypotheses on generation distributions and
long range pattern formation in trees.

To achieve this goal, an approach based on probabilistic graphical models [8] to represent
the conditional independence relationships for each generation distribution is considered. Three
kinds of graphical models are usual: undirected (UG), directed acyclic (DAG), and partially
directed acyclic graphical (PDAG) model.

Methods for graph identification were proposed for UGs, using either frequencies to directly
estimate probability masses (so-called nonparametric estimation) or mutual information — see
[10] and references therein. Under a multivariate Gaussian distribution assumption, an ap-
proach based on a L; penalization (Lasso) was proposed in [5], with some extension to Poisson
distributions and more generally to GLMs [13].

Specific models and methods were developed for DAGs. Most methods for graph identifica-
tion in DAGs are based on exploring the set of possible graphs using some heuristic (e.g. hill
climbing [I]) and by scoring the visited graphs (e.g. using BIC), the graph with highest score
being selected — see [§] for a review.

PDAGs, which generalize both UGs and DAGs, have been considered less often in the litera-
ture. In such models, both marginal independence relationships and cyclic dependencies between
quadruplets of variables (at least) can be represented. A family of such models was proposed
using conditional Gaussian distributions, but the problem of graph identification was not ad-
dressed [2]. We choose here to use discrete parametric PDAGs to model generation distribution
in MTBPs and present a graph identification procedure for PDAGs.

2 Discrete PDAG modeling of generation distributions in
MTBPs

Data of interest are tree-indexed sets @ = (x¢)ie7 where 7 C N is the set of vertices of a
rooted tree graph 7 = (T, A) and A C T x T the set of directed edges representing lineage
relationships between vertices. By convention, the root of the tree graph has index 0. Let
2y €V ={0,..., K — 1} denote the label of vertex t. Let pa(.) denote the parent of a vertex,
ch (.) the children set of a vertex, an (.) the ancestor set of a vertex and de (.) the descendant
set of a vertex. These notations also apply to set of vertices — see [8] for graph terminology. We
here assume that x; (resp. x, 7) is the outcome of a discrete random variable X; (resp. discrete
random vector X, random rooted tree T').

MTBPs are based on local dependency assumptions between parent and child vertices,
more precisely on the following Markovian property — children are independent of their non-
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descendants given their parent
VteT, Xepe LL XT\de(t)’Xpa(t) ;

and a permutation invariance property — see [6] for details — in order to obtain a more parsimo-
nious model. As a consequence, the joint distribution can be factorized as follows

P(T=(T,A),X =x) x P[Xg=x0] [[ P(N: =n|X; = z), (1)
teT

where N | X = x is the discrete random vector of the number of children of ¢ in each state given
x¢. Therefore the outcome to model is a discrete random vector IN; for each vertex

ny = (|{s € ch (t)| X5 = k})pey -

MTBPs are thus specified by K discrete multivariate generation distributions.

We here propose an extension to PDAGs to model these generation distributions. This ex-
tension is based on an enlarged family of discrete parametric distributions incorporating multi-
variate generalizations of the classical univariate discrete parametric distributions: multinomial,
negative multinomial and multivariate Poisson [7] distributions and corresponding regressions.
Since we focus on a single generation distribution, we will omit in the following the tree indexing
and parent state conditioning of each factor in (). The class of considered PDAGs is such that
the generation distribution factorizes as [9)

P(N =n) = ][ P(Ne=n¢cNpa) = npae)), @
ceC

where C denotes a partition of V such that in each subset, the induced subgraph — so-called
chain component — is a connected undirected graph and each subset is connected — if connected
— by directed edges.

Usually for each ¢ in C, P(N. = mc|Npae) = Npa()) can be factorize as a product of
clique factors [9]. But in the case of multinomial, negative multinomial and multivariate Poisson
distributions or regressions, each chain component is complete. PDAGs where chain components
are not cliques could be introduced using the UG framework [I3]. In such UGs, the graph is in
fact a cyclic bidirected graph. This renders far more difficult and less reliable the exploration of
long-range patterns in such models as many normalization constants have to be computed (one
for each predictor value for a given clique). Therefore we chose to consider PDAGs such that
chain components are complete.

Definition 2.1. A clique directed acyclic graph (CDAG) is a PDAG such that:
e cach chain component is a clique,
e cach vertex of a clique has the same parent set,
e cach parent set belongs to the power set of cliques.

A probabilistic PDAG model is defined by a PDAG and a specification of the factors in
. Our approach to identify such models relies on efficient methods for CDAG search and for
variable selection in regression. Proposition establishes a connection between probabilistic
PDAG, CDAG and regression models.

Q@ COMPSTAT 2014
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Proposition 2.1.
A probabilistic PDAG model such that:

e cach source verter of the graph is associated with some univariate distribution chosen
among the binomial, negative binomial and Poisson distributions and miztures of such
distributions.

e cach non-singleton source component of the graph is associated with some multivariate dis-
tribution chosen among diverse extensions of the multinomial distribution, the multivariate
Poisson distribution and miztures of such distributions,

e cach component of the graph with at least one parent is associated with the corresponding
families of univariate and multivariate regression models defined above in the case of source
components,

has the same distribution as a CDAG associated with the same parametric families such that for
each edge in the CDAG that is not in the PDAG, the corresponding regression coefficient is null.

Proof. Let G = (V,€) be a PDAG and G = (V,&) be a CDAG with £ = £ U " — where
E'"NE" = — such that
& ={(u,v) € &|(v,u) € £} (3)

and
E" ={(s,t) € Vx V|3 (u,v) €ne(s) xne(t)NE\E'} (4)

where ne (.) is denoting the set of neighbors of a vertex. Because of equation , G has the same
chain components as G, since £ is the set of undirected edges in both £ and €. Equation
implies that the set of directed edges in G is included in &: only edges from the neighbors of
a parent of a child clique are added to every child clique vertices. As setting the regression
coefficient to 0 does not change the conditional distribution, the two models are equivalent. [J

As a consequence of proposition |2.1] given a CDAG and using ML estimators combined with
Lasso type estimators [12] for parametric regressions, we select among all PDAGs sharing the
same CDAG a sparse PDAG solution with the previously introduced parametric distributions.
Therefore the PDAG estimation task is performed using a graph search within a CDAG space
which has a cardinal a little bit higher than the DAG space one but far less important than
the PDAG space one (see table . This graph search can be achieved as for previous algo-
rithms presented in [§] for DAGs using hill climbing, greedy search, first ascent or simulated
annealing algorithms. For defining such an algorithm, lemma specify how DAG operators
(add/remove/reverse directed edges) can be applied to each CDAG. Since the space search graph
is not connected using these 3 operators — chain components remain unchanged — two operators
specific to CDAGs have been added: chain merging and splitting:

e A pair (¢, ) of chain components of C such that

[pa(c) = pa(d) \ e A [ch(c)\ ¢ = ch ()]

will be merged in one chain component ¢’ which results from the removal of one chain
component.

COMPSTAT 2014 Proceedings
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e A vertex from a chain component ¢ can be removed and set to be a parent or a child of ¢
resulting into the addition of one chain component.

Lemma 2.2. Let M be a vertex set and let DAG(M) (resp. CDAG(M)) denote the set of
DAGs (resp. CDAGSs) with vertex set M and Part(M ) denote the set of partitions of M. There
is a one-to-one mapping between CDAG(V) and {DAG(p)| p € Part(V)}.

Proof. For G € CDAG(V), let C(G) € Part(V) be the set of chain components of G. Let 0(G) be
the DAG with vertex set C(G) and such that (¢, ') is an edge if there exists an edge from a € ¢
to b€ ¢ in G. Tt is easily seen that o is a bijection from CDAG(V) to {DAG(p)| p € Part(V)}
since every chain component ¢ of G € CDAG(V) is a clique, and since all vertices in ¢ have the
same parents. ]

Proposition 2.2.
Let bi (resp. ag ) be the number of labeled CDAGs (resp. DAGs) of K wvertices. One have:

b= 3 {[k(} ar (5)

k=1
where {kz} denote the Stirling number of second kind.

Proof. Consider a set of K vertices. The Stirling number of second kind gives the number of
ways of partitioning such vertex set into & non-empty cliques. For each of these partitions, a
DAG can be defined (see lemma [2.2]) and there are aj, such labeled DAGs. We then just need

to consider that the number of cliques can vary from 1 to K for CDAGs of K vertices to prove

proposition O
a K bK CK K
1 1 1 1
2
25 34 50 3
543 715 1,688 4
29,281 35, 381 142,624 5
3,781,503 4,258,357 98,903,216 6
1,138,779,265 1,222,487,933 13,663,125,680 7
783,702,329,343 816,625,721,787 14,762,428,500,992 8

Table 1: Number ax of DAGs, bx of CDAGs and cx PDAGs [I1] from 1 to 8 vertices (see

proposition

3 Characterizing the apple tree irregular bearing phenomenon
using MTBP and CDAG models

Recently, statistical indices have been proposed to characterize alternation in flowering at whole
plant scale with a yearly time step for different apple tree cultivars [4]. A correlation has

Q@ COMPSTAT 2014
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been highlighted between synchronicity of flowering within plants, alternation along axes, and
alternation at whole plant scale. However, little is known about structural factors that may
induce heterogeneity in the fates (vegetative or flowering) of sibling shoots, and thus improve
regularity at whole plant scale despite alternation along axes. Considering the methodology
described in [3], a tree structure (see fig. 1)) was built from the apple tree dataset provided by E.
Costes (UMR AGAP, AFEF Team, Inra, Montpellier, France) in order to illustrate the interest
of MTBPs to investigate this phenomenon.

®©

o

> 00

Z L —
® ®/

(@—

O

Figure 1: The tree is a formal representation of the plant topological information (drawing issued
from [3]). Each label of this tree is the nature of the annual shoot.

MTBPs are used to model the number of flowering and vegetative shoots for parent shoots
of different natures defined by their length and fate (see table . The aim is to identify parent
states associated with homogeneous child fates from parents that may have heterogeneous child
fates. As the dataset is composed of two trees per cultivar the objective is also to compare the
two cultivars Fuji and Braeburn that have different behaviors regarding the irregular bearing
phenomenon.

State  Length Fate
0 Long Vegetative
1 Long Flowering
2  Medium Vegetative
3 Medium Flowering
4 Short Vegetative
5 Short  Flowering

Table 2: Shoots state space and corresponding lengths and fates

CDAG-based generation distributions better fitted the data than DAG-based generation
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distributions according to BIC. In the worst case, we obtained the same fit with CDAG-based
and DAG-based generation distributions (see fig. [2).

/]

®

Figure 2: CDAG and DAG selected for the parent states O (left hand) and 1 (right hand) for the
Braeburn cultivar. Edges associated with negative (resp. positive) covariances are in red (resp.
black).

We obtained very contrasted graphs for the different parent states of a given cultivar. We
also obtained different graphs for the two cultivars for some parent states. This was very
informative for cultivar comparison (see fig. I 2| and (3] ' ) The exam of the different graphs for a
given cultivar highlights the more or less regular bearing behavior at the whole plant scale.
Moreover comparing the graphs for the two cultivars leads to a better understanding of the
biological functions underlying bearing behavior. This approach seems therefore promising to
highlight pattern formation such as irregular bearing in tree structure development.
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Figure 3: CDAG selected for the parent state 3 for the Braeburn (left hand) and the Fuji cultivar
(right hand). Edges associated with negative (resp. positive) covariances are in red (resp. black).
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