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C-Nap1 mutation affects centriole cohesion and is
associated with a Seckel-like syndrome in cattle
Sandrine Floriot1, Christine Vesque2,3,4, Sabrina Rodriguez1,5, Florence Bourgain-Guglielmetti2,3,6,

Anthi Karaiskou2,3, Mathieu Gautier1,7, Amandine Duchesne1, Sarah Barbey8, Sébastien Fritz1,9,

Alexandre Vasilescu10, Maud Bertaud1, Mohammed Moudjou11, Sophie Halliez11, Valérie Cormier-Daire12,

Joyce E.L. Hokayem12, Erich A. Nigg13, Luc Manciaux14,w, Raphaël Guatteo15,16, Nora Cesbron15,16,

Geraldine Toutirais17, André Eggen1, Sylvie Schneider-Maunoury2,3,4, Didier Boichard1, Joelle Sobczak-Thépot2,3,6

& Laurent Schibler1,9

Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in

Montbéliarde cattle. Affected animals present a wide range of clinical features that include

the following: delayed development with low birth weight, hind limb muscular hypoplasia,

caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by

a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This

mutation results in centrosome splitting, which neither affects centriole ultrastructure and

duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle

organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration

phenotype. This discovery extends the range of loci that constitute the spectrum of

autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes.
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France. 11 INRA, Unité de Virologie et Immunologie Moléculaires (UR0892), F-78352 Jouy-en-Josas, France. 12 Institut National de la Santé et de la Recherche
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T
he centrosome is a major microtubule-organizing centre1,2.
It is formed by a pair of centrioles surrounded by
the pericentriolar material, which contains proteins

responsible for microtubule nucleation and anchoring. During
cell cycle progression, the two centrioles duplicate once, thereby
assembling two centrosomes. The two parental centrioles are
loosely connected by fibrous protein structures3,4, C-Nap1 and
rootletin, along with other proteins, being the key components of
this tether5–8. The C-Nap1/rootletin protein fibres are associated
with the proximal ends of the centrioles through CEP135, which
acts as a docking site for C-Nap1 (ref. 9). Centrosomes remain
interconnected until the G2 phase, when phosphorylation of
C-Nap1 by Nek2 kinase induces their separation5,10 in
preparation for bipolar spindle assembly11. In addition, the
fully mature mother centriole also functions as a basal body to
assemble a primary cilium, particularly in quiescent cells.
Experimental inactivation of proteins participating in centriole-
centriole cohesion induces centrosome splitting independently of
the cell cycle phase. Whether cohesion of the two centrioles is
dispensable for centriole biogenesis and cilium assembly is
unclear. While centrosomes are not essential for mitosis, they
increase the efficiency of mitotic spindle assembly and are
involved in proper chromosome segregation and cell division, cell
adhesion, polarity and motility12, as well as in signalling pathways
involving primary cilia13. Consequently, centrosome defects are
associated with diverse phenotypes1,14. In humans, mutations in
several centrosomal proteins, such as PCTN, STIL, CEP152,
CEP135, CEP63 and CENPJ, have been associated with
autosomal primary recessive microcephaly (MCPH), Majewski
Osteodysplastic Primordial Dwarfism type II and Seckel
syndrome15–21.

Caprine-like Generalized Hypoplasia Syndrome (or SHGC) is
an autosomal recessive disorder described in the Montbéliarde
cattle breed. We previously reported the characterization of this
disease and mapped SHGC to a 6-Mb region on bovine
chromosome 13 (ref. 22). The disease presents with a wide
range of clinical features and associates muscular hypoplasia with
features from the Seckel syndrome and autosomal MCPH23, such
as delayed development, short stature, long and thin head, as well
as phenotypic characteristics of neurocristopathies24 such as
partial coat depigmentation (Fig. 1a). Using homozygosity
mapping and high-throughput sequencing, we demonstrate that
SHGC is caused by a truncating mutation in the CEP250 gene
that encodes the centrosomal protein C-Nap1 (ref. 5). The
spontaneous mutation of CEP250 in a cattle breed offers, thus, an
opportunity to investigate in vivo the functions of C-Nap1. We
show that SHGC mutation results in centrosome splitting and
loss of the rootletin linker. Ultrastructure of mutant centrioles is
not altered and the lack of centriole–centriole cohesion neither
affects centriole duplication during the cell cycle nor centriole
functions in cilium assembly and mitotic spindle organization.
However, cell migration behaviour is altered in primary mutant
fibroblasts. In conclusion, loss of C-Nap1-mediated centriole
cohesion leads to a phenotype that extends the range of loci
constituting the spectrum of autosomal MCPH and Seckel-like
syndromes.

Results and Discussion
SHGC is linked to a CEP250 gene mutation. To refine the
primary genetic location, the pedigree was extended to gather
190 affected and 200 related unaffected individuals and 7 addi-
tional microsatellites were included (Supplementary Table 1).
On the basis of these results, a subset of 19 individuals identified
as recombinant in the mapping region (BTA13:61,710,590-
66,432,860) were genotyped on Illumina BovineSNP50
BeadChips, and homozygosity fine mapping was performed.

A 2.5-Mb shared region was delineated (log (1/P)¼ 4.7) between
markers rs109267613 and rs109957099 (Fig. 1b).

Targeted FLX454 NGS sequencing was performed on two
affected, one healthy and one carrier animals after sequence
capture (BTA13: 61,710,590 to 66,432,860 mapping regions)
using a Roche-NimbleGen 385-K Bovine Array (Fig. 1b). The
mean sequence coverage ranged from 6� to 11� according to
animals (Supplementary Table 2). After quality-filtering, 7,298
single-nucleotide polymorphisms (SNPs) and 3,513 InDels were
identified (Supplementary Data 1). About 205 variants were
predicted to have an impact on gene transcription or protein
structure, on the basis of Ensembl functional annotations
(Supplementary Data 2). Focusing on the critical mapping region
and considering variants consistent with animal genotypes and
missing in dbSNP, only eight SNPs located in five genes were
retained (Table 1). None of the seven nonsynonymous mutations
were assumed to be relevant on the basis of SIFT (http://
sift.jcvi.org) criteria. In contrast, a C4T transition at position
65,369,074 in the CEP250 gene coding frame leads to a premature
stop codon (Fig. 1c,d). The genotype–phenotype correlation was
confirmed by Taqman assay using our pedigree and 750
additional Montbéliarde sires. Furthermore, the mutation was
not detected in a biodiversity panel including 316 sires from 10
French breeds.

CEP250 mutant gene encodes N-terminally truncated C-Nap1.
The c.493C4T mutation introduces a stop codon at amino acid
165 and is expected to be incompatible with a normal function of
C-Nap1 (Fig. 1c). To unravel the effect of this mutation on
CEP250 expression, we isolated primary fibroblasts from
wild-type and mutant cows and performed 50RACE experiments
and real-time quantitative reverse transcription PCR (RT–qPCR).
The 50-untranslated repeat and an exon-3-spliced variant
retaining the last five nucleotides of intron 3 were characterized in
wild-type fibroblasts (Fig. 2a,b). In mutant cells, only low
amounts of full-length transcripts were detected (Fig. 2c), sug-
gesting nonsense mRNA decay. In addition, shorter mRNAs
starting downstream of the mutation (end of intron 4 or within
exon 6) were observed (Fig. 2a–c), suggesting the occurrence of
internal promoters. These transcripts contain an in-frame ATG in
exons 5 and 6 that could initiate the translation of N-terminally
truncated proteins (DN-C-Nap1) lacking at least the first 195
amino acids.

Mutant C-Nap1 mislocalization induces centrosome splitting.
The N-terminal region of C-Nap1 (amino acids 1–243) is one of
the two regions that target the protein to the centrosome6,9. Thus,
a mislocalization of DN-C-Nap1 proteins encoded by the
CEP250-mutant gene was expected. Indeed, using the R63
serum raised against the C-terminal domain of human
C-Nap15, a centrosomal signal was detected by immunostaining
in the majority (92%) of wild-type fibroblasts (Fig. 2d). In
contrast, a weak diffuse C-Nap1 staining was observed in most
mutant cells that colocalized with the centrioles in only 9% of the
cases (Fig. 2d). To further unravel the mutation effect at the
cellular level, we assayed centriole–centriole cohesion in
proliferating and quiescent fibroblasts. In mutants, B80% of
centrosomes were split, compared with 5–13% in wild-type cells
(Fig. 3a,b and Supplementary Fig. 1). This striking defect was
fully rescued by expression of low amounts of Myc-tagged human
C-Nap1 in mutant fibroblast cells (Fig. 3a,b). In addition,
centrosome splitting occurred independently of the cell cycle
phase and was also observed on quiescence in mutant cells
(Supplementary Fig. 1). Centrosome splitting was also observed
in kidney sections from homozygous mutant cattle (Fig. 3c).
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Surprisingly, centrosomes remained cohesive in 10–20% mutant
cells, suggesting some heterogeneity at the cellular level. Three
hypotheses may be drawn to explain this feature. First, low
amounts of functional C-Nap1 may be synthesized by stop codon
read-through of the mutant mRNA. Second, alternative wild-type
mRNAs may be produced by alternative splicing or from
alternative promoters. Finally, mechanisms independent of
C-Nap1 and the intercentriolar tether may also contribute in
maintaining centrosome cohesion, similar to microtubule and
microfilament-dependent mechanisms10. In conclusion, the
c.493C4T mutation producing a shorter C-Nap1 protein leads
to an almost complete disruption of its localization and loss of

centriole–centriole cohesion, a phenotype more pronounced than
previously obtained with antibody injection or RNA interference
experiments6,25.

Mutant C-Nap1 impacts cilliary rootlet organization. To
determine whether C-Nap1 mutation affects the localization of its
interacting partners, we analysed the linker protein rootletin and
Cep135, the latter being the docking protein for C-Nap1 on the
centriole. Figure 3c–e shows that rootletin localization near the
centrioles was strongly reduced in mutant kidney cells, as well as
in primary fibroblasts. In addition, we observed a disorganization
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Figure 1 | Identification of the SHGC-causing mutation in CEP250. (a) General feature of mutant cows. Left picture: backs of mutant (left) and wild-type

cows (right). Right pictures: top, mutant cow with typical elongated caprine-like long and thin head with ears’ depigmentation; bottom: wild-type cow.

(b) Evidence for linkage (y axis) is measured as log(1/P), with P being determined by the 50,000 locus (ASSHOM) permutations (see Methods), leading to

the identification of a 2.5-Mb shared region between markers BTA13 rs109267613 and rs109957099. Below, list of the analysed markers present in this

region, including the microsatellites (in green) used in the initial mapping study. (c) The CEP250 gene comprises 32 coding exons. The comprised 50 and 30

untranslated regions are depicted in white. Location of the observed mutation is indicated. (d) Chromatograms of the obtained sequences covering the

mutation.

Table 1 | Candidate SNP in the SHGC critical mapping region of bovine chromosome 13.

POS REF ALT Gene Description Consequence Amino-acid
substitution

63329680 T C ENSBTAG00000031361 Uncharacterized protein Nonsynonymous coding Tyr/His
63346834 A G ENSBTAG00000031354 Uncharacterized protein Nonsynonymous coding Ile/Val
63346948 G A ENSBTAG00000031354 Uncharacterized protein Nonsynonymous coding Val/Ile
63351273 C G ENSBTAG00000031354 Uncharacterized protein Nonsynonymous coding Leu/Val
63398648 A C ENSBTAG00000018535 CDK5 regulatory subunit-associated protein 1 Nonsynonymous coding Leu/Arg
63758326 G T ENSBTAG00000039313 ZNF341 protein Nonsynonymous coding Ala/Ser
63772681 G A ENSBTAG00000039313 ZNF341 protein Nonsynonymous coding Gly/Ser
65369074 C T ENSBTAG00000006021 centrosomal protein 250kDa Stop gained Gln/Ter

SHGC, Caprine-like Generalized Hypoplasia Syndrome; SNP, single-nucleotide polymorphism.
Position (POS) in base pairs of candidate nucleotide polymorphisms (reference allele REF and alternative allele ALT) are indicated, as well as the deduced amino acid resulting substitutions.
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of the ciliary rootlet in ciliated cells from the mutant kidney
(Figs 3c and 4a), a characteristic feature of rootletin-deficient
cells26. These results are highly consistent with rootletin being
dependent on the presence of C-Nap1 as a docking site in the
centriole. In contrast, Cep135 localization on the centriole
appears independent of its interaction with C-Nap1
(Supplementary Fig. 1b).

As the SHGC bovine phenotype shows features of MCPH and
Seckel syndrome, we examined centrioles in proliferating primary
fibroblasts. First, electron microscopy was performed to analyse
centriole morphology (Fig. 4c), showing that SHGC fibroblast
centrioles were indistinguishable from wild-type centrioles. From
a series of 98 mutant and 42 wild-type cells analysed, we could
observe that centrioles exhibited a normal diameter, length and
structure with the conventional nine triplets of microtubules.
Centrosome splitting was also confirmed at this level of
observation (Fig. 4c). Second, we used immunofluorescent
labelling in synchronized cells to follow centriole duplication
during the cell cycle. Figure 5a shows that mutant cells arrested in
G1/S before the onset of centriole duplication exhibit two
separated centrioles, while in G2 and mitosis four centrioles
organized in two pairs (a mother and a daughter) are seen. This
observation is consistent with previous studies, suggesting that
C-Nap1 is not implicated in the tether between mother and

daughter centrioles during the duplication process that starts in
the S phase. Therefore, neither centriole duplication nor
association of mother and nascent daughter centrioles were
affected in SHGC-proliferating mutant cells. SHGC fibroblasts
did not exhibit obvious defects in ploidy, cell cycle entry and
proliferation (Supplementary Fig. 2). Consistently, mutant cells
were able to assemble a bipolar mitotic spindle and to activate the
spindle assembly checkpoint when active centrosome separation,
normally occurring in prophase, was inhibited by addition of
monastrol, an inhibitor of the kinesin-related protein Eg5 (ref. 27;
Supplementary Fig. 3). No dysmorphic nuclei were observed and
the microtubule cytoskeleton appeared organized (Fig. 5b),
although it would be premature to exclude subtle effects on
microtubule dynamics. Therefore, SHGC fibroblasts harbouring
centrosome splitting are not prevented from undergoing cell
division and proliferation at normal rate, in agreement with
previous findings6. Although we failed to observe marked defects
on mitosis in fibroblasts harbouring mutant C-Nap1, we cannot
exclude that impaired centrosome cohesion may produce more
pronounced effects on cell cycle progression in other cell types.
This view is supported by recent studies demonstrating that the
timing of centrosome separation affects the kinetics of mitotic
progression and the rate of chromosome missegregation to
different degrees in different cell lines28,29. Thus, further studies
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will be required to fully understand the complete spectrum of
phenotypes produced by C-Nap1 mutations in different genetic
backgrounds, cell types and physiological states.

Since the role of C-Nap1-mediated centrosome cohesion in
ciliogenesis is unclear25,30, ciliogenesis was analysed in SHGC
fibroblasts either at confluence without serum or during
exponential growth. In both cases, ciliogenesis occurred
efficiently in mutant fibroblasts. Percentage of ciliated cells in
mutant versus wild type was either unchanged or higher, despite a
great heterogeneity in affected animals (Fig. 4b and
Supplementary Fig. 4). Consistent with these observations,
ultrastructural analysis of centrioles revealed that mother
centriole had appendages that allowed ciliary vesicle docking
and axoneme assembly (Fig. 4c). Finally, analysis of cilia in
kidneys from mutant cows confirmed their presence and normal
length in that organ, even if rootletin was either missing or
severely reduced at the cilium base (Fig. 4a). Cilia loss is thus not
likely to account for the SHGC phenotype.

SHGC mutation alters fibroblast directional migration. To
determine whether C-Nap1-mediated centrosome cohesion is
required for directional cell migration, we examined the cell

migration ability of SHGC fibroblasts using a wound closure
assay (Fig. 6a,b). Results show that SHGC cells are less efficient
than wild-type cells in closing the wound, mainly because of
reduced directionality of movement (Fig. 6c and Supplementary
Fig. 5). Reduced directionality of mutant cells was also observed
in a real-time directional migration assay using 10% serum as an
attractant (Supplementary Fig. 5). How exactly the loss of C-Nap1
function affects cell directionality will require additional studies.
Cell polarization at both the plasma membrane and the
Golgi is an important determinant of directional migration31,32.
As Golgi polarization depends on centrosome position, any
alteration in centrosome structure could impact on Golgi
behaviour, polarization and migration33. A migration defect in
SHGC cells might account for the pigmentation impairment
and the facial dysmorphism. Similarly, migration defect of
neural crest cells during early development may indirectly
explain hind limb muscular hypoplasia as it plays a critical role
in sustainable myogenesis34. This hypothesis remains to be fully
substantiated in vivo.

CEP250 gene mutation in humans. On the basis of features
reminiscent of Seckel syndrome, we searched for mutations in 13
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human Seckel patients with unknown underlying genetic muta-
tions. Our exome analysis failed to identify any CEP250 mutation
in this small set of patients. Recently, a homozygous nonsense
mutation in the C-terminal part of the C-Nap1 protein (R1155*)
in combination with a C2orf71 nonsense mutation have been
associated with retinitis pigmentosa and sensorineural hearing
loss in humans35. Since SHGC cattle did not suffer from apparent
ocular or hearing defects and no mutation could be identified in
the Montbéliarde C2orf71 gene, the nonsense mutation in
C2orf71 may be the pathogenic allele in a mutated C-Nap1
genetic background in humans, in good agreement with the

observed additive effect of this mutation. Alternatively, locations
of the mutations in the CEP250 gene may explain the different
phenotypic outcomes, in agreement with structure/function
analyses of the C-Nap1 protein6,36.

In conclusion, we have shown that the mutation c.493C4T in
the CEP250 gene coding for the C-Nap1 protein causes
autosomal-recessive SHGC in cattle. In contrast to mutations of
CEP135 (ref. 37), CEP152 (ref. 17) or STIL21 that affect
centrosome number, this mutation solely affects centrosome
cohesion. Thus, C-Nap1-mediated centrosome cohesion is not
required for centriole duplication, cell division and cilia assembly
in fibroblasts, but seems to affect the directionality of cell
movement in vitro. However, the absence of any strong
phenotype in fibroblasts does not exclude that more subtle
defects have been missed, that may affect more severely other cell
types. It is also possible that N-terminal truncation of C-Nap1
may confer some functionality to the protein and a detailed
analysis of the role of splice variant isoforms of C-Nap1 might be
rewarding. The clinical features (facial dysmorphism, low birth
weight, short stature and pigmentation anomaly) associated with
the CEP250 c.493C4T mutation make SHGC the first described
Seckel-like syndrome in cattle and extend the range of loci
potentially involved in similar pathologies in humans.
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Methods
Ethics statement. Experiments reported in this work comply with the Institut
National de la Recherche Agronomique ethical guidelines. Montbéliarde blood
samples were collected by trained and licensed technicians during routine blood
sampling for paternity testing, annual prophylaxis or genomic selection purpose.
Montbéliarde sperm was obtained from semen straws collected by approved
commercial artificial insemination stations, as part of their regular semen collection
process. Tissues were sampled on 3- to 5-year-old cows, either at slaughterhouse
(controls) or at an Institut National de la Recherche Agronomique experimental
station (SHGC) under experimental approval number C16-157-001. All samples
and data were obtained with the permission of breeders or breeding organizations.

Sample selection and DNA extraction. The diagnosis of SHGC in Montbéliarde
cattle was based on established, previously published criteria22. A total of 190
affected and 200 related unaffected animals were collected. In addition, 750
Montbéliarde sires were collected, as well as 316 animals from 10 French breeds
(6 Bazadaise, 25 Bretonne-Pie-Noire, 48 Charolaise, 13 Gasconne, 36 Limousine,
31 Maine-Anjou, 44 Maraichine, 50 Normande, 26 Parthenaise and 37 Holstein).
EDTA blood samples were collected by licensed agricultural technicians. Sperm
was obtained from semen straws provided by Umotest and Jura-Bétail breeding
companies. DNA was extracted from blood samples with the Genisol Maxi-Prep kit
(AbGene, UK) or from semen with a phenol/chloroform extraction (Miller, SA).
DNA quality was assessed via 2% agarose gel electrophoresis. DNA concentration
was measured using the NanoDrop ND-1000 spectrophotometer.

Genotyping and homozygosity mapping. Samples were genotyped using the
Illumina BovineSNP50 BeadChip as recommended by the manufacturer. Data were
analysed with the GenomeStudio software and individuals with a call rate below
95% were discarded from further analyses. Homozygosity mapping was performed
using ASSHOM38. Briefly, this approach consists of scanning the genome for
regions of homozygosity shared by affected animals. To account for the population
allele frequencies, data from the whole genotyped Montbéliarde reference
population was used and frequencies were adjusted for close relationships39. The

ASSHOM statistics then allows summarizing this information over all affected
animals (via a harmonic mean) in such a way that the longer and rarer the
homozygous haplotype, the higher the score. The whole-genome significance of the
ASSHOM statistics was assessed with n¼ 50,000 random permutations of the
haplotypes38.

High-throughput sequencing of SHGC genomic interval. The 5-Mb SHGC
mapping region was selected for enrichment using a Roche-NimbleGen custom
Sequence Capture 385-K Bovine Array, on the basis of the Bos Tau4 assembly and
Human/Bovine comparative maps. The targeted region was tiled to avoid capturing
repetitive DNA fragments. About 10 mg of genomic DNA was sonicated to a
300- to 500-bp size range, purified (Agencourt AMPure XP system) and quality-
controlled on Bioanalyzer 2100 (Agilent). Fragments were then ligated to universal
gSel3 and gSel4 adapters (Roche NimbleGen) with T4 DNA Ligase. Small frag-
ments (o100 bp) were removed with the use of Agencourt AMPure Beads. The
resulting library was hybridized to the custom 385-K array, and captured DNA was
eluted and amplified using ligation-mediated PCR according to the manufacturer’s
instructions.

Next-generation sequencing and data analysis. Sequencing was performed
at the Get-PlaGe facility (http://genomique.genotoul.fr/) on a Roche 454/FLX
Genome Sequencer platform using the GS FLX Titanium chemistry. NimbleGen
primer sequences were removed. Reads were filtered according to their quality,
sequence length (100–500 bp), duplication and complexity and mapped on the
UMD3.1 reference genome using the BWA software. After filtering for alignment
quality (MAQ scoreZ10), variants were predicted using SAMtools (mpileup).
InDels were filtered for homopolymers generated because of a known artefact from
Roche 454 technology. The analysis relied on one healthy animal expected to be
homozygous for the reference allele, one carrier animal expected to be hetero-
zygous for the variant and two affected animals expected to be homozygous for the
alternative allele. Thus, besides filtering the vcf file for SNP quality (Z10 and
coverage Z4), SNPs could also be selected on the basis of the phenotype–genotype
correlation.
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Figure 6 | Altered migration behaviour in SHGC mutant fibroblasts. (a) Phase contrast images from time-lapse video-microscopy showing the migration

capacity of cells in a wound-healing assay. Wild-type and SHGC mutant confluent quiescent cells migrated into the cell free gap of 500mm during 20 h.

Scale bar, 100mm. (b) The cell-free area was measured at 20 h. Data show the mean and standard deviation from four independent experiments with one

animal of each genotype. A Student’s t-test following two-tailed analysis of variance using the Prism software was run to calculate P values (**P¼0.008).

(c) The migration tracks of wild-type and SHGC mutant cells were plotted in ImageJ (manual tracking plugin) and data analysed after normalizing each

starting point to x¼0 and y¼0 (Ibidi software). The accumulated and Euclidean distance covered by individual cells, as well as the mean, upper and lower

decile of the directionality distribution from four individual experiments of two wild-type and two mutant SHGC cell cultures are shown. Wild-type cells,

n¼ 73. SHGC mutant cells, n¼ 52. A Student’s t-test following two-tailed analysis of variance using the Prism software was run to calculate P values

(****Po0.0001). The greater the directionality, the more linear the motion in a given direction is.
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Validation of the mutation using the Taqman assay. In order to validate the
putative causal SNP, a Taqman assay was performed according to the manu-
facturer’s recommendations (Applied Biosystems). Specific SNP probes (SHGC_V
CTTACCTCCTGCTCCATC (VIC) and SHGC_F TCTTACCTCCTACTCCATC
(FAM)) and primers (SHGC_Fd CCGGGATGAGCTAATGAGGAA and
SHGC_Rv GGCCGTGCCCAACCT) were obtained from Applied Biosystems
Assay-by-Design Service for SNP genotyping. Allelic discrimination was performed
with the ABI PRISM 7900 HT using the Sequence Detection Software (SDSv2.3,
Applied Biosystems). PCR reactions were performed in a 6-ml final volume, using
the following cycling protocol: 94 �C—10 min and (94 �C—15 s, 60 �C—1 min) for
50 cycles.

Primary fibroblast isolation, culture and synchronization. Fibroblasts were
isolated from ear punches of four SHGC homozygous mutant and four wild-type
Montbéliarde cows. Cells were seeded in T75 flasks with 30% Amniomax II (Gibco,
Life Technologies) and then passaged twice a week with 1/3 dilution in minimum
essential medium (MEM, Gibco) containing 15% fetal calf serum with and
antibiotic–antimycotic (Gibco). Cells at passages 4–6 were used for the experi-
ments. Cells were either grown asynchronously or density-arrested. Cells were
synchronized in G1/S with 2 mM thymidine block for 24 h and then released for 8 h
to observe cells in G2 and mitosis. Cells were also released in the presence of
0.1 mM monastrol (Tocris Biosciences) to arrest them in metaphase with a
monopolar spindle.

50 RACE-PCR. Total RNA was extracted from fibroblast cultures using Trizol
reagent (Invitrogen) and the RNeasy mini kit (Qiagen) with DNase I treatment.
About 5 mg RNAs were reverse-transcribed using GSP1 primer and SuperScript II
kit (Invitrogen), according to the manufacturer’s instructions. First-strand cDNA
was treated by RNase H, purified on the GlassMax-DNA isolation Spin cartridge
system (Gibco-BRL) and poly-C tailed using dCTP and terminal transferase
(Gibco-BRL). Thirty-five PCR cycles were performed using AAP anchor primer
(Gibco-BRL) and C-Nap1-specific primers GSP2. An aliquot of these PCR pro-
ducts was used in a second PCR amplification run, using primers AUAP and GSP3
or GSP4. PCR primers are detailed in Supplementary Table 1. PCR reactions were
electrophoresed on a 1% agarose gel. Amplified DNA fragments were cloned into
pGEM-T (Promega) and sequenced.

Quantitative RT–PCR. Reverse transcription was performed on 500 ng of total
RNA using the Vilo kit (Invitrogen). Quantification was performed on triplicates
using the ABsolute Blue QPCR SYBR Green ROX Mix (Thermo Scientific). Pri-
mers (Supplementary Table 1) were designed using the Primer3 software (http://
primer3.ut.ee) on separate exons to produce 100-bp amplicons avoiding DNA
amplification. The GAPDH gene was used for normalization based on its observed
expression stability in fibroblast cells.

Immunolabelling of centrosome proteins and cilia. Cells grown on gelatin-
coated coverslips were fixed in methanol for 7 min at � 20 �C, rinsed in PBS and
incubated overnight with monoclonal antibodies directed against gamma-tubulin
(Sigma GTU88 at 1:500), acetylated tubulin (Sigma T6793 at 1:500), R145/anti-
rootletin rabbit serum (1:500; gift from Dr E. Nigg), anti-Clam Cep135 polyclonal
serum (gift from Dr R. Kuriyama, at 1:10,000) or Myc epitope (9B11, Cell Sig-
nalling, 2,276 at 1:200) in PBS containing 0.1% Tween-20 and 10% fetal calf serum.
Cryostat tissue sections (kidney, 5 mm) were processed similarly. Secondary
antibodies were from Molecular Probes (1:400) and nuclei were stained with
4,6-diamidino-2-phenylindole. Coverslips were mounted in Vectashield (Vector)
before image acquisition with a SP5 Leica Confocal microscope (� 63 objective).
Z stacks were taken every 0.25 mm from different fields. Distance between gamma-
tubulin spots and cilia length was measured using the ImageJ Software on Z
projections. Affected animals (n¼ 3) were compared with controls and measure-
ments were performed on 100–150 cells for each animal. Statistics were calculated
with the R Software. For quantification of the immunolabelling of Cep135 at
centrioles, the ratio between the mean intensity of gamma-tubulin staining and the
mean intensity of Cep135 staining was calculated using three-dimensional (3D)
Image Object Counter in the Fijisoftware. Statistical analysis was performed using
an unpaired t-test with Welch’s correction in the Prism 6 software. For rescue
experiments, mutant cells grown to 50% confluency in 12-well plate were trans-
fected with 1 and 0.3 mg of human Myc-tagged C-Nap1 expression vector (gift from
Dr E. Nigg)6 and 3 ml of X-TremeGENE HP DNA transfection reagent (Roche).
Two days after transfection, human C-Nap1-expressing cells were visualized owing
to the Myc staining. Rescue of centriole splitting was analysed with the lowest
concentration, in which no aggregates of human C-Nap1 were formed.

Immunolabelling of C-Nap1, centrioles and microtubules. Cells were fixed for
3 min in cold methanol or 4% paraformaldehyde, stained, mounted and observed
as described above. Primary antibodies were mouse monoclonal anti-acetylated
tubulin (Sigma T6793 at 1:500), R63/anti-C-Nap1 rabbit serum (a gift from
Dr E. Nigg, 1:500)5, rabbit monoclonal antibodies against poly-glutamylated
tubulin (GT335, a gift from Dr B. Eddé, 1:5,000)40 and a-tubulin (DM1A

Sigma-Aldrich, 1:500). Images were acquired on a Leica DMI 6000B microscope
system (Leica Microsystems) equipped with a � 63 objective and a Quantem
512SC CCD camera. Images were captured in Metamorph and analysed in the
ImageJ software. Alternatively, cells labelled with R63 were acquired on a Zeiss
Axio Observer.Z1 microscope equipped with a � 40 objective and a CoolSNAP
HQ2 camera (Photometrics). Images were captured in AxioVision (Zeiss).

Cell migration. SHGC and wild-type fibroblasts were seeded on Ibidi Culture
Inserts (Ibidi GmbH). Ibidi inserts were removed and closure of the resulting
wound was monitored over the next 24 h. Images of the wound were captured
using the Leica DMI 6000B microscope system equipped with a � 10 objective and
Nomarski optics. Images were captured in Metamorph and analysed in the ImageJ
software. Cell-free surface was calculated with the ImageJ software, by manually
tracing the area over time.

Cell migration tracks were analysed with ImageJ using the ‘manual tracking
plugin’ and the ‘chemotaxis and migration tool plugin’ from Ibidi. In each
experiment, 12–20 individual cells were tracked per sample. Migration efficiency
was quantified by calculating the Euclidean (linear distance between the start and
the end points) and accumulated distances (total distance) of each individual cell
and the directionality of migrating cells. Directionality denotes the ratio of the
linear distance from the starting point to the end point and the total distance
traversed by the cell (Euclidian versus accumulated distance). Alternatively,
directional migration was analysed in real time using the xCELLigence platform
(Roche Applied Science, Germany) and the CIM-16 plate. Cells were seeded in the
upper chamber in a serum-free medium and attracted to the bottom chamber with
serum-containing medium. Impedance was measured every 10 min over 10 h.

Cell proliferation and cell cycle analysis. Asynchronous cells were pulse-labelled
for 15 min with EdU (5-ethynyl-20-deoxyuridine) and then fixed and stained to
visualize cells in the S phase as described by the manufacturer (Invitrogen). Cells
were also labelled with MPM-2 monoclonal antibody (1:500, Abcam) to visualize
mitotic cells. DNA was stained with 10 mg ml� 1 propidium iodide in the presence
of 0.1 mg ml� 1 RNAse A (Sigma-Aldrich). Fluorescence was acquired using a
MACS-Quant flow cytometer (Miltenyi), and data were processed in MACS-
Quantify (Miltenyi) and Venturi-One (Applied Cytometry Systems) softwares. Cell
ploidy was inferred from DNA contents in confluent quiescent cells. The growth
curve was established from triplicate cultures initiated at the density of 2� 103 cells
per cm2 and counted every 24 h over 5 days using a MACS-Quant flow cytometer
(Miltenyi).

Electron microscopy. For transmission electron microscopy, the cells were
washed in 0.1 M phosphate buffer, pH 7.4 and fixed in 2% glutaraldehyde for 1 h at
room temperature. The samples were first washed in 0.1 M phosphate buffer and
then in bidistilled water and finally postfixed in 1% osmium-bidistilled water for
1 h at room temperature. After washes in bidistilled water, the samples were
dehydrated in increasing concentrations of ethanol, infiltrated in 1:1 ethanol:epon
resin for 1 h and finally 100% epon resin for 48 h at 60 �C for polymerization.
Seventy-nm-thick sections were cut with an ultracut UCT microtome (LEICA) and
picked up on copper rhodium-coated grids. Grids were stained for 2 min in Ura-
nyless (DELTA Microscopies) for 5 min in 0.2% lead citrate. Grids were analysed
on an electron microscope (EM 912 OMEGA, ZEISS) at 80 kV, and images were
captured with digital camera (Side-Mounted TEM CCD, Veleta 2kx2k). The
software used is iTEM.
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