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1Université de Montpellier, LIRMM - Montpellier, France
E-mail: {pascal.poncelet,vijay}@lirmm.fr

2IRSTEA Montpellier, UMR TETIS
F-34093 Montpellier, France

E-mail: dino.ienco@irstea.fr

Abstract. Many real world datasets can be represented by a network
with a set of nodes interconnected with each other by multiple relations.
Such a rich graph is called a multigraph. Unfortunately, all the exist-
ing algorithms for subgraph query matching are not able to adequately
leverage multiple relationships that exist between the nodes. In this paper
we propose an efficient indexing schema for querying single large multi-
graphs, where the indexing schema aptly captures the neighbourhood
structure in the data graph. Our proposal SuMGra couples this novel
indexing schema with a subgraph search algorithm to quickly traverse
though the solution space to enumerate all the matchings. Extensive ex-
periments conducted on real benchmarks prove the time efficiency as well
as the scalability of SuMGra .

1 Introduction

Many real world datasets can be represented by a network with a set of nodes
interconnected with each other by multiple relations. Such a rich graph is called
multigraph and it allows different types of edges in order to represent different
types of relations between vertices [1, 2]. Example of multigraphs are: social
networks spanning over the same set of people, but with different life aspects
(e.g. social relationships such as Facebook, Twitter, LinkedIn, etc.); protein-
protein interaction multigraphs created considering the pairs of proteins that
have direct interaction/physical association or they are co-localised [15]; gene
multigraphs, where genes are connected by considering the different pathway
interactions belonging to different pathways; RDF knowledge graph where the
same subject/object node pair is connected by different predicates [10].

One of the difficult operation in graph data management is subgraph query-
ing [6]. Although subgraph querying is an NP-complete [6] problem, practically,
we can find embeddings in real graph data by employing a good matching order
and intelligent pruning rules. In literature, different families of subgraph match-
ing algorithms exist. A first group of techniques employ Feature based indexing



followed by a filtering and verification framework. During filtering, some graph
patterns (subtrees or paths) are chosen as indexing features to minimize the
number of candidate graphs. Then the verification step checks for the subgraph
isomorphism using the selected candidates [14, 4, 16, 11]. All these methods are
developed for transactional graphs, i.e. the database is composed of a collection
of graphs and each graph can be seen as a transaction of such database, and
they cannot be trivially extended on the single multigraph scenario. A second
family of approaches avoids indexing and it uses Backtracking algorithms to find
embeddings by growing the partial solutions. In the beginning, they obtain a
potential set of candidate vertices for every vertex in the query graph. Then a
recursive subroutine called SubgraphSearch is invoked to find all the possible
embeddings of the query graph in the data graph [5, 13, 7]. All these approaches
are able to manage graphs with only a single label on the vertex. Although in-
dex based approaches focus on transactional database graphs, some backtrack-
ing algorithms address the large single graph setting [9]. All these methods are
not conceived to manage and query multigraphs and their extension to manage
multiple relations between nodes cannot be trivial. A third and recent family
of techniques defines equivalence classes at query and/or database level, by ex-
ploiting vertex relationships. Once the data vertices are grouped into equivalence
classes, the search space is reduced and the whole process is speeded up [6, 12].

Adapting these methods to multigraph is not straightforward since, the differ-
ent types of relationships between vertices can exponentially increase the number
of equivalent classes (for both query and data graph) thereby drastically reduc-
ing the efficiency of these strategies. Among the vast literature on subgraph
isomorphism, [3] is the unique approach, which is a backtracking approach, that
is able to directly manage graph with (multiple) labels on the edges. It proposes
an approach called RI that uses light pruning rules in order to avoid visiting
useless candidates.

Due to the availability of multigraph data and the importance of performing
query on multigraph data, in this paper, we propose a novel method SuMGra
that supports subgraph matching in a multigraph via efficient indexing. In par-
ticular, we capture the multigraph properties in order to build the index struc-
tures, and we show that by exploiting multigraph properties, we are able to
perform subgraph matching very efficiently. As observed in Table 1, the pro-
posed SuMGra is almost one order of magnitude better than the benchmark
approach RI, for the DBPEDIA dataset and for the query sizes from 3 to 11.

Approach 3 5 7 9 11

SuMGra 160.5 254.1 545.7 971.5 1610.9
RI 7045.7 7940.8 7772.7 6872.6 8502.5

Table 1. Time (msec) taken by RI and SuMGra for DBPEDIA dataset

Deviating from all the previous proposed approaches, we conceive an index-
ing schema to summarize information contained in a single large multigraph.
SuMGra involves two main phases: (i) an off-line phase that builds efficient
indexes for the information contained in the multigraph; (ii) an on-line phase,
where a search procedure exploits the indexing schema previously built. The



rest of the paper is organized as follows. Background and problem definition are
provided in Section 2. An overview of the proposed approach is presented in
Section 3, while Section 4 and Section 5 describe the indexing schema and the
query subgraph search algorithm, respectively. Section 6 presents experimental
results. Conclusions are drawn in Section 7.

2 Preliminaries and Problem Definition

Formally, we can define a multigraph G as a tuple of four elements (V,E, LE , D)
where V is the set of vertices and D is the set of dimensions , E ⊆ V × V is the
set of undirected edges and LE : V ×V → 2D is a labelling function that assigns
the subset of dimensions to each edge it belongs to. In this paper, we address
the sub-graph isomorphism problem for undirected multigraphs.

Definition 1 Subgraph isomorphism for undirected multigraph. Given a multi-
graph Q = (V q, Eq, LqE , D

q) and a multigraph G = (V,E, LE , D), the subgraph
isomorphism from Q to G is an injective function ψ : V q → V such that:
∀(um, un) ∈ Eq, ∃ (ψ(um), ψ(un)) ∈ E and LqE(um, un) ⊆ LE(ψ(um), ψ(un)).

Problem Definition. Given a query multigraph Q and a data multigraph
G, the subgraph query problem is to enumerate all the embeddings of Q in G.

For the ease of representation, in the rest of the paper, we simply refer to a
data multigraph G as a graph, and a query multigraph Q as a subgraph. We also
enumerate (for unique identification) the set of query vertices by U and the set
of data vertices by V .
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Fig. 1. A sample (a) query multigraph Q and (b) data multigraph G

In Figure 1, we introduce a query multigraph Q and a data multigraph G.
The two valid embeddings for the subgraph Q are marked by the thick lines in the
graph G and are enumerated as follows: R1 := {[u1, v4], [u2, v5], [u3, v3], [u4, v1]};
R2 := {[u1, v4], [u2, v3], [u3, v5], [u4, v6]}; where, each query vertex ui is matched
to a distinct data vertex vj , written as [ui, vj ].

3 An Overview of SuMGra

In this section, we sketch the main idea behind our proposal. The entire proce-
dure can be divided into two parts: (i) an indexing schema for the graph G that



exploits edge dimensions and the vertex neighbourhood structure (Section 4) (ii)
a subgraph search algorithm, that integrates recent advances in the graph data
management field, to enumerate the embeddings of the subgraph (Section 5).

The overall idea of SuMGra is depicted in Algorithm 1. Initially, we order
the set of query vertices U using a heuristic proposed in Section 5.1. With an or-
dered set of query vertices Uo, we use the indexing schema to find a list of possible
candidate matches only for the initial query vertex uinit by calling SelectCand
(Line 5), as described in Section 5.2. Then, for each possible candidate of the
initial query vertex, we call the recursive subroutine SubgraphSearch, that
performs the subgraph isomorphism test.

The SubgraphSearch procedure (Section 5.3), finds the embeddings start-
ing with the possible matches for the initial query vertex uinit (Lines 7-11). Since
uinit has |Cuinit

| possible matches, SubgraphSearch iterates through |Cuinit
|

solution trees in a depth first manner until an embedding is found. That is, Sub-
graphSearch is recursively called to find the matchings that correspond to all
ordered query vertices Uo. The partial embedding is stored in M = [Mq,Mg]
- a pair that contains the already matched query vertices Mq and the already
matched data vertices Mg. Once the partial embedding grows to become a com-
plete embedding, the repository of embeddings R is updated.

Algorithm 1: SuMGra
1 Input: subgraph Q, graph G, indexes S, N
2 Output: R: all the embeddings of Q in G
3 Uo = OrderQueryVertices(Q, G)
4 uinit = u|u ∈ Uo

5 Cuinit
= SelectCand(uinit, S)

6 R = ∅ /* Embeddings of Q in G */
7 for each vinit ∈ Cuinit do
8 Mq = uinit; /* Matched initial query vertex */
9 Md = vinit; /* Matched possible data vertex */

10 M = [Mq,Mg ] /* Partial matching of Q in G */
11 Update: R := SubgraphsSearch(R,M,N , Q,G, Uo)

12 return R

4 Indexing

In this section, we propose the indexing structures that are built on the data
multigraph G, by leveraging the multigraph properties in specific; this index is
used during the subgraph querying procedure. The primary goal of indexing is
to make the query processing time efficient. For a lucid understanding of our
indexing schema, we introduce a few definitions.

Definition 2 Vertex signature. For a vertex v, the vertex signature σ(v) is a
multiset containing all the multiedges that are incident on v, where a multiedge
between v and a neighbouring vertex v′ is represented by a set that corresponds
to edge dimensions. Formally, σ(v) =

⋃
v′∈N(v) LE(v, v′) where N(v) is the set

of neighbourhood vertices of v, and ∪ is the union operator for multiset.

For instance, in Figure 1(b), σ(v6) = {{E1, E3}, {E1}}. The vertex signature is
an intermediary representation that is exploited by our indexing schema.



The goal of constructing indexing structures is to find the possible candidate
set for the set of query vertices u, thereby reducing the search space for the
SubgraphSearch procedure, making SuMGra time efficient.

Definition 3 Candidate set. For a query vertex u, the candidate set C(u) is
defined as C(u) = {v ∈ g|σ(u) ⊆ σ(v)}.

In this light, we propose two indexing structures that are built offline: (i)
given the vertex signature of all the vertices of graph G, we construct a vertex
signature index S by exploring a set of features f of the signature σ(v) (ii) we
build a vertex neighbourhood indexN for every vertex in the graph G. The index
S is used to select possible candidates for the initial query vertex in the Select-
Cand procedure while the index N is used to choose the possible candidates for
the rest of the query vertices during the SubgraphSearch procedure.

4.1 Vertex Signature Index S

This index is constructed to enumerate the possible candidate set only for the
initial query vertex. Since we cannot exploit any structural information for the
initial query vertex, S captures the edge dimension information from the data
vertices, so that the non suitable candidates can be pruned away.

We construct the index S by organizing the information supplied by the
vertex signature of the graph; i.e., observing the vertex signature of data vertices,
we intend to extract some interesting features. For example, the vertex signature
of v6, σ(v6) = {{E1, E3}, {E1}} has two sets of dimensions in it and hence v6 is
eligible to be matched with query vertices that have at most two sets of items
in their signature. Also, σ(v2) = {{E2, E3, E1}, {E1}} has the edge dimension
set of maximum size 3 and hence a query vertex must have the edge dimension
set size of at most 3. More such features (e.g., the number of unique dimensions,
the total number of occurrences of dimensions, etc.) can be proposed to filter
out irrelevant candidate vertices. In particular, for each vertex v, we propose to
extract a set of characteristics summarizing useful features of the neighbourhood
of a vertex. Those features constitute a synopses representation (surrogate) of
the original vertex signature.

In this light, we propose six |f |= 6 features, that leverage the multigraph
properties; the features will be illustrated with the help of the vertex signature
σ(v3) = {{E1, E2, E3}, {E1, E3}, {E1, E2}, {E1}}:

f1 Cardinality of vertex signature, (f1(v3) = 4)
f2 The number of unique dimensions in the vertex signature, (f2(v3) = 3)
f3 The number of all occurrences of the dimensions (repetition allowed), (f3(v3) = 8)
f4 Minimum index of the lexicographically ordered edge dimensions, (f4(v3) = 1)
f5 Maximum index of the lexicographically ordered edge dimensions, (f5(v3) = 3)
f6 Maximum cardinality of the vertex sub-signature, (f6(v3) = 3)

By exploiting the aforementioned features, we build the synopses to repre-
sent the vertices in an efficient manner that will help us to select the eligible
candidates during query processing.



Once the synopsis representation for each data vertex is computed, we store
the synopses in an efficient data structure. Since each vertex is represented by
a synopsis of several fields, a data structure that helps in efficiently performing
range search for multiple elements would be an ideal choice. For this reason, we
build a |f |-dimensional R-tree, whose nodes are the synopses having |f | fields.

The general idea of using an R-tree structure is as follows: A synopses
F = {f1, . . . , f|f |} of a data vertex spans an axes-parallel rectangle in an f -
dimensional space, where the maximum co-ordinates of the rectangle are the
values of the synopses fields (f1, . . . , f|f |), and the minimum co-ordinates are
the origin of the rectangle (filled with zero values). For example, a data vertex
represented by the synopses with two features Fv = (2, 3) spans a rectangle in a
2-dimensional space in the interval range ([0, 2], [0, 3]). Now if we consider syn-
opses of two query vertices, Fu1

= (1, 3) and Fu2
= (1, 4), we observe that the

rectangle spanned by Fu1 is wholly contained in the rectangle spanned by Fv but
Fu2 is not wholly contained in Fv. Formally, the possible candidates for vertex
u can be written as P(u) = {v|∀i∈[1,...,f ]Fu(i) ≤ Fv(i)}, where the constraints
are met for all the |f |-dimensions. Since we apply the same inequality constraint
to all the fields, we need to pre-process few synopses fields; e.g., the field f4
contains the minimum value of the index, and hence we negate f4 so that the
rectangular containment problem still holds good. Thus, we keep on inserting
the synopses representations of each data vertex v into the R-tree and build the
index S, where each synopses is treated as an |f |-dimensional node of the R-tree.

4.2 Vertex Neighbourhood Index N

The aim of this indexing structure is to find the possible candidates for the rest
of the query vertices.

Since the previous indexing schema enables us to select the possible candi-
date set for the initial query vertex, we propose an index structure to obtain the
possible candidate set for the subsequent query vertices. The index N will help
us to find the possible candidate set for a query vertex u during the Subgraph-
Search procedure by retaining the structural connectivity with the previously
matched candidate vertices, while discovering the embeddings of the subgraph
Q in the graph G.

The index N comprises of neighbourhood trees built for each of the data
vertex v. To understand the index structure, let us consider the data vertex v3
from Figure 1(b), shown separately in Figure 2(a). For this vertex v3, we collect
all the neighbourhood information (vertices and multiedges), and represent this
information by a tree structure. Thus, the tree representation of a vertex v con-
tains the neighbourhood vertices and their corresponding multiedges, as shown
in Figure 2(b), where the nodes of the tree structure are represented by the edge
dimensions.

In order to construct an efficient tree structure, we propose the structure
- Ordered Trie with Inverted List (OTIL). Consider a data vertex vi, with a
set of n neighbourhood vertices N(vi). Now, for every pair (vi, N

j(vi)), where
j ∈ {1, . . . , n}, there exists a multiedge (set of edge dimensions) {E1, . . . , Ed},



which is inserted into the OTIL structure. Each multiedge is ordered (with the
increasing edge dimensions), before inserting into OTIL structure, and the order
is universally maintained for both query and data vertices. Further, for every
edge dimension Ei that is inserted into the OTIL, we maintain an inverted list
that contains all the neighbourhood vertices N(vi), that have the edge dimension
Ei incident on them. For example, as shown in Figure 2(b), the edge E2 will
contain the list {v2, v4}, since E2 forms an edge between v3 and both v2 and v4.

To construct the OTIL index as shown in Figure 2(b), we insert each ordered
multiedge that is incident on v at the root of the trie structure. To make index
querying more time efficient, the OTIL nodes with identical edge dimension
(e.g., E3) are internally connected and thus form a linked list of data vertices.
For example, if we want to query the index in Figure 2(b) with a vertex having
edges {E1, E3}, we do not need to traverse the entire OTIL. Instead, we perform
a pre-ordered search, and as soon as we find the first set of matches, which is
{V2}, we will be redirected to the OTIL node, where we can fetch the matched
vertices much faster (in this case {V1}), thereby outputting the set of matches
as {V2, V1}.
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Fig. 2. (a) Neighbourhood structure of v3 and (b) Neighbourhood Index for vertex v3

5 Subgraph Query Processing

We now proceed with the subgraph query processing. In order to find the em-
beddings of a subgraph, we not only need to find the valid candidates for each
query vertex, but also retain the structure of the subgraph to be matched.

5.1 Query Vertex Ordering

Before performing query processing, we order the set of query vertices U into
an ordered set of query vertices Uo. It is argued that an effective ordering of
the query vertices improves the efficiency of subgraph querying [9]. In order to
achieve this, we propose a heuristic that employs two scoring functions.

The first scoring function relies on the number of multiedges of a query
vertex. For each query vertex ui, the number of multiedges incident on it is



assigned as a score; i.e., r1(ui) =
∑m
j=1 |σ(uji )|, where ui has m multiedges,

|σ(uji )| captures the number of edge dimensions in the jth multiedge. Query
vertices are ordered in ascending order considering the scoring function r1, and
thus uinit = argmax(r1(ui)). For example, in Figure 1(a), vertex u3 has the
maximum number of edges incident on it, which is 4, and hence is chosen as an
initial vertex.

The second scoring function depends on the structure of the subgraph. We
maintain an ordered set of query vertices Uo and keep adding the next eligible
query vertex. In the beginning, only the initial query vertex uinit is in Uo.
The set of next eligible query vertices Uonbr are the vertices that are in the
1-neighbourhood of Uo. For each of the next eligible query vertex un ∈ Uonbr,
we assign a score depending on a second scoring function defined as r2(un) =
|{Uo ∩ adj(un)}|. It considers the number of the adjacent vertices of un that are
present in the already ordered query vertices Uo.

Then, among the set of next eligible query vertices Uonbr for the already or-
dered Uo, we give first priority to function r2 and the second priority to function
r1. Thus, in case of any tie ups, w.r.t. r2, the score of r1 will be considered.
When both r2 and r1 leave us in a tie up situation, we break such tie at random.

5.2 Select Candidates for Initial Query Vertex

For the initial query vertex uinit, we exploit the index structure S to retrieve the
set of possible candidate data vertices, thereby pruning the unwanted candidates
for the reduction of search space.

During the SelectCand procedure (Algorithm 1, Line 5), we retrieve the
possible candidate vertices from the data graph by exploiting the vertex signa-
ture index S. However, since querying S would not prune away all the unwanted
vertices for uinit, the corresponding partial embeddings would be discarded dur-
ing the SubgraphSearch procedure. For instance, to find candidate vertices
for uinit = u3, we build the synopses for u3 and find the matchable vertices in
G using the index S. As we recall, synopses representation of each data vertex
spans a rectangle in the d-dimensional space. Thus, it remains to check, if the
rectangle spanned by u3 is contained in any of rectangles spanned by the syn-
opses of the data vertices, with the help of R-tree built on data vertices, which
results in the candidate set {v3, v5}.

5.3 Subgraph Searching

The SubgraphSearch recursive procedure is described in Algorithm 2. Once an
initial query vertex uinit and its possible data vertex vinit ∈ Cuinit , that could be
a potential match, is chosen from the set of select candidates, we have the partial
solution pair M = [Mq,Mg] of the subgraph query pattern we want to grow. If
vinit is a right match for uinit, and we succeed in finding the subsequent valid
matches for Uo, we will obtain an embedding; else, the recursion would revert
back and move on to next possible data vertex to look for the embeddings.



Algorithm 2: SubgraphSearch(R,M,N , Q,G,Uo)
1 Fetch unxt ∈ Uo /* Fetch query vertex to be matched */
2 MC = FindJoinable(Mq,Mg,N , unxt) /* Matchable candidate vertices */
3 if |MC |6= ∅ then
4 for each vnxt ∈MC do
5 Mq = Mq ∪ unxt;
6 Mg = Mg ∪ vnxt;
7 M = [Mq,Mg ] /* Partial matching grows */
8 SubgraphSearch(R,M,N , Q,G, Uo)
9 if (|M | == |Uo|) then

10 R = R ∪M /* Embedding found */

11 return R

In the beginning of SubgraphSearch procedure, we fetch the next query
vertex unxt from the set of ordered query vertices Uo, that is to be matched (Line
1). Then FindJoinable procedure finds all the valid data vertices that can be
matched with the next query vertex unxt (Line 2). The main task of subgraph
matching is done by the FindJoinable procedure, depicted in Algorithm 3.
Once all the valid matches for unxt are obtained, we update the solution pair
M = [Mq,Mg] (Line 5-7). Then we recursively call SubgraphSearch procedure
until all the vertices in Uo have been matched (Line 8). If we succeed in finding
matches for the entire set of query vertices Uo, then we update the repository
of embeddings (Line 9-10); else, we keep on looking for matches recursively in
the search space, until there are no possible candidates to be matched for unxt
(Line 3).

Algorithm 3: FindJoinable(Mq,Mg,N , unxt)
1 Aq := Mq ∩ adj(unxt) /* Matched query neighbours */
2 Ag := {v|v ∈Mg} /* Corresponding matched data neighbours */

3 Intialize: Mtemp
C = 0,MC = 0

4 Mtemp
C = ∩|Aq|

i=1 NeighIndexQuery(N , Ai
g, (A

i
q, unxt))

5 for each vc ∈Mtemp
C do

6 if σ(vc) ⊇ σ(unxt) then
7 add vc to MC /* A valid matchable vertex */

8 return MC

The FindJoinable procedure guarantees the structural connectivity of the
embeddings that are outputted. Referring to Figure 1, let us assume that the
already matched query vertices Mq = {u2, u3} and the corresponding matched
data vertices Mg = {v3, v5}, and the next query vertex to be matched unxt = u1.
Initially, in the FindJoinable procedure, for the next query vertex unxt, we
collect all the neighbourhood vertices that have been already matched, and store
them in Aq; formally, Aq := Mq ∩ adj(unxt) and also collect the corresponding
matched data vertices Ag (Line 1-2). For instance, for the next query vertex u1,
Aq = {u2, u3} and correspondingly, Ag = {v3, v5}.



Now we exploit the neighbourhood index N in order to find the valid matches
for the next query vertex unxt. With the help of vertex N , we find the possible
candidate vertices M temp

C for each of the matched query neighbours Aiq and the

corresponding matched data neighbour Aig.

To perform querying on the index structure N , we fetch the multiedge that
connects the next matchable query vertex unxt and the ith previously matched
query vertex Aiq. We now take the multiedge (Aiq, unxt) and query the index

structure N of the correspondingly matched data vertex Aig (Line 4). For in-

stance, with Aiq = u2, and unxt = u1 we have a multiedge {E1, E2}. As we can
recall, each data vertex vj has its neighbourhood index structure N (vj), repre-
sented by an OTIL structure. The elements that are added to OTIL are nothing
but the multiedges that are incident on the vertex vj , and hence the nodes in the
tree are nothing but the edge dimensions. Further, each of these edge dimensions
(nodes) maintain a list of neighbourhood (adjacent) data vertices of vj that con-
tain the particular edge dimension as depicted in Figure 2(b). Now, when we look
up for the multiedge (Aiq, unxt), which is nothing but a set of edge dimensions, in

the OTIL structure N (Aig), two possibilities exist. (1) The multiedge (Aiq, unxt)

has no matches in N (Aig) and hence, there are no matchable data vertices for the

next query vertex unxt. (2) The multiedge (Aiq, unxt) has matches in N (Aig) and

hence, NeighIndexQuery returns a set of possible candidate vertices M temp
C .

The set of vertices M temp
C , present in the OTIL structure as a linked list, are the

possible data vertices since, these are the neighbourhood vertices of the already
matched data vertex Aig, and hence the structure is maintained. For instance,
multiedge {E1, E2} has a set of matched vertices {v2, v4} as we can observe in
Figure 2(a).

Further, we check if the next possible data vertices are maintaining the struc-
tural connectivity with all the matched data neighbours Ag, that correspond to
matched query vertices Aq, and hence we collect only those possible candidate
vertices M temp

C , that are common to all the matched data neighbours with the
help of intersection operation ∩. Thus we repeat the process for all the matched
query vertices Aq and the corresponding matched data vertices Ag to ensure
structural connectivity (Line 4). For instance, with A1

q = u2 and corresponding

A1
g = v3, we have M temp

C
1 = {v2, v4}; with A2

q = u3 and corresponding A2
g = v5,

we have M temp
C

2 = {v4}, since the multiedge between (Aiq, unxt) is {E2}. Thus,
the common vertex v4 is the one that maintains the structural connectivity, and
hence belongs to the set of matchable candidate vertices M temp

C = v4.

The set of matchable candidates M temp
C are the valid candidates for unxt both

in terms of edge dimension matching and the structural connectivity with the
already matched partial solution. However, at this point, we propose a strategy
that predicts whether the further growth of the partial matching is possible,
w.r.t. to the neighbourhood of already matched data vertices, thereby pruning
the search space. We can do this by checking the condition whether the vertex
signature σ(unxt) is contained in the vertex signature of v ∈M temp

C (Line 11-13).
This is possible since, the vertex signature σ contains the multiedge information



about the unmatched query vertices that are in the neighbourhood of already
matched data vertices. For instance, v4 can be qualified as MC since σ(v4) ⊇
σ(u1). That is, considering the fact that we have found a match for u1, which
is v4, and that the next possible query vertex is u4, the superset containment
check will assure us the connectivity (in terms of edge dimensions) with the next
possible query vertex u4. Suppose a possible candidate data vertex fails this
superset containment test, it means that, the data vertex will be discarded by
FindJoinable procedure in the next iteration, and we are avoiding this useless
step in advance, thereby making the search more time efficient.

In order to efficiently address the superset containment problem between the
vertex signatures σ(vc) and σ(unxt), we model this task as a maximum matching
problem on a bipartite graph [8]. Basically, we build a bipartite graph whose
nodes are the sub-signatures of σ(vc) and σ(unxt); and an edge exists between
a pair of nodes only if the corresponding sub-signatures do not belong to the
same signature, and the ith sub-signature of vc is a superset of jth sub-signature
of unxt. This construction ensures to obtain at the end a bipartite graph. Once
the bipartite graph is built we run a maximum matching algorithm to find a
maximum match between the two signatures. If the size of the maximum match
found is equal to the size of σ(unxt), the superset operation returns true otherwise
σ(unxt) is not contained in the signature σ(vc). To solve the maximum matching
problem on the bipartite graph, we employ the Hopcroft-Karp [8] algorithm.

6 Experimental Evaluation

In this section, we evaluate the performance of SuMGra on real multigraphs.
We evaluate the performance of SuMGra by comparing it with two base-

line approaches (its own variants) and a competitor RI [3]. The two baseline
approaches are: (i) SuMGra-No-SC that does not consider the vertex signa-
ture index S and it initializes the candidate set of the initial vertex C(uinit)
with the whole set of data nodes; (ii) SuMGra-Rand-Order that consider all
the indexing structure but it employs a random ordering of the query vertices
preserving connectivity. The RI approach is able to manage graphs with multi-
edges, and we obtain the implementation from the original authors. For the
purpose of evaluation. we consider three real world multigraphs: DBLP data set
built by following the procedure adopted in [1]; FLICKR 1 crawled from Flickr,
which is an image and video hosting website, web services suite, and an online
community; DBPEDIA 2 that is the well-known knowledge base built by the
Semantic Web Community. For DBLP, vertices correspond to different authors
and each dimensions represent one of the top 50 Computer Science conferences.
Two authors are connected over a dimension if they co-authored at least one
paper together in that conference. In FLICKR, users are represented by nodes,
and blogger’s friends are represented using edges. Multiple edges exist between
two users if they have common multiple memberships. The RDF format in which

1 http://socialcomputing.asu.edu/pages/datasets
2 http://dbpedia.org/



DBPEDIA is stored can naturally be modeled as a multigraph where vertices
are subjects and objects of the RDF triplets and edges represent the predicates
between them. Benchmark characteristics are reported in Table 2.

To test the behavior of the different approaches, we generate random queries [7,
13] varying their size (in terms of vertices) from 3 to 11 in steps of 2. All the
generated queries contain one (or more) edge with at least two dimensions. In
order to generate queries that can have at least one embedding, we sample them
from the corresponding multigraph. For each dataset and query size we obtain
1 000 samples. Following the methodology previously proposed [6, 11], we report
the average time values considering the first 1 000 embeddings for each query. It
should be noted that the queries returning no answers were not counted in the
statistics (the same statistical strategy has been used by [7, 11]).

All the experiments were run on a server, with 64-bit Intel 6 processors @
2.60GHz, and 250GB RAM, running on a Linux OS - Ubuntu. Our methods
have been implemented using C++.

Dataset Nodes Edges Dim Density

DBLP 83 901 141 471 50 4.0e-5
FLICKR 80 513 5 899 882 195 1.8e-3
DBPEDIA 4 495 642 14 721 395 676 1.4e-6

Table 2. Benchmark statistics.

Dataset S N
DBLP 1.15 0.37

FLICKR 1.55 8.89
DBPEDIA 64.51 66.59

Table 3. Index Construction
Time (secs.).

6.1 Performance of SuMGra

Table 3 reports the index construction time of SuMGra for each of the employed
dataset. As we can observe for the bigger datasets like FLICKR, and DBPEDIA,
construction of the index N takes more time when compared to the construction
of S. This happens due to either huge number of edges, or nodes or both in these
two datasets. For DBLP we can observe the opposite phenomenon. This can be
explained by the small number of edges and dimensions present in this dataset.
Among all the datasets, DBPEDIA is the most expensive dataset in terms of
indices construction but it always remains reasonable as time consumption for
the off-line step is around one minute for each index.

Query Processing Time Figures 3, 4 and 5 summarize time results. All the
times we report are in milliseconds; the Y-axis (logarithmic in scale) represents
the query matching time; the X-axis represents the increasing query sizes.

We also analyse the time performance of SuMGra by varying the number
of edge dimensions in the subgraph. In particular, we perform experiments for
query multigraphs with two different edge dimensions: d = 2 and d = 4. That
is, a query with d = 2 has at least one edge that exists in at least 2 dimensions.
The same analogy applies to the queries with d = 4.

For DBLP dataset, we observe in Figure 3 that SuMGra performs the
best in all the situations, and in fact it outperforms the other approaches by
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Fig. 3. Query Time on DBLP dataset for (a) with d = 2 (b) with d = 4
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Fig. 4. Query Time on FLICKR dataset for (a) with d = 2 (b) with d = 4

10
2

10
3

10
4

 3  4  5  6  7  8  9  10  11

A
v
g
. 
e
la

p
s
e
d
 t
im

e
 (

m
s
e
c
.)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(a)

10
2

10
3

10
4

10
5

 3  4  5  6  7  8  9  10  11

A
v
g
. 
e
la

p
s
e
d
 t
im

e
 (

m
s
e
c
.)

Query Size (# of vertices)

RI
SumGra-No-SC

SumGra-Rand-Order
SumGra

(b)

Fig. 5. Query Time on DBPEDIA dataset (a) for d = 2 (b) d = 4

a huge margin. This happens thanks to both: a rigorous pruning of candidate
vertices for initial query vertex as underlined by the gain w.r.t. SuMGra-No-SC
and an efficient query vertex ordering strategy as highlighted by the difference
w.r.t. SuMGra-Rand-Order. For the FLICKR dataset (Figure 4) SuMGra,
SuMGra-No-SC and SuMGra-Rand-Order outperform RI. For many query



instances, especially for FLICKR, SuMGra-No-SC obtains better performance
than RI while SuMGra still outperforms competitors. We can observe that
random query ordering drastically affects the performance pointing out the im-
portance of this step. Moving to DBPEDIA dataset in Figure 5, we observe a
significant deviation between RI and SuMGra, with SuMGra winning by a
huge margin.

To conclude, we note that SuMGra outperforms the considered competitors,
for all the employed benchmarks for all query size. Its performance is reported
as best for multigraphs having many edge dimensions - FLICKR and high spar-
sity - DBPEDIA. Thus, we highlight that SuMGra is robust in terms of time
performance varying both the query size and dimensions.

Assessing the Set of Synopses Features In this experiment we assess the
quality of the features composing the synopses representation for our indexing
schema. To this end, we vary the features we consider to build the synopsis
representation to understand if some of them can be redundant and/or do not
improve the final performance. Since visualizing the combination of the whole
set of features will be hard, we limit this experiment to a subset of combinations.
Hence, we choose to vary the size of the feature set from one to six, by considering
the order defined in Section 4.1. Using all the six features results in the proposed
approach SuMGra.
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Fig. 6. Query time with varying syn-
opses fields for DBLP with d = 4

We perform experiments with different con-
figurations that have varying number of syn-
opses features; for instance |f |= 3| means that
it considers only first three features to build
synopses. Although we report plots only for
DBLP for queries with d = 4, the behaviour
for different datasets has similar behaviour.
Results are reported in Figure 6. We note that,
considering the entire set of features drasti-
cally improves the time performance, when
compared to a subset of these six features. We
conclude that the different features are not re-
dundant and they are all helpful in pruning
the useless data vertices.

7 Conclusion

We proposed an efficient strategy to support Subgraph Matching in a Multi-
graph via efficient indexing. The proposed indexing schema leverages the rich
structure available in the multigraph. The different indexes are exploited by a
subgraph search procedure that works on multigraphs. The experimental section
highlights the efficiency, versatility and scalability of our approach over different
real datasets. The comparison with a state of the art approach points out the
necessity to develop specific techniques to manage multigraphs.



As a future work, we are interesting in testing new synopses features as
well as try novel vertex ordering strategies more rigorously. Further, we will be
addressing dynamic multigraphs where nodes and multiedges are being added
or removed over time.
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