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Abstract
Understanding how tropical tree species differ in their growth strategies is critical to predict

forest dynamics and assess species coexistence. Although tree growth is highly variable in

tropical forests, species maximum growth is often considered as a major axis synthesizing

species strategies, with fast-growing pioneer and slow-growing shade tolerant species as

emblematic representatives. We used a hierarchical linear mixed model and 21-years long

tree diameter increment series in a monsoon forest of the Western Ghats, India, to charac-

terize species growth strategies and question whether maximum growth summarizes these

strategies. We quantified both species responses to biotic and abiotic factors and individual

tree effects unexplained by these factors. Growth responses to competition and tree size

appeared highly variable among species which led to reversals in performance ranking

along those two gradients. However, species-specific responses largely overlapped due to

large unexplained variability resulting mostly from inter-individual growth differences consis-

tent over time. On average one-third of the variability captured by our model was explained

by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the

fact that trees differ in many dimensions (genetics, life history) influencing their growth re-

sponse to environmental gradients, some being unmeasured or unmeasurable. In addition,

intraspecific variability increased as a power function of species maximum growth partly as

a result of higher absolute responses of fast-growing species to competition and tree size.

However, covariates explained on average the same proportion of intraspecific variability

for slow- and fast-growing species, which showed the same range of relative responses to

competition and tree size. These results reflect a scale invariance of the growth process, un-

derlining that slow- and fast-growing species exhibit the same range of growth strategies.

Introduction
Identifying the sources of variability in tree growth is critical to assess how the diversity of
growth strategies shapes long-term forest dynamics and impacts ecosystem services such as
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wood production [1,2] or carbon storage [3]. In unmanaged tropical forests, tree growth is a high-
ly variable process, among and within species, so that the individual tree responses to external
drivers often appear idiosyncratic [4,5]. Interspecific growth differences may however reflect con-
trasted performances of species to secure carbon along a competition gradient [6,7], an ontogenet-
ic trajectory [8] or with respect to site characteristics [9]. For instance, pioneer and shade-tolerant
species strongly differ in their maximum growth, sensitivity to light and ontogenic trajectory [10].

A number of species are recognized as inherently slow- or fast-growing. Slow-growing spe-
cies are generally characterized by a high leaf mass per unit area (LMA), a low concentration in
nitrogen [11] and Rubisco [12], and thus a low rate of photosynthetic activity [13]. Interesting-
ly, these traits were also found related to species shade-tolerance and sensitivity to competition
[14,15] so that in line with the paradigm of a universal ‘fast-slow’ plant economics spectrum
[16], species inherent growth rate is expected to be a synthesizing axis of species growth strate-
gies. It results in a trade-off in performance at high vs. low resource availability, meaning that
species growing fast at high resource levels perform poorly at low resource levels (relatively to
some other species) and vice versa. Competition thus favors the species the most adapted to
the local level of resources, which leads to partition species along resource gradients, a pattern
that significantly contributes to species diversity maintenance [17,18].

However, this paradigm that species strategies can be summarized along a single axis is con-
sidered as over-simplistic by several authors [19–21]. It may be difficult in natural conditions
to disentangle species intrinsic differences from the effect of habitat variation so that species
growth performance may hide other axes such as species ability to withstand competition. In
addition, a variety of strategies are successful in plant communities reflecting not only habitat
diversity but also the fact that intraspecific traits variability may modulate individual responses
to external factors [16,22].

In the last decade, the classical trade-offs paradigm underlying the species niche partitioning
theory has been revisited. In particular, Clark et al. [20,23] pointed towards the role of high-di-
mensional differences among species in maintaining high diversity of forests. According to
these authors, such process-level variation resulting from many, often unknown causes, makes
individual growth responses to be highly variable within a species, and thus species responses
to largely overlap, even if they differ in average. They showed that accounting for intraspecific
variation of demographic and growth processes in simulations of forest community dynamics
can lead some individuals of less competitive species to outperform individuals of the more
competitive species and thus modifies the conditions in which species coexist in the long term.
These results naturally raise the question of whether the intraspecific variability can be consid-
ered as a strategy for some species to persist in highly diverse ecosystems [22,24,25].

Modeling tree growth helps understanding to what extent species have different growth
strategies [10,26]. But in most studies on tropical tree growth, a large proportion of the ob-
served intraspecific variability remains unexplained by the limited number of measurable pre-
dictive variables. A particular feature of species rich tropical forests put forward to explain the
low predictive power of tree growth models is the high number of rare species that often pre-
vent the use of species-specific approaches. Species grouping has then been frequently used to
reduce the number of parameters in multi-species growth models. It allows rare species that
often represent a large number of available observations, to be included in analyses [27] by in-
clusion within larger groups. Species grouping helps to highlight structuring ecological strate-
gies at the community level [28], but represent a loss of information. If classical species groups
such as pioneer or understory shade tolerant are easily identified, little information is available
for intermediate species, whose categorization thus depends on a priori knowledge on their
growth behavior [27] or on ad hoc statistical criterions [29]. This often leads to rather heteroge-
neous groups and to an underestimation of the diversity of growth strategies.

Tropical Tree Growth, Individual Variations and Scale Invariance
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In the present study, our goal was to identify species growth strategy axes from series of tree
diameter increments recorded annually with permanent dendrometer bands over a 21-y peri-
od. Our dataset was comprised of c. 3,800 individual trees with stem girth� 30 cm of 102 spe-
cies in a permanent tropical forest sample plot in the Western Ghats of India. We addressed
more specifically the following questions: (i) To what extent do species differ in their average
response to competition, ontogeny and local abiotic environment? (ii) How might intraspecific
variability help understanding species growth strategies? (iii) Is this variability consistent with
the major proxy for tree growth strategies that represents species maximum growth rate? We
chose a maximum likelihood hierarchical modeling approach [30] to deal with these different
aspects in a single model thanks to the inclusion of random effects in addition to the fixed ef-
fects of covariates. In particular, random effects allowed us to include the growth responses of
all species with a limited number of parameters, and to properly address the intraspecific vari-
ability in the growth responses, as well as the temporal autocorrelation of individual growth se-
ries. We then inferred species strategies based on a comparison of the species growth responses
and their variability as captured by the mixed effect model.

Materials and Methods

Study Site and Data
Uppangala Permanent Sample Plot (UPSP; 12° 32' 15'' N, 75° 39' 46 E) is located at an elevation of
400–600 m a.s.l. in an undisturbed wet evergreen monsoon forest of the Pushpagiri Wildlife Sanc-
tuary in theWestern Ghats of India (see a detailed presentation in [31]). Permit for conducting a
research program at Uppangala PSP was delivered by the Government of India through a Memo-
randumOf Understanding between the French Institute of Pondicherry (IFP) and Karnataka For-
est Department (KFD) located in Bangalore, Karnataka state, India. The site is part of Kadamakal
Reserve Forest, which comes under theDipterocarpus indicus—Kingiodendron pinnatum—Hum-
boldtia brunonis type of the low elevation dense moist evergreen forests of the region [32]. The cli-
mate is warm throughout the year (mean annual temperature of c. 27°C) and rainfall of about
5100 mm.yr−1, mainly from the Indian southwest monsoon, is concentrated between June and
October (c. 90%) and alternates with a dry season with 4 months with rainfall< 100 mm.

The sampling plots are located on a north-oriented escarpment of the Ghats (average slope of
c. 30–35°) characterized by a strong East-West alternation of deep talwegs and flattened inter-
fluve ridges that determines steep slopes locally> 45°. The sampling design consists of transects
and plots totaling together 5.07 ha that sample the variation in slope (see Fig. 4 in [31]). In these
plots, all the trees above 30 cm of girth at breast height (gbh) or above the buttresses if any, were
mapped within 10 x 10 m elementary subplots, identified to species level (species nomenclature
refers to the Herbarium of the French Institute of Pondicherry, HIFP, http://ifp.plantnet-project.
org/), and fitted with permanent dendrometer bands allowing a theoretical precision of 0.2 mm
on gbh measurements. In total 3,870 trees belonging to 102 species have been yearly surveyed for
gbh increment between 1990 and 2013. All subplots were georeferenced and a Digital Elevation
Model (DEM) was derived from slope measurements taken at each corner of the subplots.

We worked with annual increment in diameter at breast height, Δdbh, computed from all
pairs of consecutive girth records for each individual. Measurements of trees that died or were
recruited (i.e. that reached a gbh of 30 cm) during the census period were included. A few ob-
servations were discarded because of missing girth records or in cases of doubtful precision, for
instance when a note in the database indicated that the dendrometer band was disturbed or re-
placed. As extreme growth values were suspected to result from large measurement errors, we
also discarded the two-tailed extreme 0.05% of the distribution of diameter increments, i.e. values
below-0.5 cm.yr−1 and above 3 cm.yr−1. As the proportion of observations discarded did not
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significantly differ among species (chi-square test; P-value> 0.9), we considered that data reduc-
tion did not bias initial data. In total 3.4% of the 64,881 growth records were excluded from our
analysis. The final dataset represented 3,810 synchronous series of individual annual diameter in-
crements (in cm.yr−1), 2 to 21 years long, with about 80% spanning more than 15 years.

Growth Model Design
A particular feature of our dataset is that trees were measured annually over a period of time
that exceeds 20 years, so that data are highly temporally autocorrelated. In addition, growth
data within a given species are also expected to be correlated. In order to deal with the intrinsic
non-independence of observations and to compare species growth responses we used a hierar-
chical mixed model with an individual tree random effect and a date random effect both nested
in a species random effect [30], which can be summarized as:

Ddbhijt ¼ xijt � aþ zijt � ai þ gij þ dit þ eijt eqn 1

where Δdbhijt is the annual diameter increment computed for each individual tree j of species i,
as the difference between its diameter at t and t-1 divided by Δt in days to account for the
slightly variable census intervals (from 305 to 426 days). Design vectors xijt and zijt contain ob-
served covariates related to the fixed and species random effects with associated parameters in
vectors a and αi, respectively. Altogether, the term xijt�a+ zijt�αi represents a linear combina-
tion of the covariates where parameters are species specific (species random effects on both the
model intercept and the slope of covariates). This term represents the average growth response
of species i given values of the covariates for tree j at time t. Species effects were considered as
random effects (i.e. parameters treated as realizations of a stochastic process and drawn in a
common distribution) to force rare species parameters to be in a realistic range [30,33]. The
term γij is the individual random effect (on the intercept) for tree j of species i, which represents
how much the growth trajectory of that tree deviates consistently over time from species i aver-
age growth response. The term δit is the date random effect (on the intercept) for species i at
time t, and accounts for the synchronous growth variation at time t of all individual trees of
species i. Finally, εijt is the residual growth for tree j of species i at time t (assumed i.i.d.).

Such a model form allowed us to account for some major known covariates explaining tree di-
ameter increment (see next section) and to structure the observed variability remained unexplained
through the random effects. The individual tree random effect on the model intercept, γij, ac-
counted for the inter-census correlation of growth thus avoiding confusion with the covariates' ef-
fect. The date random effect on the model intercept, δit, accounted for the intra-census correlation
of growth within each species. Interspecific variability in the growth response was assessed through
several species random effects, both on the model intercept and on the slopes of covariates (αi).

Covariates Selection
Covariates were selected from a review of the literature, from our expertise and by comparing
different models (maximum likelihood estimations) using Akaïke Information Criterion
(AIC), Bayesian Information Criterion (BIC) and likelihood ratio tests [34,35]. In a first step,
we searched for the most appropriate form (quantitative vs. qualitative coding, variable trans-
formation) of each candidate covariate independently. We then conducted a backward selec-
tion procedure starting from the full model including the relevant covariates and their
interactions in order to select the best subset of covariates, i.e. the one providing the highest re-
duction in AIC and BIC when compared to the full model. Statistical significance of the covari-
ates was assessed through likelihood ratio test of the nested models [30]. Rather than a
systematic search of the best model among all possible combinations, we restricted our
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comparison to a set of realistic models that led us to retain functions of tree size, local competi-
tion and topographic position (slope and aspects) as fixed covariates.

Radial tree growth is generally expected to follow a hump-shaped pattern with respect to
tree size [8,36,37], that is to increase with diameter for small trees, i.e. while increasing their
leaf area towards maturity [38], and to decrease with diameter for large trees as they become se-
nescent. We found that among the many combinations of diameter at breast height variables
(dbh) proposed to represent this hump-shaped trajectory [8,39], the well known combination
of dbh and log(dbh) led to the lowest AIC and BIC in our case.

In order to keep our model easy to interpret we introduced a single index of local competition
calculated as the sum of neighbors' basal area within a radius of 5, 10, 15 or 20 m as generally pro-
posed in the literature to represent resource depletion by competitors [40–43]. Such a competi-
tion index was preferred over an illumination index, such as Dawkins’ code for instance, because
it is much easier to update annually in order to reveal temporal changes in competition intensity.
Both size-symmetric (e.g. considering all the neighbors) and size-asymmetric (e.g. considering
only the larger neighbors) competition indices are generally considered as important to represent
below- and above-ground competition [44,45]. In our case, symmetric and asymmetric indices
appeared systematically highly correlated (r� 0.8 depending on the neighborhood radius consid-
ered). We kept a single index of symmetric competition in our model, because it appeared largely
less correlated to dbh (r� −0.06) than an asymmetric index (r� −0.23). We also considered the
log-transformation of this index [26] and finally, based on lowest AIC and BIC, we retained the
log of total basal area of all the neighbors within a 15 m radius.

Topography at the study site, which alternates flattened interfluve ridges with steep slopes
and deep talwegs that correlate with variation in soil thickness and sun exposure, is recognized
as a major source of environmental heterogeneity [46,47]. We thus extracted from the Digital
Elevation Model local values of terrain slope and aspect that we further attached to each tree.
We compared the original slope variable (in %) to several slope classes with different thresholds
based on the percentiles of the distribution. The slope variable leading to the lowest AIC and
BIC was a simple classification into steep and gentle slopes using a threshold of 50%. Similarly,
we compared the original aspect variable (in degree) with sine and cosine transformations that
respectively emphasize East-West vs. North-South oppositions in slope orientation. Among
various combinations with the slope variable [48], we retained the sine transformation describ-
ing the East-West alternation of slopes based on lowest AIC and BIC. This moreover corrobo-
rates the main feature of the site topography [31].

The growth model we finally fitted to the data followed the general form of equation 1 with
the following fixed (xijt � a) and random effects (zijt � αi) components:

xijt � a ¼

1

slopeij

sinðaspectijÞ

logðdbhijt�1Þ

dbhijt�1

logðbaijt�1Þ

logðbaijt�1Þ � logðdbhijt�1Þ

logðbaijt�1Þ � dbhijt�1

2
66666666666666666666664

3
77777777777777777777775

T

�

a1

a2

a3

a4

a5

a6

a7

a8

2
66666666666666666666664

3
77777777777777777777775
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zijt � ai ¼

1

sinðaspectijÞ
logðdbhijt�1Þ
dbhijt�1

logðbaijt�1Þ
logðbaijt�1Þ � logðdbhijt�1Þ
logðbaijt�1Þ � dbhijt�1

2
666666666666664

3
777777777777775

T

�

a1i

a2i

a3i

a4i

a5i

a6i

a7i

2
66666666666664

3
77777777777775

Subscripts i, j and t stand for species, individual trees and dates, respectively. The variable slope
is the local terrain slope described as a categorical variable with two classes (‘gentle’ and ‘steep’,
coded 0 and 1, respectively); aspect is local terrain aspect (in degrees); ba is the basal area of all
neighbors in a radius of 15 m (in m².ha−1); and dbh is tree diameter at breast height (in cm).
Random effects are assumed normally distributed with mean 0 and independent from
each other.

We performed Maximum Likelihood Estimates of the model parameters using package
lme4 [49] for R statistical software (version 2.15.1; [50]). Parameter estimates (including vari-
ances of the random effects) are given in supporting information (S1 Table), along with a plot
of model residuals that appeared normally and homogeneously distributed (S1 Fig.).

Analysis of Model Predictions
We analyzed model predictions at the species level of our hierarchical model. Species growth
response to each covariate was assessed from model predictions at standardized conditions, i.e.
with the other covariates fixed at their observed mean [26]. From the species growth responses,
we defined as species signed sensitivity to covariates, the range of growth predicted along the
observed covariate gradients. As the response to competition was modeled by a monotonic
function, the signed sensitivity to competition was computed as the difference between diame-
ter increments predicted at maximum and minimum competition intensity encountered by the
species. Signed sensitivity to competition was generally negative because growth decreased
while competition increased. When the species response was not modeled by a monotonic
function, as for aspect and tree size, the range of predicted growth did not necessarily corre-
sponded to the difference between diameter increments predicted at both ends of the gradient.
For the hump-shaped response to tree size, the signed sensitivity corresponded to the maxi-
mum difference between one end and the optimum of the growth response curve, the sign indi-
cating whether this difference corresponded to an increase (positive) or a decrease (negative)
in growth with tree size. For aspect variable, the signed sensitivity corresponded to the differ-
ence between the growth responses on East- and West-oriented slopes. Species sensitivity to
competition, tree size or aspect was defined as the absolute value of the signed sensitivity.

In order to assess the range of growth strategies encountered in the forest community, spe-
cies sensitivity to covariates was considered with respect to independent species attributes,
such as species maximum growth, maximum size or abundance. Species maximum growth and
size were taken as the 95th percentile of the species values observed at the study site [29,51].
Abundance was taken as the average number of trees per species observed over the period
of survey.

Tropical Tree Growth, Individual Variations and Scale Invariance
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Partitioning the Relative Importance of Fixed and Random Effects
For community-level interpretations of species growth strategies, we also compared how the
within species variances partitioned with respect to the model terms. We thus refer in the fol-
lowing to the variance in observed diameter increments of species i, σi²(Δdbhijt), as the intra-
specific variability, which partitions into a part explained by the covariates, σi²(xijt�a + zijt�αi),
or explained variability, and a part unexplained by the covariates or unexplained variability.
One part of the unexplained variability is captured either by the individual effect, σi²(γij), or by
the date effect, σi²(δit). The remaining unexplained variability is the residual variability, σi²(εijt).

We further assessed for each species the proportion of observed variability that was cap-
tured by the model using an extension of the simple formulation of R² for mixed models
[52,53]:

R2
i ¼

s2
i ðxijt � aþ zijt � aiÞ þ s2

i ðgijÞ þ s2
i ðditÞ

s2
i ðxijt � aþ zijt � aiÞ þ s2

i ðgijÞ þ s2
i ðditÞ þ s2

i ðeijtÞ
eqn 2

Because our model included in addition to fixed effects of the covariates, individual tree and
temporal random effects likely to capture the effects of unmeasured growth drivers, we assumed
that model residuals mostly accounted for measurement errors and stochastic effects, such as
transient attacks of pathogens or herbivores. We therefore assumed that covariates, individual
and date random effects captured most of the growth variability related to niche differences
among species. As a consequence, we relied on the growth variability captured by model predic-
tions rather than to the observed variability to assess the species growth strategies with respect
to mechanisms of niche differentiation. We thus used within species variance ratios, slightly
modified from [52], to explore how the variability captured by the model partitioned with re-
spect to the terms of the model. The equations below represent the parts of intraspecific variabil-
ity captured by the model attributable respectively to the effects of covariates (Equation 3), to
the individual random effect (Equation 4) and to the date random effect (Equation 5):

R2
i xijt � aþ zijt � ai
� �

¼ s2
i ðxijt � aþ zijt � aiÞ

s2
i ðxijt � aþ zijt � aiÞ þ s2

i ðgijÞ þ s2
i ðditÞ

eqn 3

R2
i gij
� �

¼ s2
i ðgijÞ

s2
i ðxijt � aþ zijt � aiÞ þ s2

i ðgijÞ þ s2
i ðditÞ

eqn 4

R2
i ditð Þ ¼ s2

i ðditÞ
s2
i ðxijt � aþ zijt � aiÞ þ s2

i ðgijÞ þ s2
i ðditÞ

eqn 5

Species level variability structure was then considered with respect to independent species
attributes. However, because rare species are characterized by few observations, percentile esti-
mations of some attributes such as maximum growth and maximum size maybe biased [54].
We therefore conservatively interpreted model predictions and random effects for species with
more than 10 individuals only, despite the fact that rare species were included for parameter es-
timation in our mixed model.

Tropical Tree Growth, Individual Variations and Scale Invariance
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Results

Growth Responses Vary among Species
In standardized conditions, growth was predicted to decrease with an increase in local competi-
tion for most species (Fig. 1A), making signed sensitivity to competition to be negative. The
pattern was more variable among species with respect to tree size and signed sensitivity to tree
size was either negative or positive depending on which diameter species growth optimum was
observed (Fig. 1B). Making aspect varying from 90° to 270° showed that most species grew
faster on Eastern exposed hillsides (Fig. 1C). While a pronounced species growth rank reversal,
exemplified by the crossing lines in Fig. 1B, was observed along the tree size gradient (Spear-
man's rho = 0.02 between predicted species growth at minimum and maximum observed tree
size), rank reversal was moderate along the competition gradient (rho = 0.39) and almost inex-
istent along the aspect gradient (rho = 0.98). Tree size then appeared as a major axis species
niche complementarity with respect to tree growth strategies.

Species growth sensitivity to competition and tree size increased significantly with species
maximum growth (Fig. 2, top panels) and tree size (not shown). However, these trends van-
ished when considering relative sensitivity, i.e. sensitivity relatively to the maximum pre-
dicted growth (Fig. 2, bottom panels), suggesting that it reflected more a simple scale effect
rather than an underlying functional relationship. Conversely, absolute and relative growth
sensitivity to aspect appeared unrelated to species maximum growth and species maximum
size. No relationship was found between species absolute or relative growth sensitivities and
species abundance.

Fig 1. Predicted species growth response shapes and amplitudes to competition, tree size and aspect. Predicted growth at standardized conditions
with respect to competition (A), tree size (B) and aspect (C), i.e. with the other covariates fixed at their observed means. The 6 most abundant species are in
bold in top panels. Bottom panels represent the distribution of species signed sensitivity to covariates, as defined in section Analysis.

doi:10.1371/journal.pone.0117028.g001
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Note finally that slope affected similarly all species, with a mean diameter increment slightly
lower on gentle slopes (−0.1 mm.yr−1) than on steep slopes, a pattern already documented at
our study site [47].

Intraspecific Variability Partitionning
Observed intraspecific growth variability, σi²(Δdbhijt), widely differed among species and in-
creased significantly as a power function of species maximum growth (Fig. 3A). The propor-
tion of this variability captured by the model (Ri²) was on average 63% ± 11% (up to 80% for
some fast-growing species) and also increased significantly with species maximum growth
(Fig. 3B).

Our hierarchical model allowed us to partition this captured variability within each species
(see equation 1). On average one-third of it was explained by the covariates (Ri

2(xijt�a + zijt�αi) =
34% ± 13%), while more than half corresponded to the individual tree random effect, i.e. the
inter-individual variability not explained by the covariates (Ri

2(γij) = 58% ± 11%), and a low
proportion to the date random effect, i.e. the temporal variability unexplained by the covariates

Fig 2. Species absolute and relative sensitivities to competition and tree size according to species maximum growth. Species growth sensitivity to
competition (A) and tree size (B) with respect to species maximum growth. Sensitivity was estimated as the range of predicted diameter increments (as
defined in Materials and Methods). In top panels, sensitivity is considered in absolute values (i.e., in cm.yr−1), while in bottom panels it is given in proportion of
maximum predicted growth (in %).

doi:10.1371/journal.pone.0117028.g002
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(Ri
2(δit) = 7% ± 5%). The proportion explained by the covariates (Fig. 4A) or captured by the in-

dividual tree random effect (Fig. 4B) did not show any significant trend with species maximum
growth, while the proportion of variability captured by the date random effect (Fig. 4C) slightly
decreased with species maximum growth.

In addition, a one way analysis of variance performed for each species on the term (xijt�a +
zijt�αi) with an individual indicator variable as factor revealed that 96% ± 3% of σi²(xijt�a +
zijt�αi), i.e. the intraspecific variability explained by the covariates, corresponded to inter-indi-
vidual growth differences consistent over time. This proportion did not show any significant
relationship with species maximum growth, maximum size or abundance. In other words, in-
traspecific variability in response to covariates was hardly explained by temporal fluctuations
of the covariates. It follows that together with the individual tree and date random effects,
inter-individual variability represents 87% ± 8% of the intraspecific variability captured by
the model.

The individual tree random effect quantified how each individual growth trajectory deviates
from its species growth response, consistently over time and independently from the variation
of covariates. Fig. 5 illustrates the distribution of the individual random effect around the pre-
dicted species response to competition and tree size for the 6 most abundant species at standard-
ized conditions. It emphasizes that in spite of differences in growth predicted by the covariates,
the large distribution of individual effects makes species responses largely overlapping.

Fig 3. Observed and fitted growth variability according to speciesmaximum growth. Variance of
observed growth within each species according to species maximum growth (A).Proportion of this
intraspecific variability captured by the model for each species (Ri²) according to species maximum growth
(B). The lines represent fitted relationships with a power (A) and a linear function (B).

doi:10.1371/journal.pone.0117028.g003
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Discussion

Species Show Highly Variable Growth Patterns
Nearly all species in our study showed a growth decrease with competition confirming that
trees are sensitive to above- and/or below-ground resource depletion [26,55]. We also showed
that species differed in their ability to sustain their growth when competition increases, leading
to a moderate rank reversal in species performance along the competition gradient. These re-
sults suggest the existence of a trade-off between species growth rate and competition sensitivi-
ty [6,56] leading to potential resource partitioning among species [6,7,57]. Under strong
competition, species with a high mean growth rate but sensitive to competition may be outper-
formed by species with a lower mean growth rate. Nevertheless, the fact that the observed rank
reversal is moderate suggests that all the species might not follow this trend.

We also observed a continuum of ontogenetic growth trajectories and amplitudes with
monotonically increasing or decreasing growth curves with diameter, but more generally
hump-shaped growth trajectories. Such a pattern generally indicates that growth increases as
trees progressively capture more light by reaching the canopy and spreading their crown [58];

Fig 5. Species growth responses to competition and tree size overlap. Predicted growth response to competition (A) and predicted ontogenetic growth
trajectories (B) at standardized conditions (i.e. with the other covariates fixed at their observed means) for the six most abundant species. Envelops represent
the distribution of individual tree random effect (95th percentile of the estimated distribution for each species).

doi:10.1371/journal.pone.0117028.g005

Fig 4. Fitted growth variability partitioning according to speciesmaximum growth.Growth variability captured by the model with respect to species
maximum growth. It is partitioned into explained variability (A), variability captured by the individual random effect (B) and variability captured by the date
random effect (C).

doi:10.1371/journal.pone.0117028.g004
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then a decrease of growth with tree size is observed simply because a constant biomass invest-
ment leads to a smaller diameter increment in large trees, a pattern eventually enhanced by se-
nescence mechanisms in late life-history stages. Our results revealed a strong rank reversal in
growth performance along the tree size gradient. Such a pattern may result from ontogenetic
niche shifts in some species [59], caused by physiological modifications with maturity and se-
nescence in biomass allocation [60], photosynthetic traits [38] or mechanical constraints on
water transport [61].

This rank reversal is however observed at standardized conditions, i.e. when competition is
fixed at its observed mean. But the actual trajectory experienced by a tree may combine ontoge-
netic development and variations in competition environment. Our model underlines the im-
portance of interactions between tree size and competition, since species response to
competition changed with tree size and vice-versa. Such an interaction may have several ori-
gins. First, if below ground competition is likely to be size-symmetric, competition for light is
expected to be size-asymmetric [62], so that a single symmetric competition index, used here
to avoid overfitting issues, may underestimate the competition experienced by small trees. Sec-
ond, due to ecological niche shift along ontogeny, some species may be more sensitive to com-
petition at some particular stages. At last, species growth patterns may also be shaped by size-
dependent and competition-dependent mortality. At high levels of competition, the selection
pressure experienced in a population is high and slow growing individuals are likely to disap-
pear rapidly [63]. It follows that the ontogenetic trajectory observed at the population level
may be biased, expected to be monotonically increasing, with mature stages being represented
only by highly performing individuals. Conversely, at low levels of competition, senescent indi-
viduals may survive longer, creating a hump-shaped ontogenetic population trajectory. Addi-
tional information on recruitment and mortality are therefore required to fully understand the
pattern of interaction between tree size and competition on tree growth. Studying trade-offs be-
tween recruitment and mortality along environmental gradients could for instance greatly help
understanding the importance of ecological niche shifts along ontogeny.

Our model predicted a higher diameter growth on steep slopes for all species, a pattern al-
ready documented at our study site [47] and interpreted as resulting from a better tree crown
stratification on steep slopes providing a better crown illumination. Our model also revealed
that growth was higher on East exposed hillsides first receiving sun light in the morning, but
with an amplitude in the response that differed among species. It may be explained by the fact
that photosynthesis could be more efficient during the morning [64] because lower tempera-
ture and higher air humidity limit evapotranspiration and allow stomata to stay open. The vari-
able response of species to aspect might then reflect differences in species ability to maintain
photosynthesis as the atmospheric conditions change. The combination of slope and aspect ef-
fects thus supports the thesis that light availability is an important driver of tropical tree growth
[10,45].

Individual Effects Improve Our Understanding of Species Growth
Strategies
We showed that intraspecific variability explained by the model covariates corresponded most-
ly to inter-individual growth differences consistent over the 20 years of the study. This pattern
results from the slow evolution of biotic growth drivers such as tree size and competition over
the period. The low disturbance regime in Uppangala forests [46] might contribute to the sta-
bility of local competition and reinforce the fact that variability explained by covariates is most-
ly inter-individual, i.e. consistent in time. Covariates used in our analysis represent some of the
major axes of niche differentiation among species. The fact that the variability explained by
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these covariates appears mostly inter-individual, i.e. is much higher than the intra-individual
variability related to temporal variations of the covariates, confirms our hypothesis that niche
related growth variability mostly reflects differences in growth performance between individu-
als of the same species, at least at the time scale of our study. In addition, by introducing an in-
dividual random effect in our model, we could take into account inter-individual growth
differences unexplained by covariates. The fact that this individual effect still showed a struc-
tured spatial pattern (see S1 File) indicates that it also partly captured some unobserved hetero-
geneity of the growing conditions (e.g. soil texture, soil moisture or nutrient availability).
Together, these two types of inter-individual differences captured a large proportion of the ob-
served variability (almost 80% for fast-growing species). Thus, it strengthens our choice to ana-
lyze variability captured by the model rather than variability observed in the data.

In contrast, climate can be considered to induce synchronous temporal variations of growth
within a population and a significant link exists between the date random effect in our model
and regional inter-annual climatic variations (see S2 File). However, the date random effect ac-
counted only for a low proportion of intraspecific variability (on average 7% of the variability
captured by the model) suggesting that climatic variations did not strongly impacted tree
growth compared to other growth drivers.

On average covariate effects, individual tree effects and date effects captured more than 60%
of the observed variability. This proportion increased up to 80% for fast-growing species. A
probable reason is that measurement errors or imprecision, which a priori do not dependent
on species growth, mechanically account for a smaller proportion of the variability for species
exhibiting higher variability, i.e. for fast-growing species. As a result, residual variability repre-
sents a higher proportion of the observed variability for slow-growing species. Thus, together
with the fact that niche related growth variability is mostly inter-individual, it makes that fo-
cusing our analysis on the variability captured by the model (i.e. neglecting residuals) appeared
as a reasonable hypothesis to study ecologically relevant (i.e. niche related) growth variability.

In spite of differences in species average growth responses and even changes in species
growth ranking, we showed that species growth responses widely overlapped because of large
individual tree effects. Inter-individual growth variability unexplained by covariates was about
twice as large as the variability explained by covariates. The large growth response width evi-
denced here then suggests that the role of rank reversal in species coexistence should not be
overemphasized [65]. Some studies have even reported no rank reversal in species rich tropical
forests [26].

Inter-individual growth differences result from growth responses to identified covariates
but probably also from many other unmeasured factors, including other environmental drivers
and genetic heterogeneity within species or particular life history trajectory, as characterized by
the notion of ‘personality’ in animal ecology [66]. This probable high-dimensionality of tree
growth (i.e. high number of drivers of growth variability) is evidenced and advocated in recent
contributions [19–21,23] as a key feature involved in species coexistence by promoting species
niche complementarity along many gradients. Including inter-individual variability of growth
performance in simulation studies is then promising to explore the conditions for species coex-
istence [25]. Unpredictable events (such as dispersion or mortality) are probably also involved
in species coexistence [67] and should also be included in such studies. An underlying question
is actually whether environment (biotic and abiotic) is really a determinant in explaining spe-
cies coexistence (niche theory) or whether random events drive species coexistence (neutral
theory) at local scale [67–69]. Our growth model constitutes the basis for simulation studies
that would help disentangle stochastic and deterministic processes involved in species
coexistence.
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Maximumgrowth Does Not Fully Determine Species Growth Strategies
We showed that, surprisingly, relative sensitivity to competition and tree size did not change
with species maximum growth. Slow- and fast-growing species showed the same ability to in-
crease or decrease their growth (in proportion) in response to competition change or along
their ontogenetic trajectory. Congruously, we showed that the partitioning of variability cap-
tured by the model did not change with species maximum growth. These results suggest that
growth is, to some extent, a scale invariant process which is perfectly in line with the power re-
lationship found between intraspecific growth variability and species maximum growth [70].
Under this scaling effect hypothesis reflecting the mechanical increase of the variance with the
intensity of a process (i.e. stability of the coefficient of variation), slow- and fast-growing spe-
cies exhibit similar growth variation patterns, but at different scales (i.e. different intensity or
different growth intensity).

These results challenge the classical idea of a continuum of growth strategies with slow-
growing shade-tolerant species at one end and fast-growing pioneer species at the other end
[28], summarized in the emerging ‘fast-slow’ paradigm of plant economics spectrum [16].
Under this paradigm, slow-growing species are in particular expected to be less sensitive to
competition [10] or to drought [29] than fast-growing species.

We do not deny here that species inherent growth speed (characterized by their maximum
growth in our study) is a key dimension of growth strategy. As it reflects the ability of species
to reach maturity and to secure carbon, species maximum growth (growth scale) is a major
axis to be taken into account in quantitative analysis such as carbon storage studies. Taking
into account the relationship between the amplitude of species response to covariates (i.e. "sen-
sitivity") and species maximum growth is then crucial but this relationship is rather the conse-
quence of a scaling effect than the effect of differences in species growth strategies. Indeed, we
showed that there was no relationship between species qualitative responses (or "relative sensi-
tivity") to covariates and species maximum growth.

We suggest that in order to unambiguously compare species growth strategies in a qualita-
tive way, species growth speed must be considered as a scaling factor to avoid confusion be-
tween growth strategy dimensions—also strongly recommended by Valladares et al. [71]
regarding phenotypic plasticity studies. Using this approach, we showed that whatever species
maximum growth, a continuum of growth strategies could be identified. We showed that maxi-
mum growth and responsiveness to competition or tree size were independent dimensions of
species growth strategies. We believe that such scale invariance is not a particular feature of
Uppangala forests but that it has been overlooked in other tropical forest study sites.

In our opinion, maximum growth, or more generally growth scale, should not be considered
as a proxy for other growth strategy axes, but as an important axis, that should be taken into ac-
count when analyzing more refined variations among and within species.
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