
Ontology Evolution for Experimental Data in Food

Rim Touhami, Patrice Buche, Juliette Dibie, Liliana Ibanescu

To cite this version:

Rim Touhami, Patrice Buche, Juliette Dibie, Liliana Ibanescu. Ontology Evolution for Experi-
mental Data in Food. MTSR: Metadata and Semantics Research, Sep 2015, Manchester, United
Kingdom. Springer, Communications in Computer and Information Science (544), pp.393-404,
2015, 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceed-
ings. <10.1007/978-3-319-24129-6 34>. <lirmm-01224081>

HAL Id: lirmm-01224081

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01224081

Submitted on 4 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-CIRAD

https://core.ac.uk/display/52625407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01224081


Ontology Evolution for Experimental Data in
Food

Rim Touhami1,2, Patrice Buche2, Juliette Dibie1, and Liliana Ibanescu1

1 INRA & AgroParisTech, 16, rue Claude Bernard, 75231 Paris Cedex 5, France
2 INRA & LIRMM, 2, Place Viala, 34060 Montpellier, France

rim.touhami@gmail.com,buche@supagro.inra.fr,

{liliana.ibanescu,juliette.dibie}@agroparistech.fr

Abstract. Throughout its life cycle, an ontology may change in order
to adapt to domain changes or to new usages. This paper presents an
ontology evolution activity [1] applied to an ontology dedicated to the
annotation of experimental data in food [2], and a plug-in, DynarOnto,
which assists ontology engineers for carrying out the ontology changes.
Our evolution method is an a priori method which takes as input an
ontology in a consistent state, implements the changes selected to be
applied and manages all the consequences of those changes by producing
an ontology in a consistent state.

Keywords: ontology evolution, web semantic language

1 Introduction

Ontologies are one of the fundamental layer of the Semantic Web and are de-
signed to represent the knowledge from a domain in terms of concepts (or
classes), relations between these concepts and instances of these concepts [3].
An ontology, defined as a formal, explicit specification of a shared conceptual-
isation [4] may change whenever the domain changes or when domain experts
need to add or to restructure the knowledge. When an ontology is used as a sys-
tem component (the knowledge backbone) of an advanced information system
its evolution is a complex process and raise many challenges as, for example: the
formal representation of ontology changes, the verification of ontology consis-
tency after applying the ontology changes, and the propagation of those changes
to the ontology related entities (e.g. underlying data sets) (see [5] for a complete
and detailed overview of the current research activities in ontology evolution).

In [6] we presented a complete system, called ONDINE (ONtology-based
Data INtEgration), designed to extract experimental data from tables and store
them into a data warehouse with the purpose of enriching incomplete local data
sources and to allow afterword a flexible querying of the knowledge base. The
backbone of ONDINE system is an ontology which was first designed for predic-
tive microbiology in food [7]. Later a new version of the ontology was designed
for the assessment of chemical risk in food. Experimental results of ONDINE
system in those two domains were presented in [6]. When ONDINE system was



2 Touhami and al.

used for the MAP’OPT project in the domain of food packaging, its ontology
had to be adapted to this new domain, and we defined in [2] an Ontological and
Terminological Resource (OTR), called naRyQ, dedicated to represent an exper-
iment involving a studied object, some control parameters and a result. During
this project, ontology engineers had to manage naRyQ changes. Based on the
methodological guidelines given in [1], we propose the workflow given in Figure 1
for carrying out the ontology evolution activity, then we combined, adapted and
extended existing approaches in ontology evolution [8–13], and finally we imple-
mented a plug-in, called DynarOnto, to fit naRyQ evolution needs.

Fig. 1. The ontology evolution activity

Our paper is organized as follows. We first briefly recall the structure of the
OTR dedicated to the annotation of experimental data in food and present our
definition of its coherence in Section 2. In Section 3, the evolution process is
detailed, and we present in Section 4 the implementation and evaluation of our
plug-in designed to assist ontology engineering in the evolution activity.

2 naRyQ model and its coherence

In this section, we first recall naRyQ model presented in [2] then we define the
coherence constraints it must respect.

2.1 naRyQ model

naRyQ (n-ary Relations between Quantitative experimental data) is designed to
represent experiments in order to annotate data tables representing scientific ex-
periments results in a given domain (see [2] for more details). As recommended by
W3C [14] experiments which involve a studied object, several experimental pa-
rameters and a result are represented using n-ary relations without distinguished



Ontology Evolution for Experimental Data in Food 3

arguments. More precisely “pattern 1” is used and it consists in representing a
n-ary relation thanks to a concept associated with its arguments via properties.

Example 1. Let us consider the experiment where the permeability, which is the
experiment’s result, of a given packaging, which is the studied object, is studied in
a set of control parameters specified by the packaging thickness, the temperature
and the differential partial pressure. This experiment with 6 arguments can be
represented by a n-ary relation Permeability Relation as given in Figure 2.

Fig. 2. n-ary relation Permeability Relation.

The conceptual component of naRyQ is composed of a core ontology to repre-
sent n-ary relations between experimental data and a domain ontology to repre-
sent specific concepts of a given application domain. Figure 3 gives an excerpt of
naRyQ in the domain of risk in food packaging. The representation of n-ary rela-
tions between experimental data requires a particular focus on the management
of quantities. In the up core ontology, generic concepts Relation Concept and Ar-
gument represent respectively n-ary relations and arguments. In the down core
ontology, generic concepts Dimension, UM Concept, Unit Concept and Quan-
tity allows the management of quantities and their associated units of measure.
The sub-concepts of the generic concept Symbolic Concept represent the non nu-
merical arguments of n-ary relations between experimental data. The domain
ontology contains specific concepts of a given application domain. They ap-
pear in naRyQ as sub concepts of the generic concepts of the core ontology.
All concepts are represented as OWL classes, hierarchically organized by the
subsumption relation subClassOf and pairwise disjoints.

The terminological component of naRyQ contains the set of terms describing
the studied domain and are used to annotate data tables. Sub concepts of the
generic concepts Relation Concept, Symbolic Concept and Quantity, as well as
instances of the generic concept Unit Concept, are all denoted by at least one
term of the terminological component. Each of those sub concepts or instances
are, in a given language, denoted by a preferred label and optionally by a set of
alternative labels, which correspond to synonyms or abbreviations. Labels are



4 Touhami and al.

Fig. 3. An excerpt of naRyQ in the domain of risk in food packaging.

associated with a concept or an instance thanks to SKOS labeling properties3

recommended by W3C. For instance, in Figure 3, English terms Ethylene vinyl
alcohol and EVOH denote the symbolic concept Ethylene Vinyl Alcohol.

2.2 naRyQ CC-coherence

In [11] the coherence of an ontology is classified in three categories: i) struc-
tural coherence which is related to constraints of the ontology’s representation
languages, ii) logical coherence where the semantic correctness of the ontology’s
entities are checked and iii) user-defined coherence which refers to specific user
requirements and constraints related to the ontology’s context of use. Inspired
by [8] we define a set of conditions that the ontology must respect for each
category of coherence. These conditions are called Coherence Constraints, de-
noted by CC-constraints. An ontology is CC-coherent if it respects a set of defined
CC-constraints. We briefly present below the CC-constraints for naRyQ.

Structural CC-coherence We have modeled naRyQ using a subset of OWL2-
DL entities (i.e. classes, properties, constructors of classes, etc.) and axioms (see
the technical report [15] for more details).

3 http://www.w3.org/TR/skos-reference/



Ontology Evolution for Experimental Data in Food 5

To define structural coherence associated to the conceptual part of naRyQ,
the constraint defined by the W3C group, which says that every OWL axiom
must be well defined4 was extended to associate it with each axiom and con-
structor used in the modeling of naRyQ: if an entity refers to an other entity,
this latest must be defined in the OTR. We defined 15 structural CC-constraints,
denoted by CCs. We present below two examples of CCs.

– CS1- Each anonymous class defined by a value restriction, owl:allValues-
From or owl:someValueFrom links a pair property-class or property-data
type. The property and the class used in the definition of the anonymous
class must be defined in the OTR.

– CS2- Each instance of skos:concept must have at least a preferred label.

Logical CC-coherence We defined 6 logical CC-constraints, denoted by CCl,
which take into account the subset of OWL constructors and axioms used to
model naRyQ. Those constraints are taken from the literature [12]. We present
below two examples of CCl.

– CL1- A class can not be disjoint with its superclass.
– CL2- If two values restrictions owl:allValuesFrom which connect a pair

property-concept are associated with the same concept c, then the concepts
defining the restrictions cannot be disjoint.

User-defined CC-coherence The user-defined CC-constraints, denoted by CCu,
correspond either to quality criteria modeling [8] or to specific criteria corre-
sponding to the modeled task. We defined 9 generic CCu which refer to quality
criteria modeling and 20 new CCu which are specific to the annotation task,
detailed in [15]. We present below two examples of CCu.

– CU1- A n-ary relation has at least two arguments.
– CU2- Each quantity must be associated with its units of measurement (at

least one) through the owl:allValuesFrom restriction and the property
hasUnitConcept. The units of measurement are defined by enumeration us-
ing the owl:oneOf constructor.

3 Coherent evolution of naRyQ

As suggested in [1] our ontology evolution activity consists in applying changes
to an ontology while preserving its CC-coherence, i.e. respecting all its CC-
constraints presented in the previous section (i.e. structural, logical and user-
defined constraints). Figure 1 presents the evolution process composed of three
main steps. The first step consists in presenting all the possible changes for
naRyQ evolution to the ontology engineer. From this list of changes, the ontology

4 http://www.w3.org/TR/owl-ref/#OWLDL



6 Touhami and al.

engineer chooses the ones to be applied. The second step consists in preserving
the CC-coherence of naRyQ during its evolution. To do this, an additional set
of changes is added automatically to the requested changes in order to maintain
a priori (i.e. before the application of the requested changes) the CC-coherence
of the OTR. In the third and last step, requested and additional changes are
applied to the OTR. In the following, we present the two first steps.

3.1 Change representation

This first step consist in presenting to the ontology engineer all the possible
changes for naRyQ. In order to generate all possible changes we first identified
all entities and axioms used to model naRyQ in OWL2-DL and SKOS. We
selected 55 changes from the literature and defined 26 new changes to take into
account the specificity of naRyQ. The complete list is available in [15]. Among
these changes, some changes are not accessible to ontology engineer but are
rather used in the kits of changes, presented in the following section. Table 1
contains a subset of changes required for the evolution of naRyQ, where changes
in bold are new ones compared to the literature.

Change Element Role

addClass NamedClass add an OWL class to an ontology

addSubClassOf SubClass add a subsumption link

updateDomain Domain update the domain of a relation

updateSomeValuesFromRestriction SomeValuesFrom update an existential restriction

addDataTypeRestriction DataTypeRestriction add a value range

deleteFromAllDisjointClasse DisjointClasses delete a class of a set of disjoint
classes

updatePrefLabel SkosPrefLabelAssertion update a preferred label of a
SKOS concept

Table 1. A subset of change operations for naRyQ

3.2 Selection of a change that maintains CC-coherence

After applying a change, one or more CC-constraint may be violated (e.g. adding
a new concept which represents a n-ary relation violates CU1 constraint pre-
sented in Section 2.2). Hence, a second step is necessary to restore the CC-
coherence of the OTR while applying a change. To achieve this goal, we adapted
the notions of kit of changes [9] and of strategy [8] to our needs.

Kit of changes To maintain a priori the CC-coherence of naRyQ during its
evolution, we associated a kit of changes with each change that violates one or
more CC-constraints and wich is accessible to ontology engineer. Its definition
takes into account all the CC-constraints which can be violated by the requested
changes.



Ontology Evolution for Experimental Data in Food 7

Definition 1. Given a CC-coherent ontology O and a change c. If the application
of c to O doesn’t maintain the CC-coherence of O, then a kit of changes is
associated with c. It is composed of:

– preconditions: a set of assertions which must be true in order to apply c to
O;

– the change c;
– mandatory additional changes: a set of changes which are attached to c in

order to correct the inconsistencies that may occur in O when c is applied
to it;

– optional additional changes: a set of changes which can be applied in addition
to mandatory additional changes.

– post-conditions: a set of assertions which must be true after the application
of c to O.

Two examples of kits of changes are presented in [15] and 15 kits from 63
were implemented.

Definition 2. The addClass change allows a new class to be added to the OTR.
The kit of changes associated with the addClass change is defined in the follow-
ing: Because of the constraint “An ontology should not contain two concepts
with the same URI”, the precondition states that a new class newc can be
added to the set of concepts C of naRyQ if its URI doesn’t already exist in
C. The requested change, which is the creation of the new class newc, is then
applied to naRyQ. Unfortunatly, the application of this change violates several
CC-constraints of the OTR. The application of a set of mandatory additional
changes is then required:

1. The additional changes addSkosConcept and addPrefLabel are triggered to
resolve the CC-incoherence linked to the terminological part of naRyQ due
to the constraint “Each n-ary relation and each argument is associated with
a terminological part”.

2. The creation of a disjunction relationship between the new class and all its
sibling classes resolves a second CC-incoherence due to the contraint which
requires that “n-ary relations and their arguments should be mutually dis-
joint”.

3. If the new class newc is a n-ary relation, then at least two arguments must be
associated with newc. Additional changes addAllValuesFromRestrictionToClass
or addSomeValuesFromRestrictionToClass or addHasValueRestrictionToClass
are applied.

4. If the new class newc is a n-ary relation, then exact (or greater than or
equal to 1) cardinality restrictions must be associated with the mandatory
arguments of newc to ensure their existence at the instance level.

5. If the new class newc is a quantity, then a dimension and a unit of measure-
ment must be associated with it.

6. Adding a specialization relationship between newc and its superclass c re-
solves the CC-incoherence due to the constraint “Each concept must be con-
nected by a relation of specialization to at least one other named concept.



8 Touhami and al.

Besides these mandatory additional changes, it is possible to apply other optional
additional changes which are not necessary to maintain the CC-coherence of
naRyQ but which may be requested by the ontology engineer. These optional
additional changes may be for instance: adding other prefered and alternative
labels to the new class, adding other arguments to the new class if it is a n-ary
relation or other units of measurement if it is a quantity.

It is important to notice that each mandatory or optional additional change
can in turn cause other CC-incoherences which can be resolved by triggering the
required kits of changes. So each additional change can also call a kit of changes.

Evolution strategies The kit of changes defined in Definition 2 can be used
when there is only one possible solution to solve an incoherence. But sometimes
there can be several possible solutions to correct violated constraints. In this
case, we have to use evolution strategies [8] in order to represent the different
alternatives.

Definition 3. Given a CC-coherent ontology O and a change c, if the application
of c to O leads to several possible alternatives to maintain the CC-coherence of
O, then we call evolution strategy the choice made between these alternatives.

There exist two types of kits of changes: those with evolution strategies and
those without. The kit of changes associated with the change addClass, presented
above, is an example of a kit without evolution strategies. Kits with evolution
strategies can be considered as a variant of the first type since they need to fix
the strategy (i.e. the choice) before applying the kit.

Example 2. In order to delete a concept, there are several solutions to deal with
its sub concepts and there are also several solutions to deal with its terms:

– To deal with orphaned concepts (sub concepts of deleted concept), the pos-
sible solutions are i) delete them, 2) reconnect them to super concepts or 3)
reconnect them to the root.

– To deal with terms of deleted concept, the possible solutions are: 1) delete
them or 2) reconnect them to super concepts.

4 Implementation and evaluation

4.1 Implementation

We implemented the ontology evolution activity presented above as a Protégé
plug-in called DynarOnto. Figure 4 shows the different designed menus:

– The Relation Changes menu presents the changes that can be applied to a
n-ary relation (e.g. add a n-ary relation, delete a n-ary relation, update the
arguments of a n-ary relation, etc.).

– The Argument Changes menu presents the changes that can be applied on
arguments of a n-ary relation (i.e. Quantity and Symbolic Concept).



Ontology Evolution for Experimental Data in Food 9

– Evolution Parameters menu helps the ontology engineer to define its evolu-
tion strategy that will be taken into account during the OTR evolution.

The screen shot presented in Figure 4 is the interface for the kit of changes
associated with the change addClass presented in Definition 2. Let us con-
sider that we want to add the new n-ary relation CO2Permeability Relation,
which is a sub relation of the existing n-ary relation Permeability Relation.
CO2Permeability Relation is defined by the following arguments: Packaging,
Thickness, Temperature, Partial pressure difference, Relative humidity and
CO2 permeability. Arguments presented in bold are specific to the sub n-
ary relations. The other arguments are inherited from its super n-ary relation
Permeability Relation (see Figure 2). To add this new n-ary relation, ontology
engineer starts by clicking on Add relation of the Relation changes menu. Using
the panel of the displayed interface, the ontology engineer enters the name of
the new n-ary relation, CO2 permeability Relation. Then, he chooses Permeabil-
ity Relation as his parent class in the hierarchy of n-ay relations of the OTR
displayed by clicking on ”Choose” button. By confirming the choose of the n-
ary relation’s parent, inherited arguments appears in panel 3 of the displayed
interface. The ontology engineer can both specialize inherited arguments and
add new ones by indicating their numbers in panel 2. To define the new n-ary
relation CO2 permeability Relation, ontology engineer should add the new ar-
gument Relative humidity and specialize the inherited argument Permeability
in CO2 permeability, using the panel 2. To associate terminology to the new
n-ary relation, ontology engineer uses panel 4. Finally, when the ontology engi-
neer clicks on ”OK” button to validate the add of CO2 permeability Relation,
DynarOnto plugin checks that the associated preconditions are verified (e.g.
CO2 permeability Relation does not exist in the OTR). The interface facilitates
the verification of some preconditions. For instance, when the ontology engineer
decides to specialize an argument, the plugin displays only the hierarchy of more
specific concepts. Once the preconditions are checked, the plugin applies the re-
quested change and the set of additional mandatory changes, allowing violated
CC-constraints to be resolved.

4.2 Evaluation of DynArOnto plugin

DynArOnto was evaluated in an incremental way by ten users, with different
backgrounds.Three evaluation sessions were organized, DynArOnto interface be-
ing improved after each session. Users were asked to apply three changes (add,
update n-ary relations and delete arguments). A questionnaire was created to
collect their evaluations. Most participants affirm that using DynArOnto to man-
age the evolution is easier than using Protégé. It is also reflected in the time spent
by users to apply the changes: the add relation change (resp. update/suppress
change) was done with Protégé in an average of 42 minutes (resp. 11 minutes).
Using DynArOnto, the duration was reduced by 20% (resp. 27%). Finally, Dy-
nArOnto helped the users to manage the evolution of an OTR dedicated to the
annotation of experimental data while guaranteeing its CC-coherence, which was



10 Touhami and al.

Fig. 4. Screen shot of the interface to add a new n-ary relation

not the case in Protégé where the users were not guided and make some errors
(e.g. incorrect use of OWL restrictions used to link arguments to n-ary relations,
forgetting to associate terms to concepts, etc.).

5 Related work

In [5], a recent overview of the current research activities in ontology evolution,
authors give first the different definitions of ontology evolution, then they present
and discuss the various process models that were proposed for the ontology
evolution tasks and afterword they propose a unified ontology evolution cycle
thus providing a unique overview over several research fields. Our evolution
method is defined as in the NeOn Glossary of ontology engineering tasks [1] which
states that ontology evolution is “the activity of facilitating the modification of
an ontology by preserving its consistency” and this is a narrower view than in [5].

To maintain the coherence of an ontology during its evolution, the authors
of [11–13] have proposed a posteriori approaches. This type of approach allows
the application of changes in order to evaluate the evolution impact on the on-
tology, then suggests how to repair inconsistencies in case of problems. To avoid
backtracking after modification, resulting in a loss of time and resources, a pri-
ori approaches, where the coherence checking is made before the application



Ontology Evolution for Experimental Data in Food 11

of changes, have been proposed in the literature [9, 10, 16]. The work of Sto-
janovic [8] is the first to propose an ontology evolution process defined for KAON
ontologies and using strategies for the task of managing changes. In [9] authors
define kits of changes in order to manage the inconsistencies generated by each
change. The authors of [10] proposes a system of evolution of an OTR dedicated
to the semantic annotation of text documents. Nevertheless their approach main-
tains the coherence of the OTR and the semantic annotations without defining
explicitly the type of coherence which is considered. In [9], a preventive approach
that manages the inconsistencies generated by each change is described. A set of
rules that must be maintained during the evolution of an ontology is defined but,
as in [10], the authors don’t define explicitly the type of coherence which is con-
sidered. More recently, the authors of [16] proposed a framework based on graph
rewriting rules that maintains a set of constraints. However, their approach takes
into account only one way to manage the inconsistencies after applying changes
(e.g. the remove of a class results automatically in removing all its instances).
To the best of our knowledge, our preventive approach is the first one which is
based on a clear definition of ontology coherence and simultaneously permits to
manage evolution of an ontology involving quantitative data.

6 Conclusion

We have proposed in this paper an ontology evolution activity for an OTR ded-
icated to the annotation of experimental data which preserves its CC-coherence.
To do this, we first identified all the necessary constraints (i.e CCs, CCl and CCu)
to be checked in order to avoid possible inconsistencies. Secondly, we identified
all the required changes for the evolution of naRyQ. Then, we identified all the
CC-incoherences that can occur after the application of each change. In order
to solve these CC-incoherences, we defined a kit of changes for each change that
violates one or more CCs-constraints. A kit of changes allows the CC-coherence of
naRyQ to be preserved a priori by checking a set of preconditions, by applying
a set of additional changes and/or by using evolution strategies. The originality
of our method is to propose an evolution of an OTR containing inter depen-
dent concepts to manage quantitative data. Further work is to explore how to
propagate changes to all the ontology related artifacts: individuals, mapping,
applications, metadata.

Acknowledgements

This work has been supported by the French Research Agency (ANR) in the
framework of ALIA/MAP’OPT project, by the Carnot Institute 3BCAR in the
framework of the IC2ACV project and by the Labex NUMEV.



12 Touhami and al.

References

1. Palma, R., Zablith, F., Haase, P., Corcho, Ó.: Ontology evolution. In del Car-
men Suárez-Figueroa, M., Gómez-Pérez, A., Motta, E., Gangemi, A., eds.: Ontol-
ogy Engineering in a Networked World. Springer (2012) 235–255

2. Touhami, R., Buche, P., Dibie-Barthélemy, J., Ibănescu, L.: An Ontological and
Terminological Resource for n-ary Relation Annotation in Web Data Tables. In:
OTM 2011 (2). Volume 7045 of LNCS., Springer (2011) 662–679

3. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In Staab, S., Studer, R.,
eds.: Handbook on Ontologies. International Handbooks on Information Systems.
Springer Berlin Heidelberg (2009) 1–17

4. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: Principles and
methods. Data and Knowledge Engineering 25(1-2) (March 1998) 161–197

5. Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.,
Plexousakis, D., Sabou, M.: Ontology evolution: a process-centric survey. Knowl-
edge Eng. Review 30(1) (2015) 45–75

6. Buche, P., Dibie-Barthélemy, J., Ibanescu, L., Soler, L.: Fuzzy web data tables
integration guided by an ontological and terminological resource. IEEE Trans.
Knowl. Data Eng. 25(4) (2013) 805–819

7. Buche, P., Couvert, O., Dibie-Barthélemy, J., Hignette, G., Mettler, E., Soler,
L.: Flexible querying of web data to simulate bacterial growth in food. Food
Microbiology 28(4) (2011) 685–693

8. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, University
of Karlsruhe, Germany (2004)

9. Jaziri, W., Sassi, N., Gargouri, F.: Approach and tool to evolve ontology and
maintain its coherence. Int. J. Metadata Semant. Ontologies 5(2) (2010) 151–166

10. Tissaoui, A., Aussenac-Gilles, N., Hernandez, N., Laublet, P.: EvOnto - joint
evolution of ontologies and semantic annotations. In: KEOD 2011. (2011) 226–231

11. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies, Springer (2005)
182–197

12. Djedidi, R.: Approche d’évolution d’ontologie guidée par des patrons de gestion
de changement. Thèse de doctorat, Université Paris-Sud XI (Nov 2009)

13. Khattak, A.M., Latif, K., Lee, S.: Change management in evolving web ontologies.
Knowledge-Based Systems 37(0) (2013) 1 – 18

14. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining n-ary relations on the semantic
web. W3C working group note http://www.w3.org/TR/swbp-n-aryRelations.

15. Touhami, R.: Definition of naRyQ OTR CC-Constraints and kits
of changes. Technical report, INRA (April 2015) http://umr-
iate.cirad.fr/content/download/4838/36843/version/1/file/CC-coherence.pdf.

16. Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Algebraic graph trans-
formations for formalizing ontology changes and evolving ontologies. Knowl.-Based
Syst. 73 (2015) 212–226


