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Sri Ram Krishna Vedula, Grégoire Peyret, Ibrahim Cheddadi, Tianchi Chen,

Agust́ı Brugués, Hiroaki Hirata, Horacio Lopez-Menendez, Yusuke Toyama,
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Mechanics of epithelial closure over
non-adherent environments
Sri Ram Krishna Vedula1,*,w, Grégoire Peyret2,*, Ibrahim Cheddadi3,4, Tianchi Chen1, Agustı́ Brugués5,

Hiroaki Hirata1, Horacio Lopez-Menendez2, Yusuke Toyama1,6,7, Luı́s Neves de Almeida3,4, Xavier Trepat5,8,9,

Chwee Teck Lim1,10,11 & Benoit Ladoux1,2

The closure of gaps within epithelia is crucial to maintain its integrity during biological

processes such as wound healing and gastrulation. Depending on the distribution of

extracellular matrix, gap closure occurs through assembly of multicellular actin-based

contractile cables or protrusive activity of border cells into the gap. Here we show that the

supracellular actomyosin contractility of cells near the gap edge exerts sufficient tension on

the surrounding tissue to promote closure of non-adherent gaps. Using traction force

microscopy, we observe that cell-generated forces on the substrate at the gap edge first point

away from the centre of the gap and then increase in the radial direction pointing into the gap

as closure proceeds. Combining with numerical simulations, we show that the increase in

force relies less on localized purse-string contractility and more on large-scale remodelling of

the suspended tissue around the gap. Our results provide a framework for understanding the

assembly and the mechanics of cellular contractility at the tissue level.
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S
tudying the closure of gaps and discontinuities within
multicellular sheets is of great interest because of the
important role that it plays in various biological processes

such as embryogenesis, tissue morphogenesis and wound healing.
Typical examples include dorsal closure in drosophila1,2, cell
extrusion3 and wound healing4,5. When gaps or discontinuities
appear in the epithelia, it is widely accepted that there are two
major mechanisms that drive the closure of such gaps6–8. The
first mechanism, termed cell crawling, refers to the protrusive
activity of filopodia or lamellipodia at the edge of the gap that
propel them into the void9–11. The second mechanism, referred to
as actin purse-string contraction, is mediated by the coordinated
contraction of actin bundles running across multiple cells at the
edge of the gap12–14.

In many instances, epithelial gap closure occurs over regions
where the extracellular matrix (ECM) proteins are either sparsely
distributed or even non-existent. In order to close gaps
under these environments, epithelial cells can switch from cell
crawling mechanism to actin-based purse-string contraction15.
We have previously reported that keratinocytes migrating on

micropatterned lines can form suspended epithelial bridges that
rely on contractile actin bundles over regions devoid of
ECM proteins to close gaps and maintain epithelial integrity16.
However, as both cell crawling and actin purse-string
mechanisms co-exist during gap closure, this can induce
discontinuities in the actin organization around the gap because
of the presence of protrusive extensions as well as contractile
actin bundles7,10,17,18. Both mechanisms could thus influence
each other during epithelial resealing. In addition to lamellipodia
extensions towards the gap, the assembly of discontinuous
supracellular contractile actin cables connected to the substrate
through focal adhesions promotes efficient wound closure
by compressing the underlying substrate19. Because such
mechanisms rely on cell–substrate interactions, it is difficult to
understand how gaps close in situations where the ECM is
heterogeneous and/or poorly adherent. In such cases, the purse-
string contraction of actin cables appears to be the crucial
mechanism for gap closure but it remains poorly characterized.

Here, by using micropatterned substrates20, we study the
closure of circular gaps devoid of ECM protein and functionalized
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Figure 1 | HaCaT cells close a 100 lm diameter non-adhesive gap using actin purse-string contraction. (a) Schematic and (b) phase contrast images

showing closure of a circular non-adhesive gap with time. Cells are initially rounded and confined to the mcontact printed adhesive fibronectin (red) region

but with time gradually spread and close the non-adhesive circular gap. (c) z-projection of confocal images and the corresponding xz and yz sections

(along the white lines) of cells stained for F-actin during ‘early’, ‘intermediate’ and ‘late’ stages of closure of the circular non-adhesive gap (red circle). The

top panels represent the approximate start of the phase and bottom panels mark the approximate end of each phase. Scale bars, (b) 50mm and (c) 20mm.
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with a cell non-adhesive polymer within sheets of keratinocytes.
We find that closure of such non-adherent gaps is driven
exclusively by contraction of multicellular actin-based cables. The
ability to close these gaps is determined by geometrical cues such
as size and curvature of the gap as well as intact intercellular
junctions. Traction force microscopy (TFM) and numerical
simulations suggest strong reinforcement of the contractile
force driving the gap closure. Such reinforcement appears to be
originating from large-scale remodelling of cells at the gap edge.

Results
Closure of non-adhesive gaps by purse-string contraction.
Based on our previous experiments, we hypothesized that circular
non-adhesive gaps within keratinocyte cell sheets would promote
the formation of contractile purse-strings composed of actin
filaments and thus help us to elucidate the mechanics of multi-
cellular actin-based purse-string contraction within a well-defined
environment. To test this hypothesis, HaCaT cells were seeded on
micropatterns consisting of a 100 mm diameter circular non-
adhesive gap (rendered non-adhesive with Pluronics, see meth-
ods) at the centre of a large (B800 mm) fibronectin-coated
square. Surprisingly, we observed collective cellular movements
towards the centre of the gap solely driven by actomyosin con-
traction ending in complete gap closure. Initially, cells confined
themselves to the adhesive region leaving the non-adhesive gap
empty (Fig. 1a,b and Supplementary Movie 1). With progression
of time, they gradually moved in and closed the gap. Although no
lamellipodia were observed at the advancing cell front, the edge
showed a strong contrast in phase images suggesting that the
closure was driven by contraction of actin cables (Fig. 1b).
Staining for filamentous actin at different time points not only
confirmed strong accumulation of F-actin at the edge but also
allowed us to broadly divide the closure event into different stages
(Fig. 1c). About 1–2 h after initial seeding (Fig. 1c, early stage, left
panel), cells adhered to the fibronectin-coated region of the
substrate. Gradually, cells started spreading and formed filopodia
and lamellipodia over the fibronectin-coated pattern. After
complete spreading, cells at the gap edge displayed strong

accumulation of F-actin resulting in the formation of dis-
continuous actin cables around the gap. This was followed by an
anisotropic closure of the gap with the formation of multicellular
actin cables that partly extend over the non-adhesive region on
one side and multiple contractile cables still connected to the
substrate on another side (Fig. 1c, intermediate stage, middle
panel). With further progression of time, the actin cables con-
tracted rapidly resulting in complete closure and formation of a
suspended epithelial sheet over the non-adhesive gap (Fig. 1c, late
stage, right panel).

To analyse whether these different stages reflected in the
closure dynamics of the non-adhesive gap, the perimeter of the
gap was tracked over time (Fig. 2a). The plot not only showed a
large variation in the total time taken for closure from one gap to
another (B4.5 to 17.5 h) but also suggested that the closure was
highly non-linear and occasionally fluctuated. Indeed, although
the average time taken for complete closure of the gap was
11.7±3.7 h (n¼ 17, mean±s.d.), the average time required for
closure of the initial approximately one-third of the gap was
6.77±2.97 h, whereas the latter approximately two-third of the
gap took 4.9±1.67 h to close. This strongly suggests that the slow
first phase represents not only the time taken for the cells to
spread but also the time required for cellular re-organization
around the gap to build-up multiple contractile cables. In
contrast, the rapid second phase represents a more coordinated
and efficient contraction of the suspended cell front. The
fluctuations in the perimeter suggest that the purse-string does
not contract continuously but rather relaxes intermittently. As a
control, we then compared this with closure of a 100 mm diameter
adhesive gap induced by the removal of a micropillar stencil10

(Fig. 2b). The gap closure was completed in 3.6±1.2 h (n¼ 16),
which is comparable to the speed of a migrating HaCaT
monolayer16. The closure process was mainly driven by cell
crawling with lamellipodia extension with some reinforcement of
actin at the edge of the gap (Fig. 2c and Supplementary Movie 2).
This result shows that our experimental system is well-designed
to exclusively study the influence of actomyosin purse-string
contraction on epithelial gap closure.
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Figure 2 | Closure dynamics of adhesive and non-adhesive gaps. Closure of (a) non-adhesive gaps (mediated by actin cable contraction) and

(b) adhesive gaps (mediated by cell crawling mechanism). (c) Phase contrast images of HaCaT cells closing an adhesive epithelial gap created after

the removal of a micropillar stencil. Inset shows cells forming lamellipodia. Scale bars, (c) 50mm.
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Curvature regulates purse-string contraction. To further
investigate the effect of gap curvature on purse-string contraction,
we varied the dimensions and the shapes of the non-adhesive
regions. First, cells were seeded on non-adhesive gaps with
diameters of 150 and 200 mm. In contrast to the 100 mm non-
adhesive gaps that cells were always able to close, the 150 mm
diameter non-adhesive gaps could be closed only in B20% of
cases. However, in most instances (B80% of the cases), the cell
front advanced to close the gap only partially (Fig. 3a and
Supplementary Movie 3). On the 200mm diameter gaps, the cell
front barely advanced into the gap and no closure was observed
(Fig. 3b and Supplementary Movie 4). These observations were
further supported by the plot of the change in perimeter of the
gap with time (Fig. 3c,d). This relationship between epithelial
closure and gap curvature not only emphasizes the role of actin-
based contractile forces at the edge of the gap in driving the
closure process but also highlights the existence of a critical
diameter of B150 mm, above which such contraction is

ineffective. Also, as a larger gap can be interpreted as a geome-
trical feature with lower curvature, we hypothesized that the
curvature of the ECM geometry influences the stability of actin
cable formation as well as its efficient contraction. To test this
hypothesis, we seeded cells on two different patterns. The first
was an elliptical non-adhesive gap whose minor and major axes
were B100 and B1,000 mm, respectively (Fig. 3e). As in the
previous instances, cells were initially confined to the adhesive
fibronectin region leaving the elliptical non-adhesive region
empty. With time, cells started migrating into the gap from one
end of the ellipse that displayed very high curvature (arrow,
Fig. 3e and Supplementary Movie 5). Interestingly, the cell front
reached an ‘equilibrium-like’ state and stopped migrating after
B24 h. The second pattern consisted of a non-adhesive gap with
negative curvatures (convex projections into the gap, arrow in
Fig. 3f) to the cell sheet. On this pattern, cell sheets initially
migrated to close the corners of the gap that provided high
curvature (Supplementary Movie 6). However, movement of the
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Figure 3 | Closure of non-adhesive gaps is determined by the size and curvature of the gap. (a,b) Phase contrast images and (c,d) closure dynamics of

150 and 200mm diameter non-adhesive gaps, respectively. (e) Elliptical non-adhesive gaps (minor/major axis ratio¼ 100:1,000mm) are partially closed in

regions with high curvature (arrow) and (f) closure of non-adhesive gaps with negative curvature (arrow) is delayed. Scale bars, 50mm.
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cell front was delayed across the sides of the gap with a strong
negative curvature because of their convexity. Eventually, a cir-
cular actin-based purse-string was formed that resulted in gap
closure. Together, these results suggest that geometrical cues such
as curvature can strongly influence the formation, stability and
contraction of actin cables.

a-Catenin is essential for closure of non-adhesive gaps.
Epithelial reshaping processes involve a remodelling of adherens
junctions21–24. We hypothesized that efficient force transmission
through supracellular contractile actin cables would require intact
intercellular adhesion during gap closure as described by previous
studies14,25. To test this, we generated HaCaT cells that were
stably knocked down for a-catenin (a-HaCaT) and desmoplakin
(dsp-HaCaT), which are considered as key adaptor molecules at
the adherens junctions and desmosomes, respectively26–28.
a-HaCaT cells did not form intercellular junctions and failed to
close the non-adhesive gaps (Fig. 4a and Supplementary
Movie 7). Instead, these cells migrated individually and single
a-HaCaT cells occasionally stretched across the gap. In contrast,
dsp-HaCaT cells could efficiently close the non-adhesive gap
(Supplementary Movie 8) in a manner that was indistinguishable

from wild-type HaCaT as well as HaCaT cells expressing non-
targeting small hairpin RNA (shRNA) (Supplementary Movie 9).
This suggested that a-catenin but not desmoplakin was
indispensable for coordinated contraction of the purse-string.
This is consistent with recent studies that emphasize the role of
adherens junctions in establishing tissue level tension29. The
importance of intercellular adhesion was also evident from the
fact that simple epithelial cells such as MDCK that demonstrate
a more ‘viscous-like’ behaviour because of higher cell–cell
rearrangement (compared with HaCaT)16 could not close a
100 mm non-adhesive gap even after B40 h despite reaching very
high densities and eventually over confluence (Fig. 4b,c and
Supplementary Movie 10). In fact, the partial closure of the gap
that did occur was a result of cell overgrowth resulting in
formation of three-dimensional-like tissue structures (Fig. 4d) as
previously reported30. Consequently, even though these findings
demonstrate the importance of tensile stress through intercellular
adhesions during epithelial gap closure, we could not exclude a
possible role of proliferative pressure from the surrounding
tissue. To test this, we inhibited cell proliferation in this process.
When cell proliferation was inhibited, the 100 mm diameter
non-adhesive gap could still be closed, although the closure was
slightly delayed (Fig. 4e and Supplementary Movie 11). This delay
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Figure 4 | Strength and integrity of intercellular adhesion regulate closure of non-adhesive gaps. (a) Phase contrast images of a-catenin knockdown

HaCaT cells on 100mm diameter non-adhesive gaps. (b) Phase contrast images, (c) closure dynamics and (d) confocal images of actin staining of MDCK

cells on 100 mm diameter non-adhesive gaps. (e) HaCaT cells close 100mm non-adhesive gaps in the presence of 2 mM thymidine (proliferation inhibitor).

Scale bars, (a,b,e) 50mm and (d) 20mm.
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was not surprising as inhibition of proliferation would also
increase the time taken for cells to completely occupy the
adhesive region before migrating into the non-adhesive region.
Thus, cell proliferation does not appear to be the major driving
force in our model of epithelial gap closure.

TFM of contracting purse-string. We thus considered that the
closure of these epithelial gaps could result from a ‘tug of war’
between the contracting actin-based purse-string at the edge of
the gaps and the resistive forces offered by the cells adherent to

the fibronectin-coated substrate. In such a model, the forces
generated by the contracting actin-based purse-string should
reflect in the traction forces exerted by cells in the vicinity of the
edge of the non-adhesive gap. To test this hypothesis, we used
TFM. Non-adhesive gaps of diameters 100 and 200 mm were
patterned on soft silicone elastomeric substrates functionalized
with fluorescent beads as described previously16,31. Closure of the
gap and deflection of beads (Fig. 5a) were tracked over time and
unconstrained traction stresses were calculated from the bead
displacement as previously described32. Radial stresses pointing
inward and tangential stresses directed counter-clockwise
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Figure 5 | Traction force microscopy of HaCaT cells on 100 and 200 lm diameter non-adhesive gaps. (a) Evolution of traction stresses with time as the

non-adhesive gap is closed. Arrows depict both the direction and magnitude of the stresses exerted by cells on the substrate. Kymographs showing

(b,d) vectorial and (c,e) scalar average of radial (Tr, left panel) and tangential (Tt, right panel) stresses as a function of distance from the centre of 100 and

200mm gaps, respectively. The dashed dotted line represents the gap edge. Average stresses along a 20mm wide strip centred on the edge of the

(f) 100 and (g) 200mm diameter non-adhesive gap.
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were considered negative. Kymographs of vectorial and scalar
average of radial (oTr4, o|Tr|4) and tangential (oTt4,
o|Tt|4) stresses as a function of distance from centre of the gap
showed that the maximal stresses were localized to B10mm on
either side of the edge of the gap (Fig. 5b–e). Accordingly, average
radial and tangential stresses in this ‘strip’ or region of interest
were plotted as a function of time for further analysis. For the
100mm diameter gap, oTr4 was initially positive (directed
outwards) consistent with the idea of cells that were spreading or
crawling to reach the edge of the gap (Fig. 5f). With the formation
of a contractile purse-string and movement of cells into the gap,
oTr4 became increasingly negative (pointing inwards) and
reached a nadir (approximately � 600 Pa) just about the time the
gap closed (Fig. 5f). After the closure of the gap, oTr4 showed a
slight increase but remained negative suggesting that cells
bridging the gap exhibited residual tension despite the
dissolution of the actin-based purse-string. The average
tangential stress oTt4, on the other hand, fluctuated but
remained close to zero throughout the observation period
(Fig. 5f). However, the scalar average of the radial (o|Tr|4)
and tangential (o|Tt|4) stresses increased and reached a peak
just around the time the gap closed after which they showed a
sudden fall. The force increase in the radial direction suggests a
reinforcement of the contracting actin cable as gap closure
progresses. Further support for such a force balance between cell–
substrate adhesion and contracting actin cables came from
estimation of the critical length scale based on estimated cell
adhesion energy density g (J m� 2). The total work done to move
a ‘suspended’ cell sheet of radius R over the non-adhesive region
by a further distance dr is given by g(2pR)dr. The radial force
within the actin cable should be large enough to overcome this
energy barrier, that is, Fdr¼ g(2pR)dr. The maximal radial force
within the cable estimated by TFM is B4.0 mN (B650 Pa over

B6,300 mm2 area of the strip of interest). Although data for g for
keratinocytes are not available in the literature, the estimated
value for fibroblasts on fibronectin is B15 mJ m� 2 (ref. 33). This
gives a critical length scale R equal to B40mm for closure that
correlates well with our experimental observations. For the
200 mm diameter gap, minimal stresses were detected at the edge
of the hole that corroborated with the fact that the cell front had
barely migrated into the gap (Fig. 5g). To directly test the
influence of such contractile tension on gap closure, we laser
ablated actin bundles at the edge (Fig. 6a and Supplementary
Movie 12) and inhibited actomyosin contractility with
blebbistatin (Fig. 6b,c and Supplementary Movie 13). Both
experiments induced a relaxation of a partially closed non-
adhesive gap and thus supported the idea of force transmission
from the contracting actin cable to cells adherent to fibronectin at
the edge of the gap.

Modelling the closure of a non-adhesive circular gap. To fur-
ther test our hypothesis of a force balance between contractile
forces of the actin cable and resistive viscoelastic responses of the
remaining adherent cells, we developed a mechanical model that
captures our experimental findings. The tissue was modelled as a
solid viscoelastic Kelvin-Voigt material, and the interaction with
the adhesive part of the substrate was modelled so that the
velocity of the tissue is zero if the force exerted on the tissue is less
than a threshold fy, and linearly increases with the
force above this threshold (Fig. 7a, Supplementary Note 1 and
Supplementary Fig. 1). Assuming that the actomyosin structure
on the border of the gap acts as a cable under tension T, the
resulting force per unit length exerted on the tissue is Tk~n, where
k is the local curvature and ~n is the normal vector to the border
directed towards the interior of the gap34,35. Numerical
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Figure 6 | Closure of non-adhesive gap requires actomyosin contractility. (a) Laser ablation of the actin cables at the edge results in immediate
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simulations showed that a constant tension (k model) could not
account for the increasing stress at the edge of the gap; however, a
simple model of cable reinforcement (tension increasing linearly
with curvature, k2 model) could predict this experimental
observation (Fig. 7b). Such a tension reinforcement model (k2

model) together with a threshold friction force could not only
account for the fact that 100 mm but not 200mm diameter gaps

close but could also explain the experimentally observed increase
in closure velocity for the 100mm diameter gaps with time
(Fig. 7c,d). To understand the origin of the reinforcement, we
performed live-cell imaging of HaCaT cells stably expressing
GFP-lifeact (Supplementary Movie 14). Although there was some
increase in the intensity of actin at the edge of the suspended cell
front (Fig. 7e,f), a more prominent observation was the large-scale
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Figure 7 | Numerical simulation of the gap closure. (a) Schematic of the model showing a balance between the tension in the actin cable (green) T and

the frictional force fy arising from tissue adhesion to substrate on the fibronectin (red) and the tissue itself represented as a viscoelastic material.

(b) Average radial stress at the edge of the gap predicted by the model with (k2 model) or without (k model) reinforcement of tension in the actin purse-

string. Change in the perimeter of the gap over time predicted by the tension reinforcement model for (c) 100mm and (d) 200mm diameter gaps.

Simulation values have been scaled to fit the experimental data. (e) Kymograph of actin intensity from the centre of the gap. Black line is a guide to show an

B12mm wide strip along the edge of the cell front. (f) Change in average intensity of actin with time in the strip of interest bounded by the black line

in e. (g) Actin network visualized using GFP-lifeact-expressing HaCaT cells and (h) basal confocal section of cells fixed and stained for actin showing

strong re-organization within cells localized to the edge of the gap (insets). Scale bars 20mm.
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re-organization of the actin cytoskeleton within the cells around
the gap directed tangentially to the gap (Fig. 7g, inset). Such a re-
organization was also consistently observed in cells fixed and
stained for actin immediately before gap closure (Fig. 4h, inset).
We believe that this re-organization of actin cytoskeleton at tissue
level probably plays a significant role in reinforcing overall
contractility of the suspended cell front.

Discussion
In view of this relationship, our assay determines that fine tuning
between cell–substrate interactions and strengthening of multi-
cellular actin cables through intercellular adhesions remains
crucial to understand epithelial gap closure. Indeed, the
mechanistic characterization of actin-based purse-string-
mediated closure of epithelial gaps has remained elusive because
of the lack of an assay that could faithfully and consistently
reproduce it in vitro. Most of our understanding about this
mechanism of gap closure comes from experiments involving
laser ablation of cell clusters in vitro13,19 or in vivo34,36. However,
in both experimental systems it is almost impossible to segregate
the individual contributions of cell crawling and purse-string
contraction mechanisms to the overall closure process.
Furthermore, in the absence of a direct ‘readout’, quantification
of forces generated by the actin cable is indirectly inferred from
the retraction velocity of tissues following laser ablation. In
contrast, our experimental setup provides a novel platform to
isolate and characterize the mechanics of purse-string contraction
during epithelial gap closure.

Using a similar experimental approach, Kim et al. recently
studied traction forces in cell monolayers that surrounded but
never invaded non-adherent islands37. They found that cells
enveloping the islands exerted radial forces pointing uniformly
away from the island. This intriguing behaviour, which they called
kenotaxis, was independent of the orientation of the cell velocity
vector and principal stress directions. Using cells that are able to
invade non-adherent islands, here we found traction force patterns
that are similar in orientation but opposite in sign. Indeed, we
found that forces are mostly radial but point towards the island
rather than away from it (note that Kim et al. reported forces
exerted by the gel on the cells rather than by the cells on the gel as
we did here). These findings show that fundamentally distinct
mechanical scenarios are at play in cells that invade gaps compared
with cells that only envelop them. This is also reflected by the fact
that, unlike cells enveloping non-adherent islands, cells that invade
the islands show non-negligible tangential tractions (Fig. 5b,c)19.

Although closure mediated by contraction of actin cables appears
to be slower and inefficient compared with cell crawling, it is
probably important in situations where cell–ECM contact is either
poor or non-existent. Indeed, purse-string contraction appears to
be the dominant mechanism of wound/gap closure in embryos,
which exhibit low levels of ECM providing little cell–substrate
contact for migration14. Furthermore, efficient formation and
contraction of such actin-based purse-strings appears to be limited
to cell types that are involved in wound healing (for example, skin
keratinocytes and embryonic epidermal cells) as simple epithelial
cells such as MDCK are unable to close similar non-adhesive gaps
efficiently. Such specificity could arise from differences in the
organization and strength of intercellular adhesion in these cell
types. Our findings demonstrate the importance of contractile
mechanical forces generated by large-scale re-organization of actin
cytoskeleton in tissue remodelling during epithelial closure and
thus provide new mechanistic insights into these processes.

Methods
Cell culture and reagents. HaCaT cells (Cell Lines Service) and MDCK cells
were maintained in DMEM supplemented with 10% fetal bovine serum and

antibiotics. Protein expression in HaCaT cells was depleted by retrovirus-mediated
introduction of shRNA into cells, as described previously16. The target sequences
used were 50-GACTTAGGAATCCAGTATA-30 (for a-catenin) and 50-GTGACC
AACTTGTCCTCAA-30 (for desmoplakin). As a control, shRNA with the non-
targeting sequence (50-ATAGTCACAGACATTAGGT-30) was used. For inhibition
of proliferation, HaCaT cells were first maintained in 2 mM thymidine for 24 h
following which cells were trypsinized, seeded on the patterns and imaged in
medium containing 2 mM thymidine.

Microcontact printing and microscopy. Patterned silicon wafers for soft litho-
graphy were prepared using SU-8 photoresist20,38. For imaging the closure
dynamics of the gaps, patterns were microcontact printed on non-culture treated
Petri dishes (Greiner) and blocked with 0.2% Pluronics. Cells were seeded at
high density and allowed to adhere for 1–2 h to completely fill the adhesive region
of the pattern. Floating cells were washed off and the closure was imaged on a
Biostation (Nikon). For closure of circular adhesive epithelial gaps by cell crawling,
micropillar stencils removal assay was performed10. The closure dynamics (contour
of the non-adhesive gap) was obtained using the ABsnake plugin for Image J, fitted
with an ellipse using MATLAB. For confocal imaging, patterning was done on glass
bottom Petri dishes spin coated with a thin layer of polydimethylsiloxane (PDMS).
Cells were imaged using a laser confocal microscope (Leica). Images were
processed in Image J to enhance contrast. Laser ablation was done using ultraviolet
laser (355 nm, Minilite II, Continuum) mounted on a confocal microscope (Nikon
A1R) using a � 40 water immersion objective16.

Traction force microscopy. Substrates for TFM were prepared from soft silicone
gels16,39. Briefly, soft silicone gels were mixed in a ratio of 1:1 and spin coated on
a glass bottom Petri dish and cured. The gels were silanized by incubating in 5%
(3-aminopropyl)triethoxysilane (APTES, Sigma) in ethanol for 5 min. The substrates
were dried and incubated with 100 nm carboxylated fluorescent beads (Invitrogen)
for 5 min, washed and dried. The beads were passivated with 100 mM Tris base (1st
Base) in water and dried. Fibronectin pattern was stamped on the soft silicone gels
using a water-soluble polyvinyl alcohol (PVA) membrane as an intermediate
substrate31. The gels were finally blocked with 0.2% Pluronics solution. Cells were
seeded on the patterns and imaged on an Olympus inverted microscope. After
imaging, cells were lysed and the ‘stress free’ image of the beads was obtained. The
unconstrained stresses were computed using custom written MATLAB codes32.
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