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PART OF A SPECIAL ISSUE ON FUNCTIONAL–STRUCTURAL PLANT MODELLING
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† Background and Aims The impact of a fruit tree’s architecture on its performance is still under debate, especially
with regard to the definition of varietal ideotypes and the selection of architectural traits in breeding programmes.
This study aimed at providing proof that a modelling approach can contribute to this debate, by using in silico
exploration of different combinations of traits and their consequences on light interception, here considered as
one of the key parameters to optimize fruit tree production.
† Methods The variability of organ geometrical traits, previously described in a bi-parental population, was used to
simulate 1- to 5-year-old apple trees (Malus × domestica). Branching sequences along trunks observed during the
first year of growth of the same hybrid trees were used to initiate the simulations, and hidden semi-Markov chains
previously parameterized were used in subsequent years. Tree total leaf area (TLA) and silhouette to total area
ratio (STAR) values were estimated, and a sensitivity analysis was performed, based on a metamodelling approach
and a generalized additive model (GAM), to analyse the relative impact of organ geometry and lateral shoot types
on STAR.
† Key Results A larger increase over years in TLA mean and variance was generated by varying branching along
trunks than by varying organ geometry, whereas the inverse was observed for STAR, where mean values stabilized
from year 3 to year 5. The internode length and leaf area had the highest impact on STAR, whereas long sylleptic
shoots had a more significant effect than proleptic shoots. Although the GAM did not account for interactions, the
additive effects of the geometrical factors explained .90% of STAR variation, but much less in the case of branching
factors.
† Conclusions This study demonstrates that the proposed modelling approach could contribute to screening archi-
tectural traits and their relative impact on tree performance, here viewed through light interception. Even though
trait combinations and antagonism will need further investigation, the approach opens up new perspectives for breed-
ing and genetic selection to be assisted by varietal ideotype definition.

Key words: Silhouette to total area ratio, STAR, functional–structural growth modelling, leaf area, branching,
sensitivity analysis, apple, ideotype, Malus × domestica.

INTRODUCTION

Since the initial proposition by Donald (1968) to develop ideo-
types, ‘i.e. biological models which perform or behave in a pre-
dictable manner within a defined environment’, a large number
of studies have been devoted to their development with a remark-
able evolution towards the research of an ‘ideal’ plant for a given
context. The concept of ideotype has been particularly developed
in crops (Peng et al., 2008; Cairns et al., 2012; Chardon et al.,
2012) whereas it has remained scarce for trees. In fruit trees,
this concept has been explored for apple trees, Malus × domes-
tica, and several propositions have been formulated for promot-
ing either dwarfed spur types (Dickman et al., 1994) or trees
characterized by long and weeping branching (Type IV) which
were considered prone to regular bearing (Lespinasse, 1992;
Laurens et al., 2000). However, the existence of discrepancies
between branching types and fruiting regularity was underlined,

and further research appeared necessary to improve ideotype def-
inition in this species (Lauri and Costes, 2004). In particular, it
was proposed to investigate further the impact of branching
along trunks, especially during early tree growth, on tree archi-
tecture and performance. The present study aims at contributing
to this perspective, by exploring in silico different combinations
of traits and their consequence on light interception, here consid-
ered as an output variable. We expect this study to provide the
proof that such an approach is relevant for trees, as previously
shown in annual crops (e.g. Brown et al., 2013), and could be
applied to other input traits and output tree characteristics.

Among different traits that can be considered to define
ideotype depending on the target organs, traits or systems
(Andrivon et al., 2013), we concentrate this study on the relation-
ship between tree architecture and light interception. Indeed, tree
architecture has a strong impact on light interception, water
transport and transpiration, as well as carbon acquisition and

# The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/

.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Annals of Botany 114: 739–752, 2014

doi:10.1093/aob/mcu034, available online at www.aob.oxfordjournals.org

4

 at IN
R

A
 A

vignon on Septem
ber 29, 2015

http://aob.oxfordjournals.org/
D

ow
nloaded from

 

mailto:dasilva@supagro.inra.fr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://aob.oxfordjournals.org/


allocation. Therefore, the optimization of tree architectures has
been considered desirable in fruit tree culture for a long time,
in order to improve fruit production in quantity, regularity and
quality. Tree manipulations such as grafting, shoot bending
and pruning are widely used to modify the tree structure, and rep-
resent a constant objective for growers which has resulted in the
setting up of numerous training systems (Forshey et al., 1992).
From the progressive emergence of a better understanding of
tree architectural development and variations among apple tree
cultivars (Lespinasse, 1992), alternative training strategies
have been proposed which aim at reducing the time spent in orch-
ards for human manipulations of trees (Lauri, 2002). However, a
step forward could be made by accounting for tree developmen-
tal traits in breeding programmes to select new genotypes with
desired properties in terms of tree architecture and light intercep-
tion efficiency (LIE). For apple trees, most architectural traits,
either topological or geometrical, were shown to be genetically
controlled, particularly during the first years of tree life
(Segura et al., 2008). However, it remains difficult to integrate
these traits in breeding programmes due to the complex
changes in trait values during tree development (Laurens et al.,
2000; Segura et al., 2008). In addition, considering the complex-
ity of apple tree architecture, the number of trees for experiments
in quantitative genetics, and the long tree growth period covering
years, it is neither convenient to grow and then measure pheno-
types in the field nor easy to collect data. Moreover, there are
few methods to quantify and compare in an objective way the
impact of training systems or cultivars on LIE. One possible
approach is to compare three-dimensional (3-D) representations
of foliage geometry, using either an electromagnetic 3-D digit-
izer (Sinoquet and Rivet, 1997; Massonnet et al., 2008;
Saudreau et al., 2011) or 3-D reconstruction from terrestrial
light detection and ranging (LiDAR) systems (Côté et al.,
2009; Livny et al., 2010; Preuksakarn et al., 2010). However,
on the one hand, 3-D digitizing does not allow the description
of trees over time and the number of described trees remains
low because it relies on difficulat and time-consuming field mea-
surements. On the other hand, reconstruction of geometry and
topology from LiDAR-generated data is an actual research
topic that still poses some challenges but is a promising alterna-
tive that could overcome the restriction of magnetic digitizing
(Raumonen et al., 2013). To save time, labour and resources,
we thus initiated a strategy based on computer-based virtual
experiments to explore the impact of traits variations on LIE
over years.

Among geometrical traits, the choice of an individual leaf area
was dictated by its major role, in conjunction with their within-
tree 3-D distribution, in light interception (Sinoquet et al.,
1991) and by their highly heritable values in different crops
(Byrne et al., 1996; Richards et al., 2002). In the apple tree,
total leaf area and leaf area per shoot types have been considered
as key variables in light interception and fruit production
(Wünsche et al., 2000). Moreover, individual leaf area is a herit-
able trait in the apple tree, as far as it is considered on a homoge-
neous shoot type (pers. obs.). Internode dimensions also have
large effects on plant properties, in particular on leaf spatial dis-
tribution and LIE (Dechaine et al., 2007; Bell and Galloway,
2008), and for disease propagation (Le May et al., 2009). From
an evolutionary perspective, internode elongation is considered
as having an adaptive value since its variation in response to

environmental changes provides a fitness benefit to the species
(van Kleunen and Fischer, 2004; Thomas and Hay, 2008).
Moreover, intraspecific variation of internode length has been
exploited in agronomy, or even controlled through plant regula-
tor application, for controlling plant size and improving yields,
particularly in grain crops (Khush, 2001; Salamini, 2003).
Even though it is influenced by both environmental and ontogen-
ic factors, internode length is under a strong genetic control in the
apple tree (Segura et al., 2007, 2009), thus opening up new per-
spectives for controlling fruit tree size through breeding pro-
grammes. Two additional geometrical traits were considered in
our approach, the shoot apical diameter and branching angles.
Shoot and trunk diameters are highly heritable in different
forest (Costa and Durel, 1996) or fruit trees, including apple
(Tancred et al., 1995; Durel et al., 1998; Oraguzie et al.,
2001). Among different diameters that can be measured within
apple tree crowns, the shoot top diameter was chosen because
it exhibited a stronger genetic effect than the basal diameter
(Segura et al., 2008). This is probably because the top diameter
does not integrate secondary growth because the measured stem
segment is just below the shoot apex and it is not a cumulated
variable over time as is basal diameter. Moreover, shoot diameter
has a main impact on shoot bending (Alméras et al., 2002, 2004).
More precisely, the slenderness, i.e. the ratio between the length
and diameter, appeared to be the main factor involved in shoot
bending. Thus, by considering a range of values for both these
variables, we expected to generate a range of tree architectures
which would differ in shoot bending and therefore in leaf
spatial distribution.

The second category of variables we considered in this study
regards tree topology. We chose to focus on branching traits
along the first annual shoots of the trunk, which corresponds to
an early developmental stage. This choice was dictated by the
existence of ontogenetic gradients during tree development
(Barthélémy and Caraglio, 2007) which are strongly expressed
and rapid in the apple tree (Costes et al., 2003; Segura et al.,
2008). Also, the numbers of internodes per growth unit (GU)
or axis exhibited lower heritability values or were less dependent
on genetic factors than branching variables, even though the two
variables were correlated (Segura et al., 2006, 2008). Because, in
grafted apple trees, the first years of trunk development usually
correspond to the longest annual shoots (Costes et al., 2003),
branching along these first annual shoots of the trunks exhibit
the most complex patterns within the trees, when compared
with other annual shoots sampled at higher branching orders
and in older parts of the trees (Renton et al., 2006). These
annual shoots bear different kinds of axillary productions
which can be categorized depending on their time of outgrowth
and fate. In previous studies, axillary productions were classified
as latent buds, sylleptic shoots (i.e. which develop immediately
without any resting period of the axillary bud) and proleptic
shoots (i.e. developed after a winter resting period of the buds).
In this last category, three additional classes were considered:
flowering shoots, and short and long vegetative shoots. Even
though the number of sylleptic laterals is highly heritable in
the first year of tree growth and they contribute strongly to the
construction of tree shape, this shoot category is rare in the fol-
lowing years (Segura et al., 2008) and is usually assumed to be
more involved in tree plasticity in response to environmental
conditions than proleptic shoots (Wu and Hinckley, 2001). In
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contrast, proleptic shoots, especially long ones, are the basis of
within-tree repetitions and similarities which is the fundamental
rule of tree architectural development (Renton et al., 2006).
Their number and location along their bearer shoots are thus
assumed to contribute greatly to the within-tree architectural or-
ganization and leaf distribution, which in turn determine light
interception.

In the present study, we aimed at exploring in silico different
combinations of organ geometrical and branching traits and
their consequence on light interception, here considered as an
output variable. We developed a strategy which made use of
several models, methods and information already available
from previous studies and combined them into three steps: (1)
a number of geometrical and topological traits whose range of
variation was previously observed within a segregating popula-
tion of apple hybrids were considered as input parameters in an
apple tree architectural model; (2) the 3-D representations result-
ing from this model were used by an environmental simulation
tool to calculate light interception; and (3) a sensitivity analysis
was performed on an output variable considered representative
of LIE. This strategy allowed us to highlight a hierarchy among
the studied factors.

MATERIALS AND METHODS

For simulating apple tree (Malus × domestica) topology and
geometry over years, we used the architectural model
MAppleT, i.e. Markov Apple Tree, which was parameterized
for the Fuji cultivar (Costes et al., 2008). The simulated tree top-
ology was tested through comparisons of GU counts per tree and
years with observed data on digitized trees. The light interception
of the simulated trees was estimated using MmSLIM, namely the
Multi-Scale Light Interception Model, which is a model capable
of combining a detailed and statistical description of foliage at
different scales to estimate radiation attenuation (Da Silva
et al., 2008). The tree total leaf area (TLA) and silhouette to
total area ratio (STAR) estimated from the combination of
MAppleT and MmSLIM were compared with those of digitized
trees of the same cultivar (Fuji) and with independent published
data on different cultivars (Da Silva et al., 2014).

MAppleT model

MAppleT is an architectural model developed for simulation
of apple tree topology and geometry (Costes et al., 2008). In
MAppleT, tree topology is organized by Markovian sub-models
previously estimated on a collected data set. These sub-models
control both the branching pattern and the GU successions
along axes (Guédon et al., 2001; Costes and Guédon, 2002,
2012; Costes et al., 2003, 2008; Renton et al., 2006). At the
macro scale, the GUs are represented by four states, ‘long’,‘me-
dium’, ‘short’ and ‘floral’, whose succession is modelled by a
Markov chain. At the phytomer scale, the branching structures
of long and medium GUs are characterized with zones, each
zone being characterized by the mixture of laterals its contains.
The succession of these zones is modelled with a hidden
semi-Markov chain (HSMC) which parameters depend on the
parent shoot length (Renton et al., 2006).

For geometrical development, the individual leaf area (LA)
development follows a logistic growth curve according to:

LA = fl(d)LAmax 1 − drk 1 − rk

np

( )[ ]
(1)

where LAmax is the maximum leaf area, fl(d ) is a normalized lo-
gistic function going from 0 to 1 over a period of 12 d of leaf de-
velopment (E. Costes et al., unpubl. res.), rk is the leaf rank, np is
the number of pre-formed leaves and drk is a Kronecker delta
function such that drk ¼ 1 if rk , np, and drk ¼ 0 otherwise.
Thus, the final area of pre-formed leaves depends on their rank.
The individual internode length (IL) follows a similar growth
over its developmental period (10 d; E. Costes et al., unpubl.
res.), reaching a final length that is indexed on the branching
zone as follows:

IL = ILmin + gl(d)ILmaxcz (2)

where ILmin and ILmax are the minimum and maximum internode
length, respectively, gl(d ) is a normalized logistic function going
from 0 to 1 over the developmental period and cz is a coefficient
bounded in [0, 1] that depends on the branching zone.

The MAppleT model is able to simulate the bending of
branches through a biomechanical sub-model (Alméras, 2001;
Taylor-Hell, 2005). To model branch bending, the torques
imposed by gravity and phototropism are applied to each inter-
node and then recursively extended to the entire axis. The result-
ing flexion depends on the branching angle and the wood
elasticity, which in turn depends on the internode diameter.
The simulation of cambial growth is supported by the pipe
model (Shinozaki et al., 1964), thereby the internode widths
are eventually accumulated from the diameters of the corre-
sponding distal ends (including the apical meristems and the
leaf petioles).

MAppleTwas developed using LPy, a python implementation
of the L-System paradigm (Boudon et al., 2012), and is therefore
fully integrated in the OpenAlea platform for plant modelling
(Pradal et al., 2008). This integration provides a set of tools dedi-
cated to plant modelling, a user-friendly environment, advanced
deployment methods and allows easy interactions with other
models, e.g. light interception models, through defined input
and output interfaces. However, these advantages came at the
cost of an increased computational time that can vary, for a
5-year-old simulated tree, from 1 to 36 h depending on the
branching density as computational time is directly related to
the number of simulated components, i.e. metamers, leaves
and fruits. Consequently, to obtain a high number of simulated
trees, parallel simulations were implemented using a cluster of
computers where each processor was carrying out an entire simu-
lation, i.e. five consecutive years of simulated tree growth.

Light interception

For evaluation of LIE, the STAR, i.e. the ratio of silhouette
area to total leaf area (Oker-Blom and Smolander, 1988;
Stenberg, 1996), was used. Silhouette area is the projected area
of an object on a plane that is perpendicular to the projective dir-
ection. Based on the total area of all leaves and the silhouette area
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of the tree crown, the STAR for a whole tree can be calculated by:

STAR = PLA/TLA (3)

where PLA is the total projected leaf area, i.e. the silhouette area
of the tree (considering overlap between leaves), and TLA is the
total leaf area, i.e. TLA =

∑n
i=1 Ai, where Ai is the area of leaf i

and n is the total number of leaves.
The STAR describes directional light interception; thus, in

order to obtain sky-integrated values of light interception cap-
acity, the diffuse mode available in MmSLIM was used to simu-
late the radiance of an overcast sky. The sky hemisphere is
discretized in 46 solid angle sectors of equal area according to
the Turtle sky proposed by Den Dulk (1989). The directions
used are the central direction of each solid angle and the 46
directional STAR values which are summed up with a weighting
coefficient derived from the standard overcast sky radiance dis-
tribution (Moon and Spencer, 1942). All STAR values hereafter
are integrated values over the entire sky dome. The sky-
integrated STAR is a good descriptor of LIE in the specific
case of a single standing tree, i.e. no community effect, that
was chosen in order to focus on the phenotype variability of
individual trees.

Sensitivity analysis

Because of the relatively long time required to run each simu-
lation, it was not possible to carry out in a reasonable time a sen-
sitivity analysis based on eFAST or Sobol methods that would
require a large number of simulations (Saltelli et al., 2000;
Faivre et al., 2013). For example, to estimate Sobol’s sensitivity
indices on a tree growth model, Wu et al. (2012) needed thou-
sands of model evaluations using Monte Carlo sampling. As
our model MAppleT is stochastic, Morris’ methodology
(which usually is a low-demand screening method for determin-
istic models) needs a larger set of simulations in order to take sto-
chasticity into account (Degasperi and Gilmore, 2008).
Therefore, we adopted a metamodelling approach (or response
surface modelling) to investigate our model response on a
restricted set of model runs. Among metamodelling approaches
(Storlie and Helton, 2008; Villa-Vialaneix et al., 2012), we
selected the generalized additive model (GAM) (Wood, 2006)
and modelled STAR as an additive sum of non-parametric func-
tions of each input parameter:

STARi = f0 + Sk fk(Xk,i) + ei (4)

where k is the number of parameters X for tree i and e i is its re-
sidual error term, with the constraints that all the functions fk
have an integrand equal to 0. The residual error term e i corre-
sponds to the modelling error plus the stochastic effect due to
the Markovian random process included in the MAppleT
model. The functions considered here correspond to the default
option in the mgcv library in R software version 2.13.1, i.e.
thin plate regression splines. This modelling permits exploration
of the space of parameters without replicates (as in Lurette et al.,
2009). Also, this model was selected for its robustness and its
ability to consider the main effect of each parameter with a non-
linear form which is not only polynomial. It provides a visualiza-
tion of possible deformations of the output variable response

with respect to a polynomial model. In the present application
of GAM, we did not consider interactions between the input para-
meters because of the limited size of the data set. We expect such
a design to allow us to identify the main effect of each factor,
especially the expectation of the response variable Y (here the
STAR) along the X input parameter domain (i.e. E(Y|X)).

The estimated response function fk(Xk) was thus visualized for
each input parameter, and characterized by two statistical
descriptors, e.d.f. and F, which correspond respectively to the
equivalent degree of freedom (Woods, 2006) and the F statistic
for testing if the function fk is significantly different or not
from the null function. The value of the e.d.f., which is an indi-
catorof the non-regularityof the function, is equal to 1 if the func-
tion is a perfect line, and to 2 if it is a perfect quadratic curve.
When the response function exhibits a positive (vs. negative)
slope, it is interpreted as an increase (vs. a decrease) of the vari-
able response with the increase of the input parameter. The inter-
section of the curve with the x-axis, which corresponds to the
input parameter values, is obtained when the expected response
corresponds to the mean value of the variable response. Hence,
when the curve is below the x-axis the response will be below
the mean for these input values, whereas when the curve is
above the x-axis, the response will be above the mean.

Virtual experiment

In the present study, the trait variations for either geometrical
or topological traits were extracted from previous observations
of apple bi-parental progeny, which were derived from a
‘Starkrimson’ × ‘Granny Smith’ cross, with parents being
chosen for their contrasting architecture. The ‘Starkrimson’ ma-
ternal parent displayed an erect growth habit with many short
shoots and a tendency towards irregular bearing (Lespinasse,
1992). In contrast, the ‘Granny Smith’ pollen parent displayed
a weeping habit with long shoots and fruit-bearing regularity.
These F1 progeny comprised 125 seedlings that were grown on
their own roots in a nursery before being grafted on M9 rootstock.

Geometry. Three geometrical aspects were expected to have a
direct influence on the STAR value of the whole tree: the leaf
surface, the density of leaves and the leaf orientations. The inter-
ception surface is mainly determined by the area of an individual
leaf. Petiole angle is considered constant in the present version of
MAppleT; hence, the leaf orientation is mainly influenced by
branching angle and branch bending. The latter depends, for a
given wood elasticity, on the allocation of weights imposed by
leaves and internodes along an axis. According to the pipe
model, the internode widths are recursively accumulated from
the diameters of corresponding distal ends, from the shoot top
to the shoot base. Therefore, the top shoot diameter is also
expected to have an impact on branch bending and, consequent-
ly, on leaf orientation. The leaf density is determined by both the
intervals between leaves, as determined by internode length, and
the branching behaviour of the canopy. Consequently, we chose
four geometrical traits related to these aspects, LA, IL, top shoot
diameter (TSD) and branching angle (BA), to investigate their
complex influences on the whole tree’s STAR value. We
ranged the four geometrical traits from a lower value to an
upper value corresponding to the range of variation observed
in the previously studied apple progeny (Segura et al., 2008)
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(Table 1). This range is larger than that observed in the most com-
monly used varieties, as exemplified by a segregating population
compared with their parents for internode length (Ripetti et al.,
2008) or branching angles which have been described as
varying between 0 (vertical) for upright varieties (e.g.
‘Braeburn’) to 608 for spread varieties (e.g. ‘Reinette Blanche
du Canada’; Lespinasse, 1977). The experimental design for ex-
ploring the space of input parameter values was performed with
LHS (Latin hypercube sample) where the distribution chosen for
each input parameter was the non-informative one, with the cor-
responding procedure in the package lhs of R software version
2.13.1. For this experiment, a sample of 300 sets of parameters
was generated. Each set of parameters was then used to simulate
the growth of an apple tree over 5 years. All other parameters
were kept with default values (Costes et al., 2008). Samples of
these simulated tree architectures are shown in Fig. 1. The LIE
was estimated at the whole-tree level, on June 30 of each year.
This date corresponds to the time when growth stops for most
of the shoots, in particular the short and the medium shoots.

Topology. To investigate the effect of the branching during early
growth, tree simulations were initiated with sequences of lateral

types along the first year of growth of the trunks previously
observed (Segura et al., 2008). This allowed us to vary the
number of lateral shoots along the trunks, keeping the overall or-
ganization of branching. Different axillary shoot types were con-
sidered: each axillary bud could develop immediately into a
sylleptic shoot or remain latent until the next budbreak when
they could develop into proleptic shoots, or still remain latent.
Both sylleptic and proleptic shoots could be short, medium or
long (for details see Segura et al., 2008). Among the 125
progeny, only 108 recorded trunk sequences were available
due to tree-dying and trunk-breaking events. From these
sequences, the number of sylleptic and proleptic shoots in each
category was considered and divided by the annual trunk
length, in order to express a branching density along the
trunks. These densities were additionally decomposed according
to the shoot length, yielding a maximum of six input parameters:
densities for short, medium and long proleptic and sylleptic
shoots. Each sequencewas then used to initiate the model simula-
tions. All the other parameters of the model were kept with
default values (Costes et al., 2008). In particular, the Markov
models estimated for the Fuji cultivar were used to simulate
the type of growth unit and axillary shoots developed from
each bud, either terminal or axillary, in the subsequent years.
The simulated trees thus differed because of the different
initial 1-year-old branching sequences, observed for each
hybrid, and the stochasticity of Markovian models in the subse-
quent years. A sample of initial (1-year-old) and resulting final
(5-year-old) simulated tree architectures is shown in Fig. 2.
Similarly to the geometrical counterpart of this virtual experi-
ment, the topological part covered 5 years of tree growth and
the STAR was calculated at the whole-tree level on 30 June of
each year.

TABLE 1. Range of values of the investigated geometrical traits

Parameter Lower value Upper value

Leaf area (m2) 3.0 × 10– 4 9.0 × 10– 3

Internode length (m) 8.0 × 10– 3 5.0 × 10– 2

Shoot top diameter (m) 1.0 × 10– 3 8.5 × 10– 3

Branching angle (8) 0.0 1.3 × 10– 2

BA : 96·7    [ ° ]      IL : 3·50e-2 [m]
TSD : 3·40e-2 [m]  LA : 2·20e-3 [m2]

BA : 23·3    [ ° ]      IL : 1·61e-2 [m]
TSD : 6·98e-3 [m]  LA : 2·18e-3 [m2]

BA : 122    [ ° ]       IL : 3·22e-2 [m]
TSD : 5·66e-3 [m]  LA : 3·34e-3 [m2]

BA : 113    [ ° ]       IL : 4·84e-2 [m]
TSD : 7·67e-3 [m]  LA : 2·24e-3 [m2]

BA : 101    [ ° ]       IL : 1·83e-2 [m]
TSD : 3·64e-3 [m]  LA : 4·92e-3 [m2]

BA : 8·08    [ ° ]      IL : 4·86e-2 [m]
TSD : 3·18e-3 [m]  LA : 1·48e-3 [m2]

BA : 36·4    [ ° ]      IL : 3·56e-2 [m]
TSD : 4·88e-3 [m]  LA : 8·33e-3 [m2]

BA : 103    [ ° ]       IL : 2·48e-2 [m]
TSD : 4·76e-3 [m]  LA : 3·08e-4 [m2]

FI G. 1. Visualization of simulated architectures forapple trees (Malus × domestica). These sample architectures were produced by MAppleTwith different values of
geometrical investigated parameters. The green area below the simulated tree has a constant size and thus its purpose is to act as a visual aid in terms of relative tree size.
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RESULTS

STAR evolution over years

The distribution of the TLA of the simulated trees was repre-
sented from the first to the fifth year of growth for both experi-
ments (Figs 3A and 4A). The mean (represented by dots) and
variance (extent of the box) of TLA obtained with the geometry
experiment increased rapidly with years. The mean values
increased from 0.096 m2 in year 1 and to 10.21 m2 in year
5. The variability also increased with age, the standard deviation
(s.d.) going from 0.052 in year 1 to 6.083 in year 5. However,
these variations, which were very rapid from year 1 to year 4,
were attenuated between year 4 and year 5. In the topology
experiment, the TLA and its s.d. followed the same pattern,
with an increase from year 1 to year 5, slightly attenuated
between years 4 and 5. The mean and s.d. values increased
from 0.69 m2 to 33.98 m2 and from 0.49 to 26.47, respectively.
The mean TLA values and their s.d. were much higher in the
topology experiment than in the geometry experiment. This
difference was set from the first year of growth with a TLA
mean value 5–6 times higher in the topology experiment than
in the geometry experiment. This ratio was reduced to 3 when
TLA mean values were compared between experiments in year
5. Also, the topology experiment yielded more outlier indivi-
duals than the geometry experiment.

In contrast, the mean STAR values, regardless of the experi-
ment and input parameters, decreased with tree age and stabi-
lized when the trees were 4 and 5 years old (Figs 3B and 4B).
The mean STAR values from the geometry experiment went
from 0.36 in year 1 to 0.14 in year 5, with a variability that
remained constant through the years with a s.d. around 0.07
(Fig. 3B). In the case of the topology experiment, the mean

STAR values decreased from 0.23 in year 1 to 0.11 in year 5
(Fig. 4B). In this experiment, the s.d. also declined from 0.054
to 0.025 and was significantly lower than in the geometry experi-
ment. Similarly to TLA, differences in STAR mean values were
observed from the first simulated year of growth, with higher
mean values in the geometry experiment than in the topology
experiment. In contrast to TLA, the mean STAR values were
lower in the topology experiment than in the geometry experi-
ment, but to a lesser degree than their variability.

Sensitivity analysis

Geometry. The prediction of the STAR value with the GAM
model for a specific combination of the four input parameter
values is the sum of four terms, corresponding to their respective
effects. The approximate effects of the four input parameters on
STAR values revealed significant effects of IL, LA and BA in all
years, whereas TSD exhibited a non-significant effect, except for
year 1 (Table 2). In that year, the BA effect was not significant,
and even though TSD had a significant effect, the comparison
of the F-values showed the overwhelming effect of both IL and
LA. This relative effect order, corresponding to decreasing
F-values, was maintained over the 5 years, with IL having the
highest effect, followed by LA, and finally with a moderate
effect of BA. The estimated GAM explained from 99.5% in
year 1 to 94.0% in year 5 of the total variation of STAR values
obtained from simulations (Table 2, adjusted R2).

Fluctuations in the shape of the output variable responses are
revealed by the value of the e.d.f. (see values in Table 2). As
shown by the e.d.f. values, the non-regularity of the functions
did not change much over the years. The high impact of IL and
LA can be illustrated by the response functions of the expected

pl.1–1 :   5·44

ps.1–1 :  10·20

1 year

5 years

pm.1–1 : 8·16
sl.1–1 :   0·00

ss.1–1 :  2·04
sm.1–1 : 0·00

pl.1–1 :   1·45

ps.1–1 :  6·55
pm.1–1 : 0·00

sl.1–1 :   8·73

ss.1–1 :  0·00
sm.1–1 : 0·73

pl.1–1 :   1·27

ps.1–1 :  20·38
pm.1–1 : 0·64

sl.1–1 :   0·64

ss.1–1 :   0·64
sm.1–1 : 0·64

pl.1–1 :   0·56

ps.1–1 :  13·37
pm.1–1 : 13·37

sl.1–1 :   6·13

ss.1–1 :  1·11
sm.1–1 : 1·67

FI G. 2. Visualization of simulated architectures for apple trees (Malus × domestica). These sample architectures were produced by MAppleT with different branch-
ing sequences for the trunk first annual shoots. The green area below the simulated tree has a constant size and thus its purpose is to act as a visual aid in terms of relative

tree size.
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mean STAR value, illustrated for year 5 in Fig. 5. In year 5, the
response function to IL was a monotonous ascending line, slight-
ly sigmoidal, denoting an almost constant positive effect of IL
increase on the mean STAR value. This function exhibited a
shape similar to a rarefaction curve in year 1 and changed
toward a sigmoid shape in the following years by passing
through a monotonous ascending line shape in year 3 when the
e.d.f. reached its minimum (data not shown). In contrast, the in-
crease in LA had a negative impact on the expected mean STAR
value (Fig. 5). This negative effect was stronger up to 0.002 than
between 0.002 and 0.008, displaying a curve with a shape remin-
iscent of a negative exponential. This shape was similar in the
previous years (data not shown). LA was the input variable that
yielded the more irregular response function, with e.d.f. values
between 6.68 and 8.20, significantly higher than those from
other input variables. The functions of response to BA exhibited
a positive effect from 0 to 65, slowly decreasing with BA increase
before the function reached an inflexion point and started to
exhibit a low but increasingly negative effect on STAR from

65 onward. The shape of the response function to BA was very
different in year 1, where it was a straight horizontal line (denot-
ing no effect at that stage, data not shown). From year 2, onward,
the function showed the same global shape as described in year 5
(data not shown). Also, it is noticeable that, in year 5, the re-
sponse function to BA had an almost identical e.d.f. value to
that of IL, even though the two functions had different curve
shapes. Finally, the TSD curve was almost a horizontal line on
the x-axis, hence having a negligible effect on STAR values
throughout the input parameter domain. The e.d.f. values for
TSD showed small fluctuations and values close to 1, from
1.14 to 1.51, throughout the 5 years of tree growth.

Topology. The prediction of STAR values with the GAM model
was performed for two specific combinations of input parameter
values. At the first step, the number of proleptic and sylleptic lat-
erals per unit length was considered (Table 3). In the first year of
growth, the approximate effects on STAR revealed that only the
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sylleptic density had a significant influence. From year 2 to year
5, both sylleptic and proleptic densities showed a significant
effect on the STAR values, with a marked higher influence
from the sylleptic density each year (Table 3). The estimated
GAM explained 62.3% in year 1 to 31% in year 5 of the total vari-
ation of STAR values obtained from simulations (Table 3,
adjusted R2).

An increasing density of sylleptic laterals had a negative
impact on the expected mean STAR value, as shown in Fig. 6
(left) for the fifth year. In that year, the negative effect on
STAR of the increasing sylleptic density was monotonous and
stronger until 20, where it seemed to reach a stable influence.
However, the confidence interval became important after this
value because of the insufficient number of samples. The re-
sponse function had a similar shape every year except in year 2
(data not shown) where the decrease was linear all along as
shown by the e.d.f. values close to 1. The function of STAR
responses to proleptic density showed a more complex shape
with more fluctuations (Fig. 6, right). It started with a negative
effect of an increased density of proleptic laterals on mean
STAR values, up to about 10, at which point it became slightly
positive until 20. From 20 to about 30, the influence of proleptic
density was stable and then reverted to a negative effect similar to
that observed before 10. However, after 35, the confidence inter-
val also became important for the same reason of insufficient
sampling. In the case of proleptic laterals, the evolution of the
response function toward the shape described in year 5 started
in year 2. In year 1, the response function was a horizontal flat
curve around 0, illustrating the absence of influence of proleptics
in that year shown in Table 3.

In a second step, the density of each type of sylleptic and pro-
leptic (long, medium and short) was considered (Table 4).

In the first two years, both long and medium sylleptic densities
had significant effects, and long sylleptic density remained

significant in the subsequent years (Table 4). Among the three
types of proleptic shoots, the highest impact was obtained for
the density of medium shoots whose effect was significant
from the second to the fifth year. However, this effect was
much less compared with that of medium sylleptic density, and
it also decreased in years 4 and 5 (see F-values, Table 4) The
short proleptic density had a significant effect in the first year
only, and the long proleptic density had no effect. The estimated
GAM explained 58% of the total variation of STAR values in the
first year of growth and decreased to 41.8% in year 5 (Table 4,
adjusted R2). If we were to decompose this GAM into two
models, for the density of long, medium and short sylleptic or
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FI G. 5. Expected mean values (solid lines) and confidence band (dashed lines) of
smoothed terms (y-axes;predicted STARvalue)dependingon the input parameter
values in the geometry experiment (x-axes: position of sampled values in LHS)
estimated from the generalized additive model (GAM). The term s in the labels
on the y-axes indicates that thin plate splines are used, and the numbercorresponds

to the equivalent degree of freedom (e.d.f.) of the estimated curve.

TABLE 2. Approximate effects of the geometrical input
parameters on STAR values with a GAM

Year Input variable e.d.f. F P-value R2

1 BA 1 0.09 0.76 0.995
IL 4.68 6089.98 ,2 × 10– 16***
TSD 1.34 19.72 1.65 × 10– 7***
LA 7.33 2542.99 ,2 × 10– 16***

2 BA 4.58 131.11 ,2 × 10– 16*** 0.953
IL 3.53 642.1 ,2 × 10– 16***
TSD 1.14 0.11 0.796
LA 6.68 267.05 ,2 × 10– 16***

3 BA 4.18 142.82 ,2 × 10– 16*** 0.955
IL 2.25 1043.3 ,2 × 10– 16***
TSD 1.51 2.1 0.128
LA 7.26 268.37 ,2 × 10– 16***

4 BA 3.7 92.86 ,2 × 10– 16*** 0.946
IL 3.23 595.94 ,2 × 10– 16***
TSD 1.35 0.81 0.425
LA 8.2 228.4 ,2 × 10– 16***

5 BA 3.46 92.17 ,2 × 10– 16*** 0.94
IL 3.5 500.71 ,2 × 10– 16***
TSD 1.44 1.2 0.299
LA 7.49 207.19 ,2 × 10– 16***

Input variables were the branching angle (BA), the internode length (IL), the
top shoot diameter (TSD) and leaf area (LA).

*** P ≤ 0.001.
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proleptic shoots, respectively, the model with syllpetic shoots
would explain 40–50% of the STAR variation over the years
whereas only 10% would be explained by the density of proleptic
shoots (data not shown). The combination of the two types of lat-
erals in a single model thus explained the STAR values more , in
an additive way.

An increasing long sylleptic density had a negative effect on
the expected STAR values, as shown in Fig. 7, for the fifth
year. In that year, the negative effect on STAR of the increasing
long sylleptic density was rapid and monotonous, with a stronger
decrease until 8 where its influence slightly diminished.
However, the confidence interval became important after this
value because of the insufficient number of samples. The

response function had a similar shape in all years (data not
shown). The negative effect on STAR of the increasing
medium proleptic density was similar but much milder than
that of the long sylleptic density. In year 5, the negative effect
was almost linear, but with a large interval confidence when
the density was .8 (Fig. 7). The shape of the response function
from year 2 to year 4 had more marked steps than that in year 5.
Theystarted with a negative effect up to 4 and then reached a zone
of stable influence from 4 to 12 before reverting to the negative
effect from 12 onward (data not shown). It must be noted that
the slight effect of short proleptic density in year 1 corresponded
to a response function with a positive effect on the STAR value
from 0 to 10 and almost no effect from there onwards (data not
shown). All other response functions barely changed over the
years, except for year 3, and were close to a horizontal straight
line near the x-axis (data not shown). Therefore the e.d.f.
values were close to 1. In year 3, the response functions for
both the short sylleptic and long proleptic densities exhibited
strong fluctuations around the x-axis, as shown by the high
e.d.f. values of 6.31 and 4.02, respectively.

DISCUSSION

The in silico experiments performed in the present study, by
varying either organ geometry or branching traits in the first

TABLE 3. Approximate effects of the topological input parameters
on STAR values with a GAM

Year Input variable e.d.f. F P-value R2

1 syll l– 1 3.23 38.04 ,2 × 10– 16*** 0.6
pro l– 1 2.98 1.73 0.15

2 syll l– 1 1.05 35.38 2.17 × 10– 8*** 0.42
pro l– 1 3.45 8.59 1.51 × 10– 5***

3 syll l– 1 2.44 3.09 2.05 × 10– 4*** 0.31
pro l– 1 4.16 5.13 6.84 × 10– 4***

4 syll l– 1 2.27 2.870 2.26 × 10– 5*** 0.35
pro l– 1 4.58 5.612 2.37 × 10– 4***

5 syll l– 1 2.05 2.593 1.57 × 10– 5*** 0.31
pro l– 1 4.17 5.142 1.69 × 10– 3**

Input variables were the number of sylleptic (syll) and proleptic (pro) shoots
per unit length (l– 1).

*** P ≤ 0.001; **P ≤ 0.01.

0

–0·04

–0·02

0

0·02

5 10 15

syll.l–1

s(
sy

ll.
l–1

, 2
·0

5)

–0·04

–0·02

0

0·02

s(
pr

o.
l–1

, 4
·1

7)

2520

0 10

pro.l–1

20 30 40
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TABLE 4. Approximate effects of the topological input parameters
on STAR values with a GAM

Year Input variable e.d.f. F P-value R2

1 sl l– 1 3.51 12.53 1.31 × 10– 8*** 0.58
sm l– 1 2.13 7.98 1.68 × 10– 4***
ss l– 1 1.00 2.55 0.113833
pl l– 1 1.00 3.66 0.058766
pm l– 1 1.00 1.83 0.178819
ps l– 1 1.92 3.01 0.044906*

2 sl l– 1 2.34 16.85 8.87 × 10– 9*** 0.57
sm l– 1 1.00 11.44 0.00104**
ss l– 1 1.00 0.26 0.61205
pl l– 1 1.36 0.19 0.77948
pm l– 1 3.14 7.82 1.97 × 10– 5***
ps l– 1 1.20 0.04 0.90516

3 sl l– 1 2.15 20.61 1.4 × 10– 9*** 0.54
sm l– 1 1.84 1.77 0.17187
ss l– 1 6.31 1.06 0.39947
pl l– 1 4.02 0.99 0.42864
pm l– 1 3.96 3.96 0.00307**
ps l– 1 1.57 0.57 0.55967

4 sl l– 1 2.20 20.32 8.54 × 10– 10*** 0.53
sm l– 1 1.82 2.71 0.0649
ss l– 1 1.00 1.66 0.2008
pl l– 1 1.00 1.19 0.2773
pm l– 1 3.99 3.06 0.0138*
ps l– 1 1.00 0.001 0.9780

5 sl l– 1 1.90 21.32 2.22 × 10– 9*** 0.42
sm l– 1 1.00 1.72 0.1927
ss l– 1 1.00 0.002 0.9652
pl l– 1 2.56 1.28 0.2869
pm l– 1 1.37 3.63 0.0386*
ps l– 1 1.00 0.000 0.9877

Input variables were the number of types of sylleptic and proleptic shoots,
long (sl and pl), medium (sm and pm) and short (ss and ps), respectively, per
unit length (l– 1).

*** P ≤ 0.001; **P ≤ 0.01; *P ≤ 0.05.
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yearof tree development, generated a large range of tree architec-
tures with different TLA and STAR values. The important differ-
ence in TLA between the geometry and topology experiments
revealed that branching along the first annual shoot of the
trunks enhanced tree architecture variability and variance in
TLA. The mean values of TLA simulated for 5-year-old trees
appeared high in comparison with values obtained on digitized
and pruned trees (Willaume et al., 2004). However, this is not
surprising if we consider the large range of input values that
were used for the simulations. The evolution over the years of
the ratio between the mean TLA values for the two experiments
seemed reasonable given the fact that the trees in the geometry
experiment did not have sylleptic shoots in year 1. However,
the outlier individuals in the topology experiment, which again
exhibited a TLA 3–5 times higher than the mean value, are prob-
ably unrealistic model output. Among the reasons that may be
involved, the absence of shoot mortality regulation in the
MAppleT model is probably a major factor. Indeed, in highly
branched young trees, strong competition between shoots may
lead to high mortality rates, in particular in the very centre of a
very dense canopy. Different factors such as correlation inhib-
ition (Umeki et al., 2006), fruiting (Lampinen et al., 2010) and
light transmittance (Takenaka, 2000) are likely to be responsible
for insufficient shoot growth and a natural mortality. Presently, in
the model, mortality rate is constant and is of concern for short
shoots only (Costes et al., 2008). As a consequence, all the
long and medium shoots are fully grown and therefore participate
in both the TLA increase and the STAR reduction.

Whatever the input parameters, the mean STAR values esti-
mated on simulated trees decreased with the year of growth

with a stable variability in both experiments. On the one hand,
these patterns resulted from the low overlap between leaves in
young trees and from the increase in the mean number of
leaves and GUs that increased with the tree age and were respon-
sible for the TLA increase (Han et al., 2012). On the other hand,
the predominance of short shoots in within-tree shoot demog-
raphy when coming to full maturity (Costes et al., 2003) also con-
tributed to the STAR decrease. A previous study on the
relationship between the within-tree organization at different
scales and LIE showed that the shoot scale was responsible for
most of the tree foliage aggregation and thus foliage overlap
(Da Silva et al., 2014). The stabilization of STAR values in
year 4 and 5 was also observed in that study and was related to
a strong organizational development that is taking place when
the shoot scale becomes clearly distinct from the branch scale,
i.e. in years 2 and 3. Compared with the STAR values of that
study, our results from the geometry experiment were in accord-
ance for the mean but with a substantially higher variability. In
contrast, the topology experiment exhibited a similar variability
but slightly lower mean STAR values than in Da Silva et al.
(2014). The lower mean values of the topology experiment are
the direct consequence of the TLA excess as previously stated.
Also, the mean values of STAR obtained in 5-year-old trees
were underestimated with respect to previous estimations on
digitized trees (Willaume et al., 2004; Massonnet et al., 2008).
As stated previously for TLA, these discrepancies are likely to
result from the large range of values we explored which do not
necessarily match values observed in particular cultivars.

The low STAR variability in the topology experiment despite
the high variance of TLA, which is the STAR normalizing term,
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suggests a threshold in terms of LIE that is not overcome by the
sole increase of leaf area. Comparing the results of the two experi-
ments highlights a higher impact on STAR when varying organ
geometry than early branching. This may be due to the repeated
occurrence of individual organs over the years whereas the top-
ology has a declining effect linked to tree ontogeny.

The sensitivity analysis performed in the present study
allowed us to highlight a hierarchy among the aspects that were
expected to have a direct influence on the STAR value of the
whole tree. Among the organ geometrical traits that were consid-
ered, internode length and area of individual leaves had the
highest impact on STAR, whereas the branching angle had
only a low impact. Top shoot diameter had a very low if not
null impact. An individual leaf area effect is consistent with
the definition of STAR (Oker-Blom and Smolander, 1988).
Basically, the overall STAR turned out to be smaller when the
leaf area was higher because large leaves produce larger overlaps
(independently of possible leaf blade reorientation toward the
light source), thereby less light can reach the inner leaves.
Moreover, large leaves also mean more biomass and therefore
more bending of branches which bring more leaves under the
overlaps (independently of the relatively larger effect of fruit
biomass on branch bending). The internode effect on STAR is
likely to be less direct than that of leaf area. As previously, two
main reasons may explain this strong influence: internodes are
the primarysupport minimizing leaf overlap, and it will influence
the branch bending (Alméras et al., 2004; Moulia and Fournier,
2009). The fact that internode length had the highest impact
on STAR values is consistent with previous studies which
have underlined the large influence of internode length on
plant light interception in other plant species (Christophe
et al.,2003; Pearcy et al., 2005; Sarlikioti et al., 2011).
However, internode length also depends on the local light envir-
onment during its development (Kahlen and Stützel, 2011), and
more complex relationships between organ geometry and envir-
onmental conditions could be considered in the simulations.

Among branching traits, long sylleptic shoots had the highest
impact and this impact persisted over the years. This is consistent
with the use of sylleptic branching (also called feathers by horti-
culturists) in initial tree training, in particular for promoting
earlier fruiting (Wertheim, 1978; Costes et al., 2006). The
present study highlights possible counterproductive effects of
the presence of sylleptic shoots along the trunks by reducing
the light interception in subsequent years. This negative effect
is usually overcome by a careful choice of lateral branches
along the trunks during tree training (Forshey et al., 1992).
However these manual interventions in the trees are expensive
in terms of time and labour. Therefore, from the present study
we can assume that breeding and genetic selection could open
up a new avenue for light interception optimization, and could
be more efficient for saving time, labour and resources than
yearly topology alteration through pruning. However, it must
be remembered that sylleptic branching is usually assumed to
be involved in tree plasticity in response to environmental condi-
tions (Wu and Hinckley, 2001). Even though the number of syl-
leptic laterals has been shown to be highly heritable in the first
year of tree growth (Segura et al., 2008), a better understanding
of the interactions between genetic and environmental effects
would help in designing varietal ideotypes. In contrast and con-
trary to our expectations, long proleptic shoots had a lower

impact on STAR than medium proleptic shoots. This may be
due to their low number within the trees (Costes and Guédon,
1997). Indeed these laterals are strongly linked to acrotony
(Cline, 1997) and occur on a few nodes only, just below the
apical bud. In our opinion, the analysis of the impact of genetic-
ally controlled traits on response factors such as LIE, in the case
of an isolated tree, was a first necessary step before considering
the case of a tree in orchard conditions. Indeed, in that case,
there are many new factors that would be necessary to be taken
into account such as the effects of site latitude, planting
density, row width and azimuth. This additional complexity
will introduce noise on the response factors due to the agronomic
aspects that can only be separated from the the genetic aspects if
their impacts are already known and understood.

From a methodological point of view, the GAM modelling
provided estimations of STAR variations with R2 .95% in the
geometry experiment. The additive effects of the four factors
allowed us to estimate the contributions of each factor to the vari-
ation of STAR, and the STAR values could be predicted with
good confidence from a simple combination of functions built
with leaf area, internode length and branching angle. However,
confidence in the model outputs could be related to the range
of variation in the input parameters we have explored, and the
validity of model predictions with another range of input vari-
ables values will have to be further investigated. The predictions
of STAR values with GAM were less accurate in the topology ex-
periment, due to lower R2 values and more complex response
functions. Indeed, if the effect of sylleptic density was relatively
simple, the response function to proleptic density was more
complex, with effect depending on the x-axis values. The low
values of adjusted R2 partly result from the fact that the GAM
procedure did not allow us to estimate high dimensional
smooth functions taking into account both main and interaction
effects between parameters, on a data set limited to 100 points.
Even though it was not possible to enrich our data set on the top-
ology study with many additional simulations, due to simulation
costs, some additional computations were performed (unpubl.
data) which showed that interactions do not have null but have
moderate contributions to the variation in STAR values.
Therefore, most of the unexplained variations are due to the sto-
chastic component of the MAppleT model and to the low effect
of branching density parameters on STAR values after the second
year. It must be noted that the chosen descriptors of the initial tree
topology, i.e. branching density, only partly represent the
complex branching patterns along trunks, and this may contrib-
ute to their low effect on STAR.

In the case of the geometry experiment, we knew from a pre-
vious study that the four studied factors had mainly additive
effects (Han et al., 2012). However, in the case of the topological
experiment, we cannot reject the hypothesis of an interaction
because the data set size allowed us to estimate the main
effects only. Also, the dependency between lateral types on the
total number of nodes of a parent shoot, the strong branching
organization patterns observed along shoots (Guédon et al.,
2001; Renton et al., 2006) as well as the mutual exclusion of syl-
leptic and proleptic categories at a given node suggest that these
input variables are dependent. Further studies using model selec-
tion (including or not interaction terms) in generalized additive
modelling (Wood, 2006) would certainly allow a more refined
analysis. Moreover, in the topology experiment, the function
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response led us to suspect that the sylleptic and proleptic shoots
densities (including long, medium and short) have conditional
effects, i.e. a parameter having an effect only when the first
one considered is in a certain range. From this perspective,
other statistical approaches could be explored to model the re-
sponse of STAR, such as the recursive partitioning described
in Storlie and Helton (2008) or using Gaussian process model-
ling, such as Marrel et al. (2012). It would also be possible to
extend the GAM in a multidimensional way to combine the dif-
ferent input parameters considered, such as for instance IL and
LA in the geometry experiment or even combining geometrical
and topological parameters. However, this would require more
numerous simulated data to obtain estimators of good quality
and more complex designs of the experimental plan for simula-
tions. Considering the relatively long time required for simulat-
ing each tree over 5 years, more complex plans will certainly
require coupling an optimization process to the sensitivity ana-
lysis (Picheny et al., 2013).

Finally, this study appeared very promising for identifying
traits that could control light interception optimization, from
the breeders point of view. Indeed, it suggests that major
genetic improvements could be made in fruit tree species, as pre-
viously performed in annual crops (Khush, 2001). Nevertheless,
the search for innovative ideotypes could also benefit from a
focus on the 1 or 2% of unexplained variations which may lead
to less expected effects. Presently, a major limitation of our
approach results from the fact that the in silico experimentation
design did not include constraints between input parameters.
For instance, the simulated trees can exhibit a very small leaf
area combined with very long internodes, such combinations
leading to the highest STAR values at the whole-tree level.
Nevertheless, in reality, it is unlikely that the leaf area changes
independently from the other factors, especially internode
length, due to strong allometric properties of the metamers;
see, for example, Yang et al. (2010). As a consequence, the def-
inition of the input parameter space to be explored in the sensitiv-
ity analysis would need further investigations. Similarly the way
to balance the different and possiblyantagonist functions of plant
organs will have to be considered to develop ourapproach further
towards the concept of optimal design and ideotype definition
(Wu, 1998). For instance, even though an increase in branching
density negatively impacts light interception within the tree, it
may also have a positive impact on the tree fruiting potential,
by multiplying the number of fructification locations. Also, the
individual leaf areas which impact light interception are involved
in transpiration and photosynthesis, and whereas small leaves de-
crease their overlap and increase STAR, large leaves are favour-
able as sources of carbohydrates. From this perspective, other
output variables should be combined with light interception,
considering physiological (e.g. photosynthesis) or agronomic
(e.g. production) traits simultaneously in a multiobjective ap-
proach as recently performed by Quilot et al. (2013) on peach
fruit quality and sensitivity to brown rot. Presently, using a
single output variable makes the prediction of the best combin-
ation of traits to be considered for selecting an optimal apple
tree architecture hazardous. The use of in silico scenarios and op-
timization procedures should allow us in the future to account for
antagonistic effects of input parameters, possibly at several
scales of tree organization, and their combined effects on mul-
tiple objectives.
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Kahlen K, Stützel H. 2011. Modelling photo-modulated internode elongation
in growing glasshouse cucumber canopies. New Phytologist 190:
697–708.

Khush GS. 2001. Green revolution: the way forward. Nature Reviews Genetics 2:
815–822.

van Kleunen M, Fischer M. 2004. Constraints on the evolution of adaptive
phenotypic plasticity in plants. New Phytologist 166: 49–60.

Lampinen BD, Tombesi S, Metcalf SG, DeJong TM. 2010. Spur behaviour in
almond trees: relationships between previous year spur leaf area, fruit
bearing and mortality. Tree Physiology 31: 700–706.

Laurens F, Audergon JM, Claverie J, et al. 2000. Integration of architectural
types in French programmes of ligneous fruit species genetic improvement.
Fruits (Paris) 55: 141–152.

Lauri PE. 2002. From tree architecture to tree training – an overview of recent
concepts developed in apple in France. Journal of the Korean Society for
Horticultural Sciences 43: 782–788.

Lauri PE, Costes E. 2004. Progress in whole-tree architectural studies for apple
cultivar characterization at INRA, France – contribution to the ideotype ap-
proach. Acta Horticulturae 663: 357–362.

Le May C, Ney B, Lemarchand E, Schoeny A, Tivoli B. 2009. Effect of pea
plant architecture on spatiotemporal epidemic development of ascochyta
blight (Mycosphaerella pinodes) in the field. Plant Pathology 58: 332–343.

Lespinasse JM. 1977. La conduite du Pommier. I – Types de fructification.
Incidence sur la conduite de l’arbre. Paris: INVUFLEC.

Lespinasse Y. 1992. Breeding apple tree: aims and methods. In: Proceedings of
the Joint Conference of the EAPR Breeding and VarietalAssessment Section
and the EUCARPIA Potato Section. 103–110.

Livny Y, Yan F, Olson M, Chen B, Zhang H, El-Sana J. 2010. Automatic
reconstruction of tree skeletal structures from point clouds. ACM
Transaction on Graphics 29: 151.

Lurette A, Touzeau S, Lamboni M, Monod H. 2009. Sensitivity analysis to
identify key parameters influencing Salmonella infection dynamics in a
pig batch. Journal of Theoretical Biology 258: 43–52.

Marrel A, Iooss B, Da Veiga S, Ribatet M. 2012. Global sensitivity analysis of
stochastic computer models with joint metamodels. Statistics and
Computing 22: 833–847.

Massonnet C, Regnard JL, Lauri PE, Costes E, Sinoquet H. 2008.
Contributions of foliage distribution and leaf functions to light interception,
transpiration and photosynthetic capacities in two apple cultivars at branch
and tree scales. Tree Physiology 28: 665–678.

Moon P, Spencer DE. 1942. Illumination from a non-uniform sky. Transactions
of the Illumination Engineering Society 37.

Moulia B, Fournier M. 2009. The power and control of gravitropic movements
in plants: a biomechanical and systems biology view. Journal of
Experimental Botany 60: 461–486.

Oker-Blom P, Smolander H. 1988. The ratio of shoot silhouette area to total
needle area in Scots pine. Forest Science 34: 894–906.

Oraguzie NC, Hofstee ME, Brewer LR, Howard C. 2001. Estimation of
genetic parameters in a recurrent selection program in apple. Euphytica
118: 29–37.

Pearcy RW, Muraoka H, Valladares F. 2005. Crown architecture in sun and
shade environments: assessing function and trade-offs with a three-
dimensional simulation model. New Phytologist 166: 791–800.

Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding
to increase rice yield potential. Field Crops Research 108: 32–38.

Picheny V, Ginsbourger D. 2013. Noisy kriging-based optimization methods: a
unified implementation within the DiceOptim package. Computational
Statistics and Data Analysis 71: 1035–1053.

Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C. 2008.
OpenAlea: a visual programming and component-based software platform
for plant modelling. Functional Plant Biology 35: 751–760.

Preuksakarn C, Boudon F, Ferraro P, Durand J-B, Nikinmaa E, Godin C.
2010. Reconstructing plant architecture from 3D laser scanner data.
Proceedings of the 6th International Workshop on Functional–Structural
Plant Models, 16–18.

Quilot-Turiona B, Ould-Sidib MM, Kadranib A, Hilgert N, Génard M,
Lescourret F. 2013. Optimization of parameters of the ‘Virtual Fruit’
model to design peach genotype for sustainable production systems.
European Journal of Agronomy 42: 34–48.
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