
Inferring gene duplications, transfers and losses can be

done in a discrete framework

Vincent Ranwez, Celine Scornavacca, Jean-Philippe Doyon, Vincent Berry

To cite this version:

Vincent Ranwez, Celine Scornavacca, Jean-Philippe Doyon, Vincent Berry. Inferring gene
duplications, transfers and losses can be done in a discrete framework. Journal of Mathematical
Biology, Springer Verlag (Germany), 2016, 72 (7), pp.1811-1844. <10.1007/s00285-015-0930-
z>. <hal-01370854>

HAL Id: hal-01370854

https://hal.archives-ouvertes.fr/hal-01370854

Submitted on 23 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01370854

Noname manuscript No.
(will be inserted by the editor)

Inferring gene duplications, transfers and losses can be done in a discrete
framework

Vincent Ranwez1,4, Celine Scornavacca2,4, Jean-Philippe
Doyon2,3 and Vincent Berry3,4

the date of receipt and acceptance should be inserted later

Abstract In the field of phylogenetics, the evolutionary history of a set of organisms is commonly
depicted by a species tree – whose internal nodes represent speciation events – while the evolutionary
history of a gene family is depicted by a gene tree – whose internal nodes can also represent macro-
evolutionary events such as gene duplications and transfers.

As speciation events are only part of the events shaping a gene history, the topology of a gene tree
can show incongruences with that of the corresponding species tree. These incongruences can be used
to infer the macro-evolutionary events undergone by the gene family. This is done by embedding the
gene tree inside the species tree and hence providing a reconciliation of those trees. In the past decade,
several parsimony-based methods have been developed to infer such reconciliations, accounting for gene
duplications (D), transfers (T) and losses (L).

The main contribution of this paper is to formally prove an important assumption implicitly made
by previous works on these reconciliations, namely that solving the (maximum) parsimony DTL recon-
ciliation problem in the discrete framework is equivalent to finding a most parsimonious DTL scenario in
the continuous framework. In the process, we also prove several intermediate results that are useful on
their own and constitute a theoretical toolbox that will likely facilitate future theoretical contributions
in the field.

Keywords tree reconciliation; tree embedding; gene evolution; phylogenetics; parsimony; equivalence.

1 Introduction

The evolutionary history of organisms is commonly depicted by a species tree, whose internal nodes
represent speciation events [9,36]. A gene tree depicts the evolutionary history of a gene family, i.e., a
set of homologous sequences appearing in the genome of different organisms [16]. The history of a gene
family is shaped by events affecting simultaneously all genes, such as speciations and whole genome
duplications [41,32], but also by locus specific events such as gene duplications, losses and transfers. The
presence of numerous gene transfers between organisms has been shown in prokaryotes and at the origins
of life [25,18,38,45,42], while the presence of rampant duplications is recognized as a driving force of
evolution in eukaryotes [29,31,15]. Finally, gene losses are known to be frequent in both eukaryote and
prokaryote genomes [27,40,11,26].

As speciation events are only part of the events intervening in a gene history, a gene tree can be
truly incongruent with the species tree. Congruences and incongruences of these trees can be represented
by embedding the gene tree inside the species tree, the branches of the latter being displayed as tubes
within which evolve parts of the former [30]. In the past decade, several methods have been developed
to infer such embeddings [25,2,43,37,1,38,44,45,42] according to various assumptions and paradigms.
These reconciliation methods explain the incongruences between gene and species trees by gene evolution

1SupAgro, UMR-AGAP, 2 place Pierre Viala 34060 Montpellier, France E-mail: vincent.ranwez@supagro.fr ·
2ISEM, UMR 5554 (Univ. Montpellier, CNRS, IRD, EPHE) Place Eugene Bataillon Montpellier, France E-
mail: [jean-philippe.doyon,celine.scornavacca]@univ-montp2.fr · 3LIRMM, CNRS - Univ. Montpellier, France. E-mail:
vberry@lirmm.fr · 4Institut de Biologie Computationnelle, Montpellier, France

events as those listed above. Reconciliation methods find applications in various areas such as functional
annotation in genomics [17], studies on habitat areas in biogeography and coevolutionary studies in
ecology [8]. Authors from the latter field have contributed several algorithms for reconciling host and
parasite evolutionary trees, that directly apply to reconcile gene and species trees (e.g., [7,34]). We refer
the reader to [12] for a review of reconciliation models and methods.

Originating from the seminal paper of Goodman [19], parsimony is the most used paradigm for
reconciling trees [33,50,7,34,20,48,13,10,3]. The principle is first to associate a cost to each kind of
event (duplication, loss, ...); then the costs of the individual events taking place in a tree reconciliation
scenario are added up to give the cost of this scenario. Given a gene and a species tree, the goal is then
to find a most parsimonious scenario, that is one of lowest cost. When duplications and losses are the
only considered events, the parsimony reconciliation problem can be solved in linear time [51] and it
remains tractable when the species tree [50] or the gene tree [28] is non-binary. When transfers are added
to the model, then we face an NP-complete problem, even for reconciling two binary trees [48]. The crux
of the difficulty is to ensure time consistency, i.e., that transfers do happen between co-existing species
(each transfer imposes time constraints on nodes of the species tree belonging to different subtrees, and
satisfying all those constraints simultaneously is challenging due to their non independence, see [24,48]).
Several approaches have been proposed to overcome this difficulty. First, some authors proposed the
idea to fix in advance (by external means) the pairs of branches in the species tree S between which
transfers are allowed (a representation called species graph in [21] and lateral transfer scheme in [24]).
A partial ordering of these pairs of branches allows to check whether a reconciliation allowing transfers
only between these pairs of branches is consistent, and even to compute a parsimonious consistent
reconciliation, in polynomial time [22,23]. However, in the absence of a priori information on possible
transfers, the general problem of computing a species graph inducing a most parsimonious reconciliation
is NP-complete [21], an exact exponential algorithm being proposed in [5]. Alternatively, transfers can
also be handled by providing a dated tree S rather than a potential set of possible transfers. Indeed,
when adding date information to the nodes of the species tree, the problem can again be solved in
polynomial time, despite transfers [33,7,34,20,49,13]. Such dates can be obtained by relaxed molecular
clock techniques working from molecular sequences [14,39]. Note that relative dates are sufficient for
reconciliation, and that inferred dates can also be used to define a species graph.

The parsimony algorithms cited above do not all rely on explicit models of evolution. Some only
specify that they assign costs to each kind of considered event [4,10], others only indicate that they
consider a mapping from nodes of the gene tree to nodes/edges of the species tree (e.g.,[35,50]). Yet,
not any mapping represents a biologically meaningful scenario. For instance, a mapping where a gene
tree node u is mapped on a species branch pre-dating the branch on which a child of u is mapped is
not biologically meaningful. Some of those algorithms rely on models allowing for such time inconsistent
scenarios to happen [7,34,48]. Another weakness of these (implicit) proposed models is that they (tacitly)
assume the most straightforward scenario between the mapping of a gene tree node and the mapping
of its children and hence, de facto, exclude scenarios that are biologically meaningful but difficult to
reconstruct [5,13,34,10,3]. In the current paper, we consider the case where a binary gene tree and a
binary dated species tree are provided as input together with event costs, and we formalize an explicit
model of gene evolution including speciations (S) duplications (D), transfers (T) and losses (L), that
only allows for biologically realistic scenarios (as far as S, D,T, and L are the only considered events).
This declarative model hence allows to discriminate between valid and invalid reconciliations, that is to
answer the question of whether a given candidate history is a correct reconciliation or not – regardless
of the algorithm used to produce this reconciliation. Up to now, valid scenarios were implicitly defined
as those explored by a given algorithm This is the first time, to our knowledge, that a reconciliation
model with these desirable properties is proposed. This formalization should help to compare proposed
methods and ease the dialogue between computer scientists and biologists.

The models on which rely the parsimony algorithms cited above are purely combinatorial models,
explaining how the visible part of a gene family history (the extant genes) evolved according to a discrete
framework. In contrast, the real history of the gene family involves hidden genes (that were subsequently
lost) and evolutionary events that have happened at a precise time, i.e., in a continuous framework. The
main contribution of the current paper is to show that solving the (maximum) parsimony reconciliation
problem in the discrete framework – the reconciliation model – for a gene tree depicting only the history
of the extant genes, is equivalent to finding a most parsimonious scenario in the continuous framework
– the dated scenario model – for the full gene tree (which includes extant as well as the lost genes, and

2

their ancestors). Though this result is implicit in many works cited above, it has never been proved
explicitly. Thus, this paper demonstrates the soundness of an important assumption made by previous
works in the field. The proof is somewhat intricate and includes an intermediate framework (called sliced
scenario model) where time is discretized in time slices and the full gene tree is considered.

In the process we show that any time-consistent reconciliation can be represented, with no information
loss, by mapping gene nodes on the initial species tree (instead, for example, of mapping them on the
species tree refinement used to ensure time-consistency [13], or having a supplementary mapping to
distinguish between duplication, speciation and transfer events [48]). This provides a more compact
way for encoding reconciliations and permits to define equivalence classes for reconciliations. As the
class characterization of any reconciliation can easily be obtained, it becomes easier to check if two
reconciliations are based on the same set of evolutionary events, up to minor date variations of their
predicted events that can not be distinguished in the parsimony setting. More generally, this may serve
as a groundwork for future definitions of distances between reconciliations as this ensures that it suffices
to compare their class representatives, i.e. their canonical elements.

After introducing some basic notations and the three reconciliation models mentioned above (namely:
dated scenario, sliced scenario and reconciliation), we prove successively the equivalence of the dated
scenario and sliced scenario problems, of the reconciliation and sliced scenario problems. This leads to
the equivalence of the dated scenario and reconciliation problems. We conclude by discussing the impact
of these results as well as perspectives.

2 Preliminaries

In this paper we focus on leaf labeled rooted trees with nodes with at most two children and rooted by
an artificial branch on their top. Given a rooted tree T with labels on its leaves, we denote its root by
r(T) and the set of its nodes, edges, leaf nodes and leaf labels respectively by V (T), E(T), L(T) and
L (T). Each leaf u is associated to a species, denoted s(u). An internal node u of T has one child (ul) or
two interchangeable children (ul, ur).

For a node u of T , we denote up its parent node, (up, u) its parent edge, and Tu and T(up,u) respectively
the subtree of T rooted at node u, and on edge (up, u). The topology of T induces a partial order on its
nodes. Given two nodes u and v of T , u is said to be a descendant of v (denoted as u ≤T v) if, and only
if, u ∈ V (Tv). By extension, u is said to be a strict descendant of v if, and only if, u ≤T v and u 6=T v.
An internal node u of T is said to be artificial if it has only one child (ul). Contracting an artificial
node u consists in merging the two adjacent edges of u in a single one by adding the edge (up, ul) then
removing (up, u), (u, ul) and u.

Given a tree T , the height of a node u, denoted by h(u), is the maximum number of edges along the
path between u and any leaf v ∈ L(Tu). The height of tree T , denoted h(T), refers to the height of its root.
The subset of nodes of T located at height k ∈ {0, 1, . . . , h(T)} is denoted Vk(T) = {u ∈ V (T) : h(u) = k}.
Since leaves of T are the only nodes located at height 0, we have that L(T) = V0(T).

Definition 1 (time function, dated tree) A time function for a tree T , denoted by θT : V (T)→ R+,
associates a non-negative time to each node so that ∀x, x′ ∈ V (T), x′ <T x⇒ θT (x′) < θT (x).

Definition 2 (contemporary time function) A contemporary time function for a tree T , is a time
function associating 0 to each leaf of T .

Definition 3 (binary tree, dated tree, gene tree, species tree)

– A binary tree is a tree where all internal nodes but the root have outdegree two. The root T can have
outdegree one.

– A dated tree is a tree T associated with a time function θT .
– A species tree S is a rooted binary tree such that each element of L (S) represents an extant species

labeling exactly one leaf of S. A dated species tree (S, θS) is a species tree S associated with a
contemporary time function θS .

– A gene tree G is a rooted binary tree whose leaves are labeled. Each leaf corresponds to a contemporary
gene or to a gene that was lost. Each internal node of G represents an ancestral descendant of the
ancestral gene r(G), and we adopt the convention that the term gene refers to a node of G.

3

Definition 4 (time interval IθT (.)) Given a dated tree (T, θT), we will denote by IθT (x) the time
interval]θx, θxp

[associated to a branch (xp, x) of T .

From now on, we consider a species tree S and a gene tree G such that L (G) ⊆ L (S); furthermore
to help distinguish between G and S, the terms node and edge refer to G whereas their synonyms vertex
and branch refer to S.

3 A general model of evolutionary scenario: the dated scenarios

When we consider a gene tree G depicting the history of some genes observed in contemporary genomes,
we miss part of the history of the ancestral genes: that of the ancestral genes belonging to subtrees whose
leaves all went extinct. For instance in Figure 1 (Right), the leaves hanging from the path between r(Go)
and u and from the path between w and d1 left no trace in the contemporary genomes since all these
genes were lost.

Definition 5 ((non) contemporary leaves) Given a gene tree Go, the set L(Go) is partitioned in
two sets: the set of contemporary leaves LC(Go), and the set of non contemporary leaves LL(Go). The
latter correspond to loss events.

Definition 6 (Full gene tree, traceable gene tree) Given two gene trees G and Go, Go is said to
be a full gene tree for G – and conversely G is said to be the traceable gene tree of Go – if, and only if:

1. LL(G) = ∅;
2. there exists an isomorphism preserving labels between G and the tree obtained from Go by deleting

all the leaves that are not in LC(Go) and contracting all artificial nodes created by the deletion.

Hence, the history of a full gene encompasses the history of its traceable gene tree. For the rest of this
article, a gene tree means a traceable gene tree.

w u

r(G)

b1d1 c1a1 b1d1 c1a1

r(G◦)

w u

Fig. 1: (Left) A traceable gene tree G with four leaves a1, b1, c1, and d1 (say respectively belonging to
contemporary species A, B, C, and D). (Right) A full gene tree Go for G, where LC(Go) = {a1, b1, c1, d1},
and LL(Go) consists of the three leaves labelled by the + symbol.

Before detailing the general model, we precise some underlying assumptions on the evolution of species
and genes. First, we assume that the evolution of the contemporary species is exactly depicted by the
phylogeny S and ignore speciations where one or both lineages went extinct or are not depicted in S. Yet,
as considered by Szöllősi et al [46,45], it is possible that other species interact with the ones depicted
in S via, for example, transfer events. This consideration can be incorporated in the model presented
here without invalidating the results described hereafter. However, to keep the description as simple as
possible, results given in this paper do not take this fact into account. Second, we focus on duplication,
transfer, loss, and speciation events, respectively denoted D, T, L, and S, to document the gene history.
Third, we assume that D,T, and L events happen strictly within a lineage, i.e., between speciations, or
between a speciation node and a leaf node.

Reconciliation models seek to describe the evolutionary scenario that lead to the observed gene tree
G knowing the corresponding species tree. The outcome of such a model is an embedding of G into S

4

together with evolutionary events depicting the evolution of the ancestral gene r(G) and its descendants
as they reside in the genomes of the species in S. This result yields a full gene tree Go (depending on
the software this tree is given explicitly (e.g. [13]) or implied from the embedding of G in S and the
outputted set of events (e.g. [48]).

Remark 1 To be biologically meaningful, the evolution of a full gene tree Go along a species tree S has
to respect the following constraints:

1. Each contemporary gene is a leaf of Go and is associated to the corresponding species of S in which
this gene is collected. Such an association is denoted C. Each speciation event in Go (denoted S)
happens at an internal node of S.

2. The evolution of Go along S goes forward in time from the common ancestral gene toward the
contemporary species, i.e. an ancestral gene always existed before its descendants.

3. Each S,D, and T event gives birth to exactly two genes.
4. L events are taken into account explicitly.
5. Each T event is locally consistent, i.e. it happens between two co-existing species.

To get closer to models and algorithms of the reconciliation literature, the constraints of Remark 1
are formalized below in a more operational definition.

Definition 7 (full dated scenario) Consider a dated binary species tree (S, θS), and a full binary
gene tree Go. Let M be a function that maps each node u◦ of Go to a pair (vertex x of S, time t) and
let us denote by Mv and Mt the associated functions returning only the vertex, respectively the time,
of the M mapping, i.e. if M(u◦) = (x, t), Mv(u

◦) = x and Mt(u
◦) = t. The mapping M is a full dated

scenario for the triple (Go, S, θS) if, and only if, for each node u◦ of Go exactly one of the following,
mutually exclusive, cases occurs (where (x, t) := M(u◦)):

1. u◦ ∈ LC(Go), x ∈ L(S), s(x) = s(u◦), and Mt(u
◦) = 0. (Co event)

2. u◦ ∈ LL(Go) and Mt(u
◦) ∈ IθS (x). (Lo event)

3. {Mv(u
◦
l),Mv(u

◦
r)} = {xl, xr} and Mt(u

◦) = θS(x). (So event)
4. Mv(u

◦
l) = Mv(u

◦
r) = x;

Mt(u
◦) ∈ IθS (x) and Mt(u

◦) > max(Mt(u
◦
l),Mt(u

◦
r)). (Do event)

5. Mv(u
◦
l) = x, Mv(u

◦
r) = y, x 6= y,

Mt(u
◦) ∈ IθS (x) ∩ IθS (y) and Mt(u

◦) > max(Mt(u
◦
l),Mt(u

◦
r)). (To event)

See Figure 2 for an illustration. Each of the above cases is labeled by the symbol corresponding to
the associated evolutionary event and results from the mapping of a gene node u◦– and sometimes of its
children – into the species tree. For the sake of simplicity, we will say, for instance, that M(u◦) is a Do
event when in fact we mean that the mappings of u◦ and its children verify the constraints of the line
labeled Do. Note that in the To event case, the transferred gene is chosen, without loss of generality, to
be the child u◦r of u◦.

Claim Any full dated scenario M for (Go, S, θS) respects the five constraints of Remark 1.

The proof of the claim is deferred in the appendix.
The constraints on To events in Definition 7 increase the complexity of the problem [24,48], and it is

not a surprise that several algorithms and software not ensuring the time consistency of transfers have
been proposed [7,24].

Note that because D,T,L, and S events are associated to times in R, there is an infinite number of
full dated scenarios between a dated binary species tree S and a full binary gene tree Go. Moreover, the
full dated scenario is defined via Go and not G, and given a traceable gene tree there is an infinity of
full gene trees for it (having e.g. lost subtrees of arbitrary size). Relying on Go rather than G we hence
assume that the position of loss events is known, which – except for simulated data sets – is not the
case before having reconciled G and S. Finally, following [19], the full dated scenario can start at any
location in S, since the root of Go can be mapped on any vertex of S and not only on its root vertex.
The following definitions formalize these points.

Definition 8 (dated scenario) A dated scenario for the triplet (G,S, θS), is a pair (Go,M) where Go

is a full gene tree for G and M is a full dated scenario for (Go, S, θS).

5

BA

z

DC

y

x

0

1

2

3

b◦1

r(G◦)

u◦

d◦1a◦1

w◦

a◦2 c◦2 c◦1

v◦ t◦
k◦

j◦

l◦
m◦

(a) A dated species tree (S, θS)
(above) and a full gene tree Go (be-
low)

b◦1 d◦1c◦1a◦1

w◦

u◦

BA DC

z

x

y

0

1

2

3

0.5

1.5

v◦ t◦

c◦2a◦2
(b) A scenario M for Go and (S, θS)

Fig. 2: A scenario M for (Go, S, θS), where the fives events of Definition 7 are represented as follows: a
Co event (◦), an Lo event (+), an So event (•) a Do event (�), and a To event (N). The node a◦1 is a Co
event at vertex M(a◦1) = A and time θGo(a◦1) = 0, the node v◦ is an Lo event at vertex M(v◦) = B, the
node w◦ is an So event at vertex M(w◦) = y and time θGo(w◦) = 2, the node u◦ is a Do event along the
branch ending at vertex M(u◦) = A, and the node t◦ is a To event at time θGo(t◦) = 0.5 from the branch
above the vertex M(t◦) = C toward the branch above the vertex M(b◦1) = B. Note that speciations in
part (b) of the figure are represented by grey boxes to show in detail what happens at those places, but
the model assigns a precise time to each of them (namely, 3, 2 and 1 respectively, for nodes z, y and x).

1

Definition 9 (cost of a dated scenario) The cost of a dated scenario (Go,M) for (G,S, θS) is denoted
C(Go,M) = dδ+tτ+ lλ, where δ, τ , and λ respectively denote the positive cost of Do, To, and Lo events,
and d, t, and l denote the respective numbers of these events in (Go,M).

Definition 10 (optimal dated scenario cost) The optimal dated scenario cost for (G,S, θS) is
Copt(G,S, θS) = min{C(Go,M) : (Go,M) is a dated scenario for (G,S, θS)}.

Note that the above definition implicitly assumes that speciation events have null cost as is often done
in the literature. The central optimization problem considered in this paper is called Most Parsimonious
Scenario (MPS for short) defined below.

Problem 1 MPS problem.
INPUT: a dated species tree (S, θS), a binary traceable gene tree G and strictly positive costs for Do,
To, and Lo events, denoted δ, τ , and λ, respectively.
OUTPUT: a dated scenario (Go,M) of optimal cost for (G,S, θS).

A dated scenario that is a solution for the MPS problem is said to be Most Parsimonious (MP for
short) for (G,S, θS).

3.1 Basic Dated Scenarios

As detailed above, a full dated scenario relies on a full gene tree Go including the contemporary genes
of G as well as additional lost genes. Among all the possible full gene trees for a traceable gene tree G,
some cannot be involved in an MP solution as they contain multiple losses that can be summarized by
a single one. The following definitions allow to characterized the subset of Go trees, hence the subset of
dated scenarios, that it suffices to consider for solving MPS.

Definition 11 (dead, lost and traceable genes) Consider a full gene tree Go, any node u◦ of Go is
in exactly one of the three following cases:

6

G◦

u

u◦
p

up

ul

ur

u◦
ru◦

l

Fig. 3: Illustration of the notations given in Definition 11. Dead genes, ghosts genes, and traceables genes
are represented by a cross †, a white circle ◦, and a black circle •, respectively.

1. u◦ is a dead gene if, and only if, neither itself nor one of its descendants is contemporary.
2. u◦ is a ghost gene if, and only if, it has two children and exactly one of them is dead.
3. u◦ is a traceable gene if, and only if, u◦ is neither a dead gene nor a ghost one (i.e. (a) it is contemporary

or (b) none of its children is dead).

See Figure 3 for an example.

Definition 12 (dead subtree) A node u◦ of Go is said to be a dead subtree if, and only if, u◦ is a dead
gene and u◦ is not a leaf.

When searching for an MP dated scenario, any dated scenario (Go,M) where Go contains dead
subtrees can be ignored, as well as scenarios with ghost genes at certain positions. The subset of dated
scenarios to consider for solving the MPS problem, are called basic and are defined as follows:

Definition 13 (Basic dated scenario) A dated scenario (Go,M) for (G,S, θS) is said to be basic if,
and only if, it respects the following constraints: (a) the root r(Go) is a traceable gene. (b) each dead
gene of Go is a leaf. (c) each ghost gene u◦ is either an So event or a To event that transfers the non
dead child of u◦ (i.e., a To event where u◦r is the non-dead child of u◦).

Property 1 Given (G,S, θS) and strictly positive costs δ, τ , and λ, any most parsimonious dated scenario
(Go,M) for (G,S, θS) is basic.

The proof of the property can be found in the appendix.

3.2 Equivalent dated scenario

Given a dated scenario (Go,M) for (G,S, θS), an infinite number of alternate scenarios can be derived
from it by infinitesimal changes in the time of events (that is by changes in Mt). Slight date alterations
lead to scenarios that correspond to identical evolutionary histories, except for the precise timing of the
events in the species tree branches. Informally, we consider that two dated scenarios for (G,S, θS) are
equivalent if they are based on the same full gene tree (up to isomorphism) and map each of its nodes
on the same vertex of S. Note that, as we shall see, this vertex mapping constraint is sufficient to also
ensure that each vertex of the full gene tree is associated to the same event type among the equivalent
dated scenarios.

Definition 14 (equivalent (full) dated scenarios)

– Two full dated scenarios M and N for (Go, S, θS) are said to be equivalent if and only if ∀u◦ ∈
Go,Mv(u

◦) = Nv(u
◦).

7

– Two dated scenario (Go,M) and (H◦, N) for (G,S, θS) are said to be equivalent if, and only if Go is
identical to H◦ (up to isomorphism) and the full dated scenarios M and N are equivalent.

The time constraints of a full dated scenario definition (Definition 7) ensure the accordance of the
vertex mapping and the time mapping of the scenario. When M and N are two full dated scenarios,
these constraints can be safely ignored when determining their equivalence.

Property 2 When two full dated scenarios M and N are equivalent, they associate the same event type
to each node u◦ of Go.

Proof. The proof directly follows from the definition of each event of a full dated scenario (Definition 7).
Indeed, for each node u◦ of Go, its event type is unambiguously determined as follows by knowing Go, S
and their vertex mapping, which are, by the definition, identical among equivalent full dated scenarios:

1. u◦ ∈ LC(Go) (Co)
2. u◦ ∈ LL(Go) (Lo)
3. {Mv(u

◦
l),Mv(u

◦
r)} = {xl, xr} (So event)

4. Mv(u
◦
l) = Mv(u

◦
r) = x; (Do event)

5. Mv(u
◦
l) = x, Mv(u

◦
r) = y, x 6= y; (To event)

Property 3 Two full dated scenarios that are equivalent have the same cost.

Proof. This directly follows from Property 2, which ensures that full dated scenarios that are equivalent
have the same number of each kind of event.

4 An intermediate model: sliced scenarios

As seen in the previous section, the time mapping of a full dated scenario M for (Go, S, θS) allows to
ensure the global time consistency of the proposed evolutionary history. However, as already pointed
out, slight modifications of the proposed time mapping can lead to equivalent dated scenarios. This
pinpoints the fact that the exact time position of an event is not so important, as long as it remains in
a time interval ensuring time consistency. The latter point is further emphasized when noting that the
constraints on Do and To event in Definition 7 are based on the fact that the event time is included in a
specific time interval. In this section, we hence introduce an intermediate model that maps each node of
Go on a chunk of a branch rather than at a precise time of this branch. Indeed, the time consistency of
transfers, as defined in Remark 1, can be ensured by imposing that the donor and receiver of a transfer
are within the same time slice (see [13,7,47] and next section). As it will be proved in this paper, this
intermediate model allows to transpose our initial continuous problem in a discrete space where it is then
much easier to tackle.

Definition 15 (tree subdivision) A tree T ′ is said to be a subdivision of a tree T if the recursive
contraction of all artificial nodes of T ′ yields T (up to isomorphism).

Definition 16 (The dated subdivision of a dated species tree) Consider a dated species tree (S,
θS), its dated subdivision is a dated species tree (S′, θ′) obtained as follows: starting with a copy of (S,
θS), for each initial branch (xp, x) of S′ and for each date t ∈]θS(x), θS(xp)[, such that there is a vertex
y of S with θS(y) = t, an artificial vertex w is inserted along the branch (xp, x) of S′, with θS′(w) = t.

See Figure 4 for an example of subdivision. Note that, when computing the subdivision S′ for the
tree S, nodes are only added and never removed. So, any node x of S is present as a node x′ in S′; such
a case where x and x′ coincide is denoted hereafter by x′ ∼= x.

The dated subdivision (S′, θS′) of (S, θS), splits each branch of S into several ones; the Br(·) function
defined below, associates each branch of S′ to its corresponding branch of S. As each vertex x of a dated
tree has a single parent xp, x can unambiguously be used to identify the branch (xp, x). The branch
association defined by Br(·) is hence done based on a vertex association, as detailed in the following
definition.

8

Definition 17 (Br(·)) For a species tree S and a subdivision S′ of S, let Br : V (S′) → V (S) be a
function that maps each vertex x′ of S′ onto the unique vertex x of S such that x′1 ≤S′ x′ <S′ x′2, where
x′1 ∼= x and x′2 ∼= xp (xp being the father of x in S).

Note that x′ ∼= x happens whenever Br(x′) = x and θS′(x
′) = θS(x).

Definition 18 (Chunk) For a species tree S and a subdivision S′, a chunk of the branch (xp, x) in S
is a branch (x′p, x

′) in S′ such that Br(x′) = x, which implies that IθS′ (x
′) ⊆ IθS (x).

Definition 19 (Chunk(·, ·)) Given a species tree S, and its dated subdivision S′, let Chunk : V (S) ×
R → V (S′) be the function that, given a vertex x ∈ V (S) and a time t ∈ [θS(x), θS(xp)[, returns the
unique vertex x′ such that Br(x′) = x and t ∈ [θS′(x

′), θS′(x′p)[. If the provided time t is not coherent
with x, Chunk(x, t) is undefined.

For instance in Figure 4b, Br(y′) = x and Br(x) = x and the branch (z, x) of S is split in two chunks
(z, y′) and (y′, x) in S′.

Note that by construction, we have that, for any two vertices x′ and y′ of S′, θS′(x′) = θS′(y
′) if and

only if h(x′) = h(y′). Since h(x′) = h(y′) implies that h(x′p) = h(y′p) = h(x′) + 1, it follows that for any
two vertices x′ and y′ of S′, either IθS′ (x

′) = IθS′ (y
′), or IθS′ (x

′) ∩ IθS′ (y
′) = ∅. In the latter case, we

will denote by IθS′ (x
′) > IθS′ (y

′) the fact that any date within IθS′ (y
′) is posterior to any date within

IθS′ (x
′). Using this notation, h(x′) > h(y′)⇔ IθS′ (x

′) > IθS′ (y
′).

BA

z

DC

y

x

0

1

2

3

(a) A species tree S

BA

z

DC

y y′

x′′ x′ x
1

2

3

0

(b) The subdivision S′ of S

Fig. 4: A species tree S and its subdivision S′. The artificial nodes of S′ are represented by gray circles
and denoted y′, x′, and x′′, where θS′(x) = θS′(x

′) = θS′(x
′′) and θS′(y) = θS′(y

′).

The evolutionary history of a gene tree along the species tree S is described in this intermediate model
by a (full) sliced scenario that maps each node of the (full) gene tree to a chunk of S′, as formalized
hereafter and illustrated in Figure 5. Since a chunk (x′p, x

′) of S′ is unambiguously defined by its lowest
node x′, sliced scenario are in practice define by a node mapping.

Definition 20 (full sliced scenario) Consider a dated binary species tree (S, θS), its subdivision
(S′, θS′) and a full binary gene tree Go. Let M ′v be a function that maps each node u◦ of Go to a vertex
x′ of S′. The mapping M ′v is a full sliced scenario for (Go, S′, θ′S) if, and only if, for each node u◦ of Go

exactly one of the following mutually exclusive cases occurs (where x′ := M ′v(u
◦))) and x := Br(x′)):

1. u◦ ∈ LC(Go), x ∈ L(S), s(x) = s(u◦), and θS′(x
′) = 0. (Co event)

2. u◦ ∈ LL(Go). (Lo event)
3. {Br(M ′v(u◦l)), Br(M ′v(u◦r))} = {xl, xr} and x′ ∼= x. (So event)
4. Br(M ′v(u

◦
l)) = Br(M ′v(u

◦
r)) = x

and IθS′ (x
′) ≥ max

(
IθS′ (M

′
v(u
◦
l)), IθS′ (M

′
v(u
◦
r))

)
. (Do event)

5. Br(M ′v(u
◦
l)) = x, Br(M ′v(u

◦
r)) = y and x 6= y

and IθS′ (x
′) ⊆ IθS (y) and IθS′ (x

′) ≥ max
(
IθS′ (M

′
v(u
◦
l)), IθS′ (M

′
v(u
◦
r))

)
. (To event)

As might be expected, the definition of a sliced scenario is highly similar to that of a full dated scenario
(Definition 7). However, the sliced scenario definition benefits from a simplification because cases 2, 4, 5
no longer require to check the consistency of the time and vertex mapping. Indeed, for dated scenarios we

9

u
v

s

t

S'

A B C D E

w

x

y

z

w

r

G◦

a1 b1 c1 c2 e1

z′1 z′2

y′1 y′2 y′3

x′
1

(a) Trees Go and S′

A B C D E

u v

s

t

w

x

y

z

a1 b1 c1 c2 e1

z′1 z′2

y′1 y′2 y′3

x′
1

(b) A sliced scenario (Go,M ′)

Fig. 5: A full gene tree Go, a subdivision S′ of a dated species tree S and a full sliced scenario M ′ for
(Go, S, θS).

needed to check that Mt(u
◦) ∈ IθS (Br(x)), while for sliced scenario we have that IθS′ (x

′) ⊆ IθS (Br(x))
by construction. Note that, since events are not associated to a specific date, we can not yet ensure the
overall time consistency of such a scenario. We only have a partial chronological ordering of the events
through the time slices to which they are associated. But, as we will prove hereafter, it is always possible
to assign a specific date to each event in a way that respects the slice scenario constraints and leads to
a valid dated scenario.

Definition 21 Given (G,S, θS), a sliced scenario is a pair (Go,M ′v) where Go is a full gene tree for G
and M ′v is a full sliced scenario for (Go, S, θS).

The definition of the cost of a (full) sliced scenario is an immediate transposition of Definition 9, and
that of an optimal sliced scenario for (Go, S, θS) derives from Definition 10 provided for dated scenario.
The Most Parsimonious Sliced Scenario problem is defined as follows:

Problem 2 MPSS problem.
INPUT: a dated species tree (S, θS), a binary traceable gene tree G, and strictly positive costs δ, τ , resp.
λ for Do, To, resp. Lo events.
OUTPUT: a sliced scenario (Go,M ′v) of optimal cost for (G,S, θS).

Similarly to what was done in the full dated scenario section, we will now define basic sliced scenario
and the equivalence between basic sliced scenarios. The next sections will resort to these definitions to
prove that solving the MPSS problem allows to solve the MPS problem, thanks to a direct correspondence
between the equivalent classes of sliced scenarios and those of dated scenarios.

Definition 22 (Basic sliced scenario) A sliced scenario (Go,M ′v) for (G,S, θS) is said to be basic if,
and only if, it respects the following constraints: (a) the root r(Go) is a traceable gene; (b) each dead
gene of Go is a leaf; (c) each ghost gene u◦ is either an So event, or alternatively a To event that transfers
the non dead child of u◦.

The proof of Properties 4 and 5 below are identical to those detailed for the same properties in the
dated scenario context (Properties 1, 2 and 3); they are thus not repeated here.

Property 4 Given a gene tree G and strictly positive costs δ, τ , and λ, any most parsimonious sliced
scenario (Go,M ′v) for (G,S, θS) is such that (Go,M ′v) is a basic sliced scenario for (G,S, θS).

Definition 23 (equivalent sliced scenario) Two sliced scenario (Go1,M
′
v) and (G◦2, N

′
v) for (G,S, θS)

are said to be equivalent if, and only if, Go1 is identical to G◦2 (up to isomorphism) and ∀u◦ ∈ Go1 =
Go2, Br(M

′
v(u
◦)) = Br(N ′v(u

◦)).

10

Property 5 If two sliced scenarios (Go,M ′) and (Go, N ′) are equivalent, they associate the same event
type to each node u◦ of Go and have hence the same cost.

This property arises from the fact that each event in Definition 20 is defined on the basis of Br(·)
values and because constraints on time they impose are verified separately by both (Go,M ′) and (Go, N ′).

Definition 24 (Basic-up scenario) Given (G,S, θS), a basic sliced scenario (Go,M ′v) for (G,S, θS) is
said to be basic-up if each dead gene is placed in the highest possible time slice (i.e. at the same time
slice as its parent node for a To event and in the next time slice for an So event).

Note that each basic sliced scenario as a unique basic-up scenario equivalent to it.

5 A tractable model of evolutionary scenario : reconciliations

In this section, we recall the reconciliation (or DTL) model introduced in [13].
The atomic events of the model are: a speciation (S), a duplication (D), a transfer (T), a transfer

followed immediately by the loss of the non- transferred child (TL), a speciation followed by the loss
of one of the two resulting children (SL), and a contemporary event (C) that associates an extant gene
to its corresponding species. Finally, a null event (∅), is used to indicate that a gene lineage change of
time-slice while remaining in the same branch of the species tree. (Null events are used to indicate that
no events happened in a given chunk.) Note that duplication-loss events and transfer followed by the
loss of the transferred gene, leave no trace and are therefore undetectable and not taken into account by
this model. Such events cannot occur in parsimonious reconciliation as their removal would always lead
to an alternative valid reconciliation with lower cost.

We now give the formal definition of a reconciliation between a gene tree G and a subdivision S′ of a
dated species tree (S, θS). This definition is adapted from the definition of a reconciliation given in [13]2.

Definition 25 (Reconciliation) Consider a gene tree G, a dated species tree (S, θS) and its time
subdivision S′. Let α be a function that maps each node u of G onto an ordered sequence of vertices of
S′, denoted α(u). Let αi(u) denote the ith element of this sequence (where 1 ≤ i ≤ `:= |α(u)|). Then α
is said to be a reconciliation between G and (S, θS) if and only if exactly one of the following mutually
exclusive cases occurs for each couple of node u of G and vertex αi(u) of S′ (where αi(u) is denoted x′

below):

• x′ is the last element of α(u) and exactly one of the cases below is true:

1. u ∈ L(G), x′ ∈ L(S′) and s(x′) = s(u); (C event)
2. x′ is not artificial and {α1(ul), α1(ur)} = {x′l, x′r}; (S event)
3. α1(ul) = α1(ur) = x′; (D event)
4. α1(ul) = x′, and α1(ur) is any vertex other than x′ that is located at height h(x′); (T event)

• otherwise, exactly one of the cases below is true:
5. x′ is not artificial and αi+1(u) ∈ {x′l, x′r}; (SL event)
6. αi+1(u) is any vertex other than x′ that is located at height h(x′); (TL event)
7. x′ is an artificial vertex and αi+1(u) is its only child, and, if u = r(G), i 6= 1. (∅ event)

∅ events are events modeling the fact that a gene evolving along a branch of the species tree crosses
the boundary of a time slice.

We say that, for example, “αi(u) is a TL event” if αi(u) satisfies the condition given on the line
labelled “TL” in Definition 25. Note that Condition 5 of Definition 25 does not permit to have recon-
ciliations starting with a ∅ event. A reconciliation α between a gene tree G and a dated species tree
(S, θS) is depicted in Figure 6. Similarly to the case of sliced scenarios, a branch (vp, v) of S′ is identified
by the vertex v in a reconciliation α(.); thus, when α maps a duplication event or the origin of a transfer
to a vertex x of S′, this means that the specified event happens in the branch just above x.

Note that a reconciliation between G and a dated species tree (S, θS) allows to map r(G) on any
branch of its subdivision S′. Indeed, the gene whose evolution is depicted by G may fail to be present

2 Instead of mapping each node of G onto a sequence of vertices of S′ (as done in Definition 25), the original model
maps each edge of G onto a sequence of branches of S′. Since an edge of a rooted tree is univocally identified by its bottom
node, these two reconciliation models are equivalent.

11

b1d1 c1a1

v

w u

BA

z

DC

y y′

x′′ x′ x
1

2

3

0

G◦

S′

(a) A full gene tree Go and a
subdivided species tree S′

t1

t2

b1 d1c1
BA DC

z

y′

x′′ x′
x

y

a1

w

u

(b) A reconciliation α between G and S′

Fig. 6: A reconciliation α between a gene treeG and a dated species tree (S, θS), where S′ is its subdivision
and G is the traceable gene tree of Go and losses are indicated by crosses. The reconciliation α maps the
nodes d1 and u of G as follows: α(d1) = [x′, x,D], where α1(d1) = x′, α2(d1) = x, and α3(d1) = D are
respectively a TL, an SL, and a C event; α(u) = [y′, x, C], where α1(u) = y′, α2(u) = x, and α3(u) = C
are respectively a ∅, an SL, and a T event. Note that, although the gene lineage (u, b1) starts on branch
(x,C) after the T event of its parent u, this branch is not in the α(b1) sequence and α(b1) = [B].

in the ancestral lineage represented by r(S′). Note also that T and TL events only happen between two
branches that are in a same slice, hence only time-consistent scenarios are accounted by this tractable
model. The next property contains a list of observations that immediately follows from the constrains
imposed in Definition 25.

Property 6 Given a reconciliation α between a gene tree G and a dated species tree (S, θS):

1. for any node u of G and indices i < j ∈ {1, 2, . . . , |α(u)|}, h(αi(u)) ≥ h(αj(u)).
2. For each internal node u of G, h(α`(u)) ≥ max(h(α1(ul)), h(α1(ur))).
3. For any u ∈ V (G), αi(u) is the last element of the sequence α(u) (i.e., i = `) if and only if it is a C,

S, D or T event. Consequently, i < ` if and only if it is a ∅, an SL or a TL event.
4. For any u ∈ V (G), if αi(u) is a ∅ event then let k be the index of the following non ∅ event in α(u),

then Br(αi(u)) = Br(αi+1(u)) = . . . = Br(αk(u)). Moreover, if k < ` (i.e., αk(u) is not the last
event in the sequence), then Br(αk(u)) 6= Br(αk+1(u)).

5. For any node u, if αi(u) is a non ∅ event, then let E be the preceding non ∅ event in α(u) or be
α`(up) otherwise3, and let k = h(E)− h(αi(u)).

(a) If E is an S or an SL then there are exactly k − 1 ∅ events just preceding αi(u), that is
αi−(k−1)(u), . . . , αi−1(u) are ∅ events and either i− (k − 1) = 1 or αi−(k−2)(u) is E.

(b) when E is a D, T or TL event, there are exactly k ∅ events just preceding αi(u), that is
αi−k(u), . . . , αi−1(u) are ∅ events and either i− k = 1 or αi−(k−1)(u) is E.

Reconciliations, as sliced scenarios, mapped nodes of G on chunks of S. A chunk (x′p, x
′) can be

identified either by the vertex of x′ or by its corresponding vertex x = Br(x′) of S and its time slice
h(x′). The reconciliation definition can thus be reformulated as follows:

Definition 26 (Reconciliation via Br(·)) Consider a gene tree G, a dated species tree (S, θS) and
its time subdivision S′. Let α be a function that maps each node u of G onto an ordered sequence of
vertices of S′, denoted α(u). Let αi(u) denote the ith element of this sequence (where 1 ≤ i ≤ `:= |α(u)|).
Then α is said to be a reconciliation between G and (S, θS) if and only if exactly one of the following

3 if u is the root of G and αi(u) is the first non ∅ event of α(u) then there is no preceding element, the property does
not apply.

12

mutually exclusive cases occurs for each couple of node u of G and vertex αi(u) of S′ (with x′ := αi(u)
and x := Br(x′)):

• x′ is the last element of α(u), and exactly one of the cases below is true:

1. u ∈ L(G), x ∈ L(S), s(x) = s(u) and h(x′) = 0; (C event)
2. x′ ∼= x, {Br(α1(ul)), Br(α1(ur))} = {xl, xr}

and h(x′) = h(α1(ul)) + 1 = h(α1(ur)) + 1; (S event)
3. Br(α1(ul)) = Br(α1(ur)) = x

and h(x′) = h(α1(ul)) = h(α1(ur)); (D event)
4. Br(α1(ul)) = x, Br(α1(ur)) = y and x 6= y and h(x′) = h(α1(ul)) = h(α1(ur)); (T event)

• otherwise, exactly one of the cases below is true:
5. x′ ∼= x and Br(αi+1(u)) ∈ {xl, xr} and h(x′) = h(αi+1(u)) + 1; (SL event)
6. Br(αi+1(u)) = y and x 6= y and h(x′) = h(αi+1(u)); (TL event)
7. x′ is artificial, Br(αi+1(ur)) = Br(αi(u))

and h(αi(ur)) = h(αi+1(u)) + 1 and, if u = r(G), i 6= 1. (∅ event)

As illustrated in Figure 6 the full gene tree Go is a by-product of the reconciliation α. Starting from G
it suffices to add a dead gene and a ghost node each time a SL or a TL event is encountered in α. Apart
from the ∅ events, all elements of a reconciliation α hence map a node of Go on S′. As we will prove
hereafter, ∅ events are only here to connect the dots, that is the other reconciliation events, allowing
to solve the MPR problem in polynomial time [13], but are useless to characterize a reconciliation since
they are imposed once all other events are known. This leads us to the notion of compact reconciliation
or c-reconciliation in short:

Definition 27 (c-reconciliation) Consider a gene tree G, a dated species tree (S, θS) and its time
subdivision S′. Let ᾱ be a function that maps each node u of G onto an ordered sequence of vertices of
S′, denoted ᾱ(u). Let ᾱj(u) denote the jth element of this sequence (where 1 ≤ j ≤ η:= |ᾱ(u)|). Then ᾱ
is said to be a c-reconciliation between G and (S, θS) if and only if exactly one of the following mutually
exclusive cases occurs for each couple of node u of G and vertex ᾱj(u) of S′ (with x′ := ᾱj(u) and
x := Br(x′)):

• x′ is the last element of ᾱ(u), and exactly one of the cases below is true:

1. u ∈ L(G), x ∈ L(S), s(x) = s(u) and h(x′) = 0; (C event)
2. x′ ∼= x, {Br(ᾱ1(ul)), Br(ᾱ1(ur))} = {xl, xr} (S event)
3. Br(ᾱ1(ul)) = Br(ᾱ1(ur)) = x and h(x′) ≥ max(h(ᾱ1(ul)), h(ᾱ1(ur))). (D event)
4. Br(ᾱ1(ul))) = x, Br(ᾱ1(ur))) = y and x 6= y, IθS′ (x

′) ⊆ IθS (y)
and h(x′) ≥ max(h(ᾱ1(ul)), h(ᾱ1(ur))); (T event)

• otherwise, exactly one of the cases below is true:
5. x′ ∼= x and Br(ᾱj+1(u)) ∈ {xl, xr}; (SL event)
6. Br(ᾱj+1(u)) = y and x 6= y and IθS′ (x

′) ⊆ IθS (y), h(x′) ≥ h(ᾱj+1(u)). (TL event)

For example, for the reconciliation α depicted in Figure 6, we have that ᾱ(u) = [x,C]. Let us introduce
some few functions that will allow to prove the that there is a simple bijective transformation between
reconciliations and c-reconciliations.

Definition 28 (ArtificialPath(·, ·, ·); ArtificialPath(·, ·, ·, ·, ·)) Given the time subdivision S′ of a
dated species tree (S, θS) and a vertex v of S, ArtificialPath(S′, S, v) returns the sequence of artificial
vertices of S′ constituting the path from v′a to v′ in S′ where v′ ∼= v and v′a ∼= vp (note that in S′ v′a
is thus an ancestor of v′). Moreover, the function ArtificialPath(S′, hmax, hmin, S, v) returns the sub-
sequence of those artificial vertices having a height in S′ included in]hmin, hmax] (note that vertices are
still returned by decreasing height).

Transforming a reconciliation into a compact one can be done by resorting to a trivial function, called
fα2ᾱ, that for each u ∈ V (G), removes from α(u) each element associated to a ∅ event, thus obtaining
the corresponding ᾱ(u). Note that ᾱ(u) is not empty as the sequence α(u) ends with an event different
from a ∅ event. Inversely, transforming a compact reconciliation into a reconciliation can be done by
resorting to the function fᾱ2α detailed in Algorithm 1 that inserts artificial nodes, corresponding to ∅
events, between consecutive elements of ᾱ (u) so that the output mapping α(u) satisfies Definition 25.

13

Algorithm 1 fᾱ2α(ᾱ, G, (S, θS)) Given a compact reconciliation ᾱ between a gene tree G and a dated
species tree (S, θS), this function computes a reconciliation α between these trees such that, up to ∅
events, the two reconciliations represent the same events.
1: α(r(G))← [ᾱ(r(G))]
2: for all u ∈ V (G) do
3: // for any non root node u, to place ∅ events we need to know the mapping for up
4: if u 6= r(G) then
5: Aᾱ ← concatSeq(ᾱη(up), ᾱ(u))
6: else
7: Aᾱ ← ᾱ(u)
8: end if
9: //we can now add ∅ events between each node mapping of Aᾱ based on its height and event type

10: //Aᾱ[1] is skipped as it is either r(G) (and has no ∅ event above it) or ᾱη(up) (handled when processing up)
11: for k from 2 to |Aᾱ| do
12: if Aᾱ[k − 1] is an S or an SL event in ᾱ then
13: hmax = h(Aᾱ[k − 1])− 1
14: else
15: hmax = h(Aᾱ[k − 1]))
16: end if
17: ∅u,k ← ArtificialPath(S′, hmax, h(Aᾱ[k]), S,Br(Aᾱ[k]))
18: α(u)← concatSeq(α(u),∅u,k, Aᾱ[k])
19: end for
20: end for
21: return α

Property 7 (Bijection between reconciliations and c-reconciliations) There is an event-preserving bijection
between reconciliations and c-reconciliations.

The cost of a (compact) reconciliation can be defined along the same lines as those for dated and
sliced scenarios due to the correspondence of the event kinds in all these models.

Definition 29 ((optimal) reconciliation cost) The cost of a (compact) reconciliation α between a
gene tree G and a dated species tree (S, θS) is denoted cost(α) and is defined as dδ + tτ + lλ, where
δ, τ and λ respectively denote the cost of each D, T, and L event, and d, t, and l denote the number of
these events in α. It is important to note that the cases TL (resp. SL) in the definitions of a (compact)
reconciliation count as a T (resp. S) event plus an L event. The optimal reconciliation cost, is defined as:

C(G,S) := min{cost(α) : α is a reconciliation between G and (S, θS)}.

Note that a reconciliation and its corresponding c-reconciliation (i.e., obtained by the function fα2ᾱ)
have the same cost since ∅ events are ignored in the cost definition. Indeed, recall that they are just fake
events modeling the fact that a gene evolving along a branch of the species tree crosses the boundary of
a time slice.

We now define an optimization problem called Most Parsimonious Reconciliation (MPR for short)
which is the central problem solved by the algorithm in Doyon et al [13]. Many other algorithms have
been proposed on similar discrete problems [33,50,7,34,20,48,10,3].

Problem 3 MPR problem
INPUT: a dated species tree (S, θS), a traceable gene tree G, and costs δ, τ , resp. λ for D, T, resp. L
events.
OUTPUT: a (compact) reconciliation α between trees G and (S, θS) of optimal cost, C(G,S).

A reconciliation that is a solution for the MPR problem is said to be Most Parsimonious (MP for
short) for (G,S, θS). As shown below, and similarly to the sliced and dated frameworks, any MPR is a
basic reconciliation.

Definition 30 (Basic reconciliation) A reconciliation α between trees G and a dated species tree
(S, θS) is said to be basic if and only if α1(r(G)) is not a TL or an SL event.

This definition is simpler than those for dated scenarios (section 3) and sliced scenarios (section 4)
since reconciliations handle traceable gene trees, that is they don’t have to position explicitly dead genes.
Hence no equivalent of points (b) and (c) from Definitions 13 and 22 is needed here.

14

G

a1 b1 c1 c2 e1

u
v

s

t

S'

A B C D E

w

x

y

z

y'1 y'2 y'3

z'1 z'2

x'1

(a) Trees G and S′

A B C D E

a1 b1 c1 c2 e1

u v

s

t

w

x

y

z

y'1 y'2 y'3

z'1 z'2

x'1

(b) Reconciliation ᾱ1

A B C D E

a1 b1 c1 c2 e1

u

v

s

t

w

x

y

z

y'1 y'2 y'3

z'1 z'2

x'1

(c) Reconciliation ᾱ2

Fig. 7: Equivalent reconciliations between a gene tree G and a dated species tree (S, θS). (a) A gene tree
G and a subdivision S′ of a species tree, where each contemporary gene is denoted by the lower case
letter corresponding to the upper case letter of the species to which it belongs (e.g., gene a1 belongs to
species A). (b,c) ᾱ1 and ᾱ2 are two equivalent reconciliations.

Property 8 Given (G,S, θS) and strictly positive costs δ, τ , resp. λ for duplication, transfer, resp. loss
events, any most parsimonious (compact) reconciliation α between G and (S, θS) is basic.

Proof. Let us prove this by contradiction. Suppose that we have a non-basic MP reconciliation α, then
let β be the reconciliation such that i) β(u) = α(u) for any node u ∈ V (G)\r(G) and ii) β(r(G)) is equal
to the last element of α(r(G)). Note that, by definition of a reconciliation, β(r(G)) is not a ∅ event, and
β also satisfies the definition of a reconciliation for each of the remaining elements (inherited from α).
Hence, β would be a reconciliation with an L event less than α, that is would be of lower cost than α
(since λ > 0), a contradiction. The proof for a compact reconciliation is identical.

5.1 Equivalence classes for reconciliations

As for sliced scenarios, two (compact) reconciliations can be non-identical with regards to the subdivided
species tree S′ but still yield the same set of events with regards to the original species tree S. Roughly
speaking, two or more (compact) reconciliations are equivalent when each event occurs on (possibly
different) vertices of S′ that are all located on the same branches of S in both (compact) reconciliations
(see Figure 7 for an example). More formally:

Definition 31 (Class of equivalent (compact) reconciliations) Two compact reconciliations ᾱ1

and ᾱ2 between a gene tree G and a dated species tree (S, θS) are said to be equivalent, denoted ᾱ1 ≡ ᾱ2,
if and only if for each node u of G the ordered subsequences ᾱ1(u) and ᾱ2(u) have the same length η
and Br(ᾱ1

k(u)) = Br(ᾱ2
k(u)) for each index k ∈ {1, 2, . . . , η}.

Two reconciliations (compact or not) are equivalent if their compact representations are.

Since, for a given (G,S, θS), equivalence is based on the S mapping (through the Br(·) function
in Definition 31), each (compact) reconciliation equivalence class can be characterized by a sequence
mapping Ms that associates each node of V (G) to an ordered sequence of vertices in V (S). Different
reconciliations in a same class Ms will only differ on the precise chunk in branches of S on which they
map nodes of G. The next lemma states that equivalent reconciliations indeed have ᾱ mappings that
induce identical events and have hence the same reconciliation cost.

Lemma 1 If two compact reconciliations ᾱ1 and ᾱ2 between a gene tree G and a dated species tree
(S, θS) are equivalent then: for each node u ∈ V (G) and each index k ∈ {1, 2, . . . , η}, where η :=
|ᾱ1(u)| = |ᾱ2(u)|, the vertices x′ = ᾱ1

k(u) and y′ = ᾱ2
k(u) are such that i) Br(x′) = Br(y′); ii) the same

event type is associated to x′ and y′; iii) cost(ᾱ1) = cost(ᾱ2).

15

Proof. Point i) is ensured by the definition of equivalent compact reconciliations. Point ii) follows from
the fact that the event type associated to any ᾱk(u) (Definition 27) is imposed by Br(ᾱ.(.)) which by
definition of equivalence is the same for two equivalent reconciliations (other constraints on height only
ensure the validity of the compact reconciliation which is already ensured here since ᾱ1 and ᾱ2 are valid
reconciliations). Point iii) directly follows from point ii).

6 Equivalence of the MP dated scenario and MP sliced scenario problems

The aim of this section is to prove that a most parsimonious full dated scenario can be found by searching
for a most parsimonious sliced scenario. Finding an object of the latter kind is easier since this requires
to explore a discrete time space rather than a continuous one. This proof relies on a bijection between
the equivalent classes partitioning the two search spaces.

Definition 32 (Sets C and C′ of equivalence classes) The equivalence relationship between two full
dated scenarios (Definition 14) defines a set C of dated classes, each containing equivalent basic dated
scenarios. This partitions the space of basic dated scenarios for a given (G,S, θS).
Similarly, on the basis of Definition 23, we denote by C′ the set of equivalence classes defined on basic
sliced scenarios for a given (G,S, θS). The latter classes are called sliced classes.

Remember that, by definition, two full dated scenarios (Go1,M1) and (Go2,M2) are equivalent if, and
only if, Go1 is identical to Go2 (up to isomorphism) and any node u◦ ∈ Go1 = Go2 is mapped on the same
branch of the species tree S by the two full scenarios. The same holds for equivalent sliced scenarios
(Go1,M

′
v) and (Go2, N

′
v), since Definition 23 states that, for any u◦ ∈ Go, Br(M ′v(u

◦)) = Br(N ′v(u
◦));

this implies that u◦ is mapped on the same branch of S by the two sliced scenarios. Thus, for a given
(G,S, θS), each equivalence class of C or C′ can be characterized by a pair (Go,Mv) with Mv a mapping
of V (Go) to V (S). Different scenarios in a same dated class (Go,Mv) will differ on their Mt mapping,
while different scenarios in a sliced class (Go,Mv) will differ on the precise chunk of branches on which
they map nodes of Go.

Finally, note that not any pair (Go,Mv) – with Mv a mapping from nodes of Go to nodes of S –
represents a class of scenarios. Indeed, when imposing no constraint on Mv, there exists cases where
no Mt can be defined to have a valid dated scenario (Mv,Mt); similarly, for some Mv, no valid sliced
scenario with mapping M ′v : V (Go)→ V (S′) such ∀u◦ ∈ Go, Br(M ′v(u◦)) = Mv(u

◦) exists.

Definition 33 (The dated-to-sliced function fd2s) The dated-to-sliced function, denoted by fd2s, is
defined on C → C′ and associates to each dated class cd = (Go,Mv) ∈ C the sliced class cs = (Go,Mv) ∈
C′.

The function fd2s may look like the identity function, but it is not since C and C ′ are different spaces.
Hence we have so far no insurance that the image of a valid dated scenario class always leads to a valid
sliced scenario class, and vice versa.

Property 9 (fd2s validity) The dated-to-sliced function fd2s is correctly defined.

Proof. We need to prove that ∀cd = (Go,Mv) ∈ C, the pair (Go,Mv) = fd2s(cd) ∈ C′, i.e., that there is
at least one sliced scenario ss = (Go,M ′v) that maps vertices of Go into vertices of S (when considering
Br(·)) as done by Mv. Since cd ∈ C, there exists at least one dated scenario in this class, denoted
ds = (Go,Ms) such that Ms

v = Mv (since ds ∈ cd). Consider the mapping M ′v that associates each
vertex u◦ of Go to the vertex x′ = Chunk(Ms

v (u◦),Ms
t (u◦)) of S′.

The pair (Go,M ′v) is a valid sliced scenario, since each vertex u◦ ∈ Go is, by construction, mapped on
the same branch of S (via a chunk of it), hence each vertex is associated to the same event type in ss
and ds:

1. in ss, each u◦ ∈ Go associated to a Co, Lo or So event respects the associated constraints since they
were respected by ds (which contains more stringent conditions than in the definition of a sliced
scenario) and are unchanged by the dated to sliced transformation;

2. in ss, each u◦ ∈ Go associated to a Do, or a To event respect the associated constraints for the
mapping of u◦l and u◦r since they are also unchanged by the transformation. The respect of the time
constraints follows from the fact that t1 ≥ t2 ⇒ IθS′ (Chunk(x1, t1)) ≥ IθS′ (Chunk(x2, t2)) for all
nodes x1 and x2 of S such that t1 ∈ [θS(x1), θS(x1p)[and t2 ∈ [θS(x2), θS(x2p)[.

16

Hence (Go,M ′v) is a valid sliced scenario, which by construction belongs to the class cs = (Go,Mv) ∈ C′
and fd2s is a valid function from C → C′.

Definition 34 (The sliced-to-dated function fs2d) The sliced-to-dated function, denoted by fs2d, is
defined on C′ → C and associates to each sliced class cs = (Go,Mv) ∈ C′ the dated class cd = (Go,Mv) ∈
C.

Property 10 (fs2d validity) The sliced-to-dated function fs2d is correctly defined.

Proof. We need to prove that for any class cs = (Go,Mv) ∈ C′, the pair (Go,Mv) = fs2d(cs) is a class of
C, i.e., that there is at least one dated scenario ds = (Go,(Ms

v ,M
s
t)) such that Ms

v = Mv.
Since cs ∈ C′, there exists at least one sliced scenario in this class, denoted by ss = (Go,M ′v) and hence
such that ∀u◦ ∈ Go : Br(M ′v(u

◦)) = Mv(u
◦) (since ss ∈ cs).

For each node u◦ ∈ V (Go) if ds associates u◦ to a given event E then cs also has to associate u◦ to E:
indeed i) ds and ss map each vertex u◦ of Go on the same branch of S since Ms

v (·) = Br(M ′v(·)) = Mv(·);
ii) the vertex mappings impose the kind of event (e.g., Property 2) and iii) the constraints on the vertex
mappings are identical for each kind of event E in Definitions 7 and 20. Now consider a time mapping
function Mt that would date each vertex u◦ ∈ Go so that

1. if u◦ is associated to a Co or So then Mt(u
◦) = θS(M ′v(u

◦))
2. if u◦ is associated to a Lo then Mt(u

◦) = t1 with t1 ∈ IθS′ (M
′(u◦))

3. if u◦ is associated to a Do or a To, thenMt(u
◦) = t1 with t1 ∈ IθS′ (M

′
v(u
◦)), t1 > max(Mt(u

◦
l),Mt(u

◦
r))

With such a time mapping (Go,(Mv,Mt)) would obviously be a valid dated scenario, since those con-
straints ensure i) that any pair (Mv(u

◦),Mt(u
◦)) is coherent since Mt(u

◦) ∈ IθS′ (Mv(u
◦)) ⊆ IθS (Mv(u

◦))
holds for Do,To and Lo events. ii) that any node u is mapped at a date posterior to those of its chil-
dren (and hence of its descendants). So, we need to prove that it is always possible to construct such
a time mapping function Mt. This can easily be done as detailed in Algorithm 2, by associating dates
of the vertex of Go in post-order (hence ensuring that a vertex of Go is considered after all its chil-
dren/descendants). Using this ordering, when dating node a u◦ which is mapped in the time slice si, it
suffices to constraint Mt(u

◦) to be within]dlast, dmax[where dlast is the last date (hence the maximal
one) that was affected to a node in this slice and dmax is the upper bound of this time slice. A simple
choice for Mt(u

◦) is to use the middle of this interval. Note that node after node]dlast, dmax[is smaller
and smaller but it is never ∅ (Zeno’s paradox).

It is hence always possible to construct a time mapping function Mt respecting the above mentioned
constraint and it hence always exists a valid dated scenario ss1 = (Go, (Mv,Mt)), which belongs to the
class cd = (Go,Mv) ∈ C.Thus, fs2d is a valid function from C′ → C.

Algorithm 2 Given a sliced scenario (M ′) for (G,S, θS), this function computes a dated function
Mt compatible with M ′ and with the topology of Go.

1: for k from 0 to h(root(Go)) do
2: date last[k]← the initial lower bound of this time slice
3: date max[k]← the upper bound of this time slice
4: end for
5: for u◦ in V (Go) considered in post-order do
6: x′ ← (M ′(u◦)); x← Br(x′);
7: if u◦ is an So or a Co in M ′ then
8: Mt(u◦)← θS(x)
9: else

10: Mt(u◦)←
(
date last[h(x′)] + date max[h(x′)]

)
/2

11: date last[h(x′)]←Mt(u◦)
12: end if
13: end for
14: return Mt

Theorem 1 The function fd2s is a bijection between the classes of equivalent scenarios defined on dated
and sliced scenarios for (Go, S, θS). Moreover this bijection preserves the event types associated to the
vertex of Go and hence the overall cost of the scenario.

17

Proof. The function fd2s : C → C′ is bijective, if and only if, it exists a function g : C′ → C such that
∀c ∈ C : g(fd2s(c)) = c and ∀c′ ∈ C′ : fd2s(g(c′)) = c′. These two conditions obviously hold for g = fs2d
since, it directly follows from the definition of fd2s and fs2d that:

– ∀c = (Go,M) ∈ C, fd2s(fs2d(G
o,M)) = fd2s(G

o,M) = (Go,M)
– ∀c′ = (Go,M) ∈ C′, fs2d(fd2s(G

o,M)) = fd2s(G
o,M) = (Go,M)

As already mentioned previously in this section, since fd2s and fs2d preserve Go and its vertex
mapping on S, they also preserve the events associated with each vertex of Go in the source scenario
class and hence the overall cost of the source scenario class.

7 Equivalence of the MP reconciliation and MP sliced scenario problems

As seen in the previous section, exploring the space of basic-up scenarios is sufficient to find a MP
scenario. In this section we will prove that there is a bijection between basic-up sliced scenarios and
basic c-reconciliations, which preserves the D and T events associated to the vertices of G, and the
number of L events inferred on each branch of S, hence the overall cost. Hence, a most parsimonious
sliced scenario can be found by searching for a most parsimonious (compact) reconciliation, which is
easier since this does not requires to explore the space of all possible G◦.

Note that a branch (up, u) of G corresponds to a path in Go that link (the nodes corresponding to)
up and u through ghost nodes .

Definition 35 (GhostPathInG0(·, ·, ·)) Given a full gene tree Go for G, and a node u of G, GhostPath
InG0(G0, G, u) returns the sequence of ghost nodes of Go constituting the path between up and u in Go.
Note that for simplicity, we confound here a node u of G and its corresponding traceable node u0 in Go.

Algorithm 3 fr2s(ᾱ, G, S, θS) Given a compact reconciliation ᾱ between a gene tree G and a dated
species tree (S, θS), this function computes a basic-up sliced scenario (Go,Mv) between these trees
that, up to ∅ events, represents the same events as ᾱ.

1: Go ← G;
2: LL(Go)← ∅;
3: for all node u ∈ V (G) do
4: η ← |ᾱ(u)|;
5: replace in Go the edge (up, u) with a path [up, g◦1 , . . . , g

◦
η−1, u := g◦η] //ghost nodes of Go

6: add a new leaf node d◦k to LL(Go) and connect it as the left child of g◦k //dead leaf of Go

7: for k from 1 to η do
8: Mv(g◦k)← ᾱk(u)
9: end for

10: for k from 1 to η -1 do
11: if ᾱk(u) is associated to a SL then
12: Mv(d◦k)← the child of ᾱk(u) that is not ᾱk+1(u) SL
13: else
14: Mv(d◦k)← ᾱk(u) TL
15: end if
16: end for
17: end for
18: return (Go,Mv)

Definition 36 (The reconciliation-to-sliced function fr2s) The reconciliation-to-sliced function,
denoted by fr2s and detailed in Algorithm 3, is defined on Cr → Cs where Cr denotes the space of
basic compact reconciliations and Cs the space of basic-up sliced scenario. It associates to each basic c-
reconciliation ᾱ a pair (Go,Mv): G

o is obtained from G by adding dead and ghost nodes (lines 5, 6) and
is thus a full gene tree for G, while Mv is a mapping between nodes of Go and vertices of S′ constructed
from ᾱ by adding the mapping of dead (line 8) and ghost (lines 12, 14) nodes so that (Go,Mv) is a
basic-up sliced scenario for G and (S, θS), see proof of Property 11 for more details.

Property 11 (fr2s validity) The reconciliation-to-sliced function fr2s is correctly defined and output a
basic-up sliced scenario with the same cost as the basic c-reconciliation in input.

18

Proof. We need to prove that ∀cα ∈ Cr, the pair (Go,Mv) = fr2s(ᾱ, G, S, θS) is an element of Cs, i.e. that
the output pair ss1 = (Go,Mv) is indeed a valid basic-up sliced scenario ss1 = (Go,M ′v) for (G,S, θS),
i.e. i) Go is a full tree for G and ii) all node of Go satisfies the condition of a basic-up sliced scenario.

The first point is easily proved as Go is obviously a full gene tree for G by construction (lines 1 and
6 of Algorithm 3).

We will now prove that each non dead gene u◦ satisfies the constrained of a sliced scenario (Definition
20). This is done based on the event type of ᾱk(u). Recall that each non dead gene u◦ is mapped such
that M ′v(u

◦) = ᾱk(u) and u◦ ∈ GhostPathInG0(G0, G, u).

– ᾱk(u) is a C event then so is u◦ since LC(Go) and s(.) are unchanged and h(ᾱk(u)) = 0 implies

θS′(M
′
v(u
◦)) = 0.

– ᾱk(u) is an event E ∈ {S,D,T} then k = |ᾱ(u)| and u◦ is a node of G. Then, by construction,

M ′v(u
◦
r) = ᾱ1(u◦r) andM ′v(u

◦
l) = ᾱ1(u◦l) (lines 7, 8). Thus, since ᾱ|ᾱ(u)|(u) respects the (c-reconciliation)

conditions of a E event based on the three mapping ᾱ|ᾱ(u)|(u), ᾱ1(ur), ᾱ1(ul), M
′(u◦) respect the

(identical) conditions of a (sliced scenario) E◦ event (the condition on h(.) are obviously equivalent
to those on θS′(·).

– ᾱk(u) is an event E ∈ {SL,TL} then k < |ᾱ(u)| and u◦ is by construction a ghost node.

– ᾱk(u) is a SL event then x := ᾱk(u) is non artificial and, by construction, M ′v(u
◦
r) = ᾱk+1(u).

Moreover, Br(ᾱk+1(u)) ∈ {xl, xr} (Definition 27); this plus lines 6 and 12 of Algorithm 3 ensure
that {Br(M ′v(u◦r)), Br(M ′v(u◦l)} = {xl, xr} thus completing the required conditions for M ′v(u

◦) to
be a So event.

– ᾱk(u) is a TL event then by construction M ′v(u
◦
r) = ᾱk+1(u) and Br(ᾱk+1(u)) = y with y 6= x

and h(y) ≥ h(x) (Definition 27). This ensures that Br(M ′v(u
◦
r)) = y with y 6= x, IθS′ (x

′) ⊆ IθS (y)
and IθS′ (x

′) ≥ IθS′ (M
′
v(u
◦
r)). Moreover, lines 6 and 14 of Algorithm 3 ensure that the M ′v(u

◦
l) =

ᾱk(u) = M ′v(u
◦) thus completing the required conditions for M ′v(u

◦) to be a To event.
Moreover, each SL and TL event is also associated to a dead leaf of Go that is present in LL(Go)
(Algorithm 3 line 6) and is thus a L event in M ′. Note also that all dead nodes are leaves and that
all losses are positioned as high as possible, as required in a basic-up sliced scenario.

Hence (Go,M ′v) is a full sliced scenario for (G,S, θS), with the same events than ᾱ positioned on the same
branch of S and they thus have the same cost. Let now conclude the proof by verifying that this sliced
scenario is a basic-up one. To be basic, (Go,M ′v) should satisfy the three requirements of Definition 22.
The root r(Go) is traceable since ᾱ is basic (requirement a); each dead gene of Go is a leaf by construction
– Algorithm 3 line 6 (requirement b); each ghost gene of the scenario is either a SL or a TL events –
Algorithm 3 lines 10-15, (requirement c). So (Go,M ′v) is indeed basic. Finally each dead leaf is mapped by
M ′ on the highest possible chunk of S′ (with respect to other non dead node of Go) since if it originates
from a SL event then it is mapped on a child of x′ ∼= x (Algorithm 3 line 12) which by definition is
in the upper chunk of the child of x; while if it originates from a TL event it is mapped by M ′ in the
same chunk as u◦ (Algorithm 3 line 14) and can obviously not be mapped higher without invalidating
the basic time constraint that u◦ must satisfy (i.e. being mapped at least as high as its children).

Definition 37 (The sliced-to-reconciliation function fs2r) The sliced-to-reconciliation function,
denoted by fs2r and detailed in Algorithm 4, is defined on Cr → Cs and associates a basic c-reconciliation
ᾱ to each basic-up sliced scenario (Go,M ′v). This is done by concatenating, for each traceable node u of
Go, the mappings M ′v of all ghost nodes above u, until another traceable node is reached.

Property 12 (fs2r validity) The sliced-to-reconciliation function fs2r is correctly defined and output a
basic c-reconciliation with the same events and same cost as the input basic-up reconciliation.

Proof. We need to prove that ∀(Go,M ′v) ∈ Cs, the output c-reconciliation ᾱ = fs2r(G
o,M ′v) is an element

of Cr, i.e. that the output ᾱ is indeed a valid c-reconciliation for (G,S, θS), i.e. that for all node of u ∈ G
each element ᾱk(u) (where 1 ≤ j ≤ `:= |ᾱ(u)|) satisfied the conditions of a c-reconciliation.

Each element ᾱk(u) ∈ ᾱ corresponds to a M ′(g◦k) for a non dead gene of Go (Algorithm 4 line 1
and 6). We will now prove that each such non dead gene node ᾱk(u) ∈ ᾱ satisfies the constrains of a
c-reconciliation (Definition 27), this is done based on the node type and event type of M ′(g◦k):

– M ′(g◦k) is a Co event then g◦k is a traceable node u◦, k = |ᾱ(u)| = η and ᾱη(u) is a C event since

LC(Go) and s(.) are unchanged and θS′(M
′(u◦)) = 0 implies h(ᾱη(u)) = 0.

19

Algorithm 4 fs2r(G
o,M ′) Given a basic-up sliced scenario (Go,M ′) between a gene tree G and a dated

species tree (S, θS), this function computes a basic c-reconciliation ᾱ between these trees with the same
events (up to ∅ events) as (Go,M ′) .

1: ᾱ(r(G))← [M ′(r(Go))];
2: for all traceable node u ∈ V (Go) \ {r(Go)} do
3: ᾱ(u)← []
4: [g◦1 , . . . , g

◦
η−1, u := g◦η] = concatSeq

(
GhostPathInG0(G0, G, u), [u]

)
5: for k from 1 to η do
6: ᾱ(u)← concatSeq

(
ᾱ(u), [M ′(g◦k)]

)
7: end for
8: end for
9: return (ᾱ)

– M ′(g◦k) is associated to an event E◦ ∈ {So,Do,To} and g◦k is a traceable node u◦. Then, by construc-

tion, k = |ᾱ(u)| = η (Algorithm 4 lines 2, 4), ᾱ1(u◦r) = M ′v(u
◦
r) and ᾱ1(u◦l) = M ′v(u

◦
l). Since M ′v(u

◦)
respects the (sliced-scenario) conditions of a E◦ event, ᾱη(u◦) respect the (identical) conditions of a
(c-reconciliation) E event (the condition on θS′(·) are obviously equivalent to those on h(·)).

– M ′(g◦k) is associated to an event E◦ ∈ {So,To} and g◦k is a ghost node with a non dead son g◦k−1. Then

k < |ᾱ(u)| = η (Algorithm 4 line 2, 4). Note that, since (Go,M ′) is basic, a ghost node g◦k can nei-
ther be associated to a Do event nor to a To event where the transferred child is a dead leaf. From
these remarks and (Algorithm 4 lines 4, 6) it follows that ᾱk+1(u) = M ′v(g

◦
k−1) then (using the same

arguments as in the reciprocal proof) either
– E◦ is a So event and thus ᾱk(u) respect the constraints of a SL event; or
– E◦ is a To event and thus ᾱk(u) respect the constraints of a TL event, since the constraints on
h(·) obviously hold.

Finally, it is easy to see that the input sliced scenario being basic, so is ᾱ.

Theorem 2 The function fs2r is a bijection between the basic-up sliced scenarios and basic c-reconciliations,
which preserves the D and T events associated to the vertices of G and the number of L events inferred
on each branch of S, hence the overall cost.

Proof. The function fs2r : Cs → Cr is bijective, if and only if, it exists a function g : Cr → Cs such that
∀s = (Go,M ′) ∈ Cs : g(fs2r(s)) = s and ∀r ∈ Cr : fs2r(g(r)) = r. These two conditions hold for g = fs2r
since:

– fs2r(fr2s(ᾱ, G, S, θS)) = ᾱ. Given (Go,M ′) = fr2s(ᾱ, G, S, θS), the ᾱ mapping of r(G) is preserved

as M ′(r(Go)) and restored by fs2r(G
o,M ′) (Algorithm 4 line 1). Moreover, for any non root node u

of G, the order sequence of S′ vertices corresponding to ᾱ(u) is encoded as the M ′ mapping of the
ordered nodes of Go along the path concatSeq(GhostPathInG◦(Go, G, u), [u]) (Algorithm 4 lines 5
and 8) and the original ᾱ(u) is restored by fs2r.

– fr2s(fs2r(G
o,M ′), G, S, θS) = (Go,M ′). The structure and mapping of Go is fully encoded in ᾱ =

fs2r(G
o,M ′): i) since r(Go) ∼= r(G) and (Go,M ′) is basic, the root of Go and its mapping are

encoded in ᾱ (Algorithm 4 lines 1); ii) since the ordered sequence of mapping along the path
concatSeq(GhostPath InG◦(Go, G, u), [u]) is encoded in the ordered sequenced of ᾱ(u) (Algorithm
4 lines 4 and 6) and hence identically recreated by fr2s(ᾱ, G, S, θS) (Algorithm 3 lines 5 and 8); and
iii) the remaining part of Go are dead leaves (since (Go,M ′) is basic) and each of them is restored
from ᾱ (Algorithm 3 lines 6) together with its mapping. The original mapping of such a dead leaf ud
is recovered thanks to its unchanged parent mapping (see case i) and to the event type (SL,TL) of
this parent in ᾱ which encoded the branch of S on which ud was mapped (Algorithm 3 lines 11 and
13). Finally, as we focus on basic-up scenarios, ud can only be mapped on the highest possible chunk
of the identified S branch (Algorithm 3 lines 12 and 14).

– The fact that the event set is preserved by this bijection directly follows from Properties 11 and 12.

20

8 Equivalence of the MP dated scenario and MP reconciliation problems

The aim of this short section is to prove that a most parsimonious dated scenario can be found by
searching for a most parsimonious reconciliation, by chaining several intermediate results proved in the
previous sections.

First of all, note that Property 1 ensures that we can focus on basic dated scenarios while Property 8
ensures that we can focus on basic reconciliations. Property 7 ensures that there exist a bijection between
(basic) reconciliations and (basic) c-reconciliations. Theorem 1 ensures that there exists a bijection
between basic c-reconciliations and the basic-up sliced scenarios, which preserves the event types and
the the overall cost.

Moreover, Theorem 2 ensures that there exists a bijection between the classes of (basic) equivalent
scenarios defined on dated and sliced scenarios, preserving the event types and the the overall cost. Since
per each basic sliced scenario, there exists a basic-up scenario equivalent to it, this proves the claim
stated at the beginning of the section.

9 Conclusion

The main contribution of this paper is to have formally proven an important assumption, implicitly
made by previous works in the field of reconciliations: that solving the (maximum) parsimony DTL
dated reconciliation problem in the discrete framework is equivalent to finding a most parsimonious
dated DTL scenario in the continuous framework.

In the process, we also introduced new concepts and proved several intermediate results that may
be useful on their own. First, we give here an explicit description of the model we used in [13] for the
evolution of a full gene tree Go along a species tree S via D,T,L, and S events. This provides a way to
discriminate between valid and invalid reconciliations, regardless of the algorithm used to produce these
reconciliations. This explicit description also allows others to compare their models with ours, and to
easily pinpoint the differences between the two. For example, the model described in [48] was thought to
be equivalent ours, until [12] pointed out that the former model does not take into account TL events.
This could not be noticed easily as the tackled underlying models were not explicitly described in [13] and
[48]. Second, the concept of equivalence class among reconciliations allows to spot reconciliations that are
inherently equivalent, even though not identical. Third, the algorithm given in Section 6 that computes a
dated scenario equivalent to a given sliced scenario (hence a reconciliation), provides a practical solution
to draw a reconciliation as an embedding of the gene tree within the species tree. Indeed, for such a
drawing, each event (node of the gene tree) should be assigned to a precise date, and not just to a time
interval on a branch [6].

The concepts, algorithms and proofs provided in this paper constitute a theoretical toolbox that will
likely facilitate future theoretical contributions in the field.

Acknowledgements. This work was funded by the French Agence Nationale de la Recherche (ANR)
through grants ANR-09-PEXT-000 ”Phylospace” and ANR-10-BINF-01-01 ”Ancestrome”, and by the
Institut de Biologie Computationnelle. This publication is contribution no. 2015-098 of the Institut des
Sciences de l’Evolution de Montpellier (ISEM, UMR 5554).

References

1. Åkerborg, Ö., Sennblad, B., Arvestad, L., Lagergren, J.: Simultaneous Bayesian gene tree reconstruction and reconcil-
iation analysis. Proceedings of the National Academy of Sciences of the United States of America 106(14), 5714–5719
(2009)

2. Arvestad, L., Berglund, A.C., Lagergren, J., Sennblad, B.: Bayesian gene/species tree reconciliation and orthology
analysis using MCMC. Bioinformatics 19 Suppl 1, 7–15 (2003)

3. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal
transfer and loss. Bioinformatics 28(12), i283–91 (2012). DOI 10.1093/bioinformatics/bts225

4. Berglund, A.C., Steffansson, P., Betts, M.J., Liberles, D.A.: Optimal gene trees from sequences and species trees using
a soft interpretation of parsimony. J. Mol. Evol. 63, 240–250 (2006)

5. Charleston, M.: Jungles: a new solution to the host/parasite phylogeny reconciliation problem. Mathematical Bio-
sciences 149(2), 191–223 (1998). URL http://dx.doi.org/10.1016/S0025-5564(97)10012-8

6. Chevenet, F., Doyon, J.F., Scornavacca, C., Jousselin, E., Berry, V.: Sylvx: a viewer for phylogenetic reconciliations
(2015). In preparation

21

http://dx.doi.org/10.1016/S0025-5564(97)10012-8

7. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem.
Algorithms Mol Biol 5, 16 (2010)

8. Cotton, J., Page, R.: Rates and patterns of gene duplication and loss in the human genome. Proc Biol Sci 272(1560),
277–83 (2005)

9. Daubin, V., Moran, N.A., Ochman, H.: Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832
(2003)

10. David, L., Alm, E.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96
(2011)

11. Demuth, J.P., De Bie, T., Stajich, J.E., Cristianini, N., Hahn, M.W.: The evolution of mammalian gene families. PLoS
ONE 1, e85 (2006)

12. Doyon, J., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Brief.
Bioinformatics 12, 392–400 (2011)

13. Doyon, J.P., Scornavacca, C., Gorbunov, K.Y., Szllosi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for
gene/species trees parsimonious reconciliation with losses, duplications and transfers. In: E. Tannier (ed.) RECOMB-
CG, Lecture Notes in Computer Science, vol. 6398, pp. 93–108. Springer (2010)

14. Drummond, A.J., Ho, S.Y., Phillips, M.J., Rambaut, A.: Relaxed phylogenetics and dating with confidence. PLoS
Biology 4(5) (2006). DOI 10.1371/journal.pbio.0040088

15. Fischer, I., Dainat, J., Ranwez, V., Glemin, S., Dufayard, J.F., Chantret, N.: Impact of recurrent gene duplication
on adaptation of plant genomes. BMC Plant Biology 14(1), 151 (2014). DOI 10.1186/1471-2229-14-151. URL
http://www.biomedcentral.com/1471-2229/14/151

16. Fitch, W.M.: Homology - a personal view on some of the problems. Trends Genet. 16(5), 227–231 (2000)
17. Gabaldon, T.: Computational approaches for the prediction of protein function in the mitochondrion. Am J Physiol

Cell Physiol 291(6), C1121–1128 (2006). DOI 10.1152/ajpcell.00225.2006
18. Goldenfeld, N., Woese, C.: Biology’s next revolution. Nature 445, 369 (2007)
19. Goodman, M., Czelusniak, J., Moore, G.W., Herrera, R.A., Matsuda, G.: Fitting the gene lineage into its species

lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163
(1979)

20. Gorbunov, K.Y., Lyubetsky, V.A.: Reconstructing genes evolution along a species tree. Mol. Biol. (Mosk.) 43, 946–958
(2009)

21. Górecki, P.: Reconciliation problems for duplication, loss and horizontal gene transfer. In: P.E. Bourne, D. Gusfield
(eds.) RECOMB, pp. 316–325. ACM (2004). URL http://dblp.uni-trier.de/db/conf/recomb/recomb2004.html#

Gorecki04

22. Górecki, P.: H-trees: a model of evolutionary scenario with horizontal gene transfer. Fundamenta Informaticae 103,
105–128 (2010)

23. Górecki, P., Tiuryn, J.: Inferring evolutionary scenarios in the duplication, loss and horizontal gene transfer model.
In: R. Constable, A. Silva (eds.) Logic and Program Semantics, Lecture Notes in Computer Science, vol. 7230, pp.
83–105. Springer Berlin Heidelberg (2012). DOI 10.1007/978-3-642-29485-3 7. URL http://dx.doi.org/10.1007/

978-3-642-29485-3_7

24. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: RECOMB
’04, pp. 347–356. ACM, New York, NY, USA (2004)

25. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proceedings of the Fifth
Annual International Conference on Computational Biology, pp. 149–156. ACM, New York, NY, USA (2001). DOI
10.1145/369133.369188. URL http://doi.acm.org/10.1145/369133.369188

26. Han, M.V., Thomas, G.W., Lugo-Martinez, J., Hahn, M.W.: Estimating gene gain and loss rates in the presence of
error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30(8), 1987–1997 (2013)

27. Kunin, V., Ouzounis, C.A.: The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13(7),
1589–1594 (2003)

28. Lafond, M., Swenson, K., El-Mabrouk, N.: An optimal reconciliation algorithm for gene trees with polytomies.
In: B. Raphael, J. Tang (eds.) Algorithms in Bioinformatics, Lecture Notes in Computer Science, vol. 7534, pp.
106–122. Springer Berlin Heidelberg (2012). DOI 10.1007/978-3-642-33122-0 9. URL http://dx.doi.org/10.1007/

978-3-642-33122-0_9

29. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes. Science 290(5494), 1151–1155
(2000)

30. Maddison, W.P.: Gene trees in species trees. Systematic biology 46(3), 523–536 (1997)
31. Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., Van de Peer, Y.: Modeling gene and

genome duplications in eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 102(15), 5454–5459 (2005)
32. Makino, T., McLysaght, A.: Positionally-biased gene loss after whole genome duplication: Evidence from human, yeast

and plant. Genome Research 22, 24–27 (2012)
33. Merkle, D., Middendorf, M.: Reconstruction of the cophylogenetic history of related phylogenetic trees with divergence

timing information. Theory Biosci 123(4), 277–299 (2005). DOI 10.1016/j.thbio.2005.01.003
34. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophy-

logenies. BMC Bioinformatics 11(Suppl 1), S60 (2010). DOI 10.1186/1471-2105-11-S1-S60
35. Page, R.D.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas.

Syst. Biol. 43, 58–77 (1994)
36. Puigbo, P., Wolf, Y., Koonin, E.: Search for a ’tree of life’ in the thicket of the phylogenetic forest. Journal of Biology

8(6), 59 (2009). DOI 10.1186/jbiol159. URL http://jbiol.com/content/8/6/59

37. Rasmussen, M.D., Kellis, M.: Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates
across multiple complete genomes. Genome Research 17(12), 1932–1942 (2007). URL papers2://publication/uuid/

499F02A0-86D4-4624-8A32-78C69D8C4F9Cpapers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p872

22

http://www.biomedcentral.com/1471-2229/14/151
http://dblp.uni-trier.de/db/conf/recomb/recomb2004.html#Gorecki04
http://dblp.uni-trier.de/db/conf/recomb/recomb2004.html#Gorecki04
http://dx.doi.org/10.1007/978-3-642-29485-3_7
http://dx.doi.org/10.1007/978-3-642-29485-3_7
http://doi.acm.org/10.1145/369133.369188
http://dx.doi.org/10.1007/978-3-642-33122-0_9
http://dx.doi.org/10.1007/978-3-642-33122-0_9
http://jbiol.com/content/8/6/59
papers2://publication/uuid/499F02A0-86D4-4624-8A32-78C69D8C4F9C papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p872
papers2://publication/uuid/499F02A0-86D4-4624-8A32-78C69D8C4F9C papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p872

38. Rasmussen, M.D., Kellis, M.: Unified modeling of gene duplication, loss, and coalescence using a locus tree. Genome Re-
search 22(4), 755–765 (2012). URL papers2://publication/uuid/54E62C0F-314A-4173-94B5-5368EEACB2E0papers:

//c574a988-041f-48f0-a387-1407660e65a3/Paper/p4162http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.

fcgi?dbfrom=pubmed&id=22271778&retmode=ref&cmd=prlinkspapers2://publication/doi/10.1101/gr.123901.111

39. Sanderson, M.: A nonparametric approach to estimating divergence times in the absence of rate constancy. Molecular
Biology and Evolution 14, 1218–1231 (1997)

40. Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M.,
Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T.C., Trask, B., Patterson, N., Zetterberg, A.,
Wigler, M.: Large-scale copy number polymorphism in the human genome. Science 305(5683), 525–528 (2004)

41. Semon, M., Wolfe, K.H.: Consequences of genome duplication. Curr. Opin. Genet. Devel. 17, 505–512 (2007)
42. Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., Lagergren, J.: A bayesian method for analyzing

lateral gene transfer. Syst Biol 63(3), 409–20 (2014). DOI 10.1093/sysbio/syu007
43. Suchard, M.A.: Stochastic Models for Horizontal Gene Transfer: Taking a Random Walk Through Tree Space. Ge-

netics 170(1), 419–431 (2005). URL papers2://publication/uuid/61E6A9EE-A1FB-484B-9428-BE1834DA4AD5papers:

//c574a988-041f-48f0-a387-1407660e65a3/Paper/p946papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/

p374papers2://publication/uuid/B15BDCD1-3BC5-41B2-97C4-613C1D00FADC

44. Szöllősi, G.J., Daubin, V.: Modeling gene family evolution and reconciling phylogenetic discord. Methods Mol Biol
856, 29–51 (2012)

45. Szöllősi, G.J., Tannier, E., Lartillot, N., Daubin, V.: Lateral gene transfer from the dead. Systematic Biology 62(3),
386–397 (2013). DOI 10.1093/sysbio/syt003

46. Szollosi, G.J., Boussau, B., Abby, S.S., Tannier, E., Daubin, V.: Phylogenetic modeling of lateral gene transfer recon-
structs the pattern and relative timing of speciations. Proc. Natl. Acad. Sci. U.S.A. 109(43), 17,513–17,518 (2012)

47. Tofigh, A.: Using trees to capture reticulate evolution, lateral gene transfers and cancer progression. Ph.D. thesis,
KTH Royal Institute of Technology, Sweden (2009)

48. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM
TCBB 99 (2010). DOI http://doi.ieeecomputersociety.org/10.1109/TCBB.2010.14

49. Tofigh, A., Sjöstrand, J., Sennblad, B., Arvestad, L., Lagergren, J.: Detecting LGTs using a novel probabilistic model
integrating duplications, lgts, losses, rate variation, and sequence evolution (Manuscript)

50. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species trees. J. Comput. Biol. 15,
981–1006 (2008)

51. Zhang, L.: On a mirkin-muchnik-smith conjecture for comparing molecular phylogenies. Journal of Computational
Biology 4(2), 177–187 (1997)

23

papers2://publication/uuid/54E62C0F-314A-4173-94B5-5368EEACB2E0 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p4162 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22271778&retmode=ref&cmd=prlinks papers2://publication/doi/10.1101/gr.123901.111
papers2://publication/uuid/54E62C0F-314A-4173-94B5-5368EEACB2E0 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p4162 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22271778&retmode=ref&cmd=prlinks papers2://publication/doi/10.1101/gr.123901.111
papers2://publication/uuid/54E62C0F-314A-4173-94B5-5368EEACB2E0 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p4162 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22271778&retmode=ref&cmd=prlinks papers2://publication/doi/10.1101/gr.123901.111
papers2://publication/uuid/61E6A9EE-A1FB-484B-9428-BE1834DA4AD5 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p946 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p374 papers2://publication/uuid/B15BDCD1-3BC5-41B2-97C4-613C1D00FADC
papers2://publication/uuid/61E6A9EE-A1FB-484B-9428-BE1834DA4AD5 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p946 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p374 papers2://publication/uuid/B15BDCD1-3BC5-41B2-97C4-613C1D00FADC
papers2://publication/uuid/61E6A9EE-A1FB-484B-9428-BE1834DA4AD5 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p946 papers://c574a988-041f-48f0-a387-1407660e65a3/Paper/p374 papers2://publication/uuid/B15BDCD1-3BC5-41B2-97C4-613C1D00FADC

10 Appendix

Proof of Claim 3.
1. directly follows from Co and So event definitions.
2. the fact that Mt(u

◦) > Mt(v
◦) for any node u◦ and any strict descendant v◦ of u◦, can be proved

recursively. The constraint holds for leaves of Go. Assume that it holds for all strict descendant
v◦ of u◦, then it also holds for u◦, since either i) M(u◦) is a So event and Mt(u

◦) = θS(x) >
max(Mt(u

◦
l),Mt(u

◦
r)) because being mapped on xl (resp. xr) impose to be mapped at a time included

in [θS(xl), θS(x)[(resp. [θS(xr), θS(x)[)) no matter the associated event, or ii) M(u◦) is a Do or To
event and Mt(u

◦) > max(Mt(u
◦
l),Mt(u

◦
r)) holds by definition. Since any strict descendant v◦ of u◦

is either u◦l , u
◦
r or one of their descendants, the inequality Mt(u

◦) > max(Mt(u
◦
l),Mt(u

◦
r)) together

with the recurrence hypothesis applied to u◦l and u◦r ensure that Mt(u
◦) > Mt(v

◦).
3. follows from the fact that Do, So, and To event definitions involve the two sons of u◦ in Go.
4. follows from the explicit definition of Lo events.
5. follows from the fact that Mt(u

◦) ∈]θS(x), θS(xp)[∩]θS(y), θS(yp)[for any To event.

Proof of Property 1.
Let us prove this by contradiction. Suppose that we have an MPS, denoted Sopt = (Go,M), that is

not a basic scenario.
If condition (a) is not satisfied then either i) r(Go) is a dead gene implying that G contains no nodes,

impossible; ii) r(Go) is a ghost gene. In this case, consider an alternative scenario (H◦, N) obtained in
choosing H◦ as the subtree Gou◦ , where u◦ is the non dead child of r(Go), and such that the mapping
function N is simply the restriction of M to the nodes of H◦. Since the sole leaves that have been
removed are dead ones, H◦ is also a full gene tree for G. Moreover, since the mapping and children of
each remaining node are unchanged in N compared to M , their associated events, as defined by Definition
7, are also unchanged, while at least a loss event is spared (located in the subtree rooted at the other
child of r(Go)). Hence (H◦, N) would be a valid dated scenario for (G,S, θS) of lower cost than Sopt, a
contradiction.

If condition (b) is not satisfied, then Go contains at least one dead gene subtree Gou◦ . Let us consider
the alternative scenario obtained by deleting from Go all strict descendants of u◦, while keeping the exact
same mapping for remaining nodes. Using the same argument as in the previous case, we can show that
this valid dated scenario would have a lower cost than Sopt, a contradiction.

If condition (c) is not satisfied, then Go contains a ghost gene u◦ being a Do event, or being a To
event that transfers the dead child of u◦. In both cases, suppose, without loss of generality, that the
dead child of u◦ is u◦r , and consider the full gene tree H◦ obtained from Go by i) replacing the edges
(u◦p, u

◦) and (u◦, u◦l) by the edge (u◦p, u
◦
l), ii) deleting all nodes in G◦u◦r , iii) deleting u◦. Let N be the

function obtained by restricting M to the nodes of H◦. Since Nv(u
◦) = Nv(u

◦
l) and Nt(u

◦) > Nt(u
◦
l),

this modification does not modify the event associated to u◦p, u
◦
l ,or any other nodes of H◦, via Definition

7. So, the scenario (H◦, N) would be a valid one and have a lower cost than Sopt, a contradiction.
Therefore, if Sopt is an MPS, it has to satisfy all three conditions of Definition 13, hence it is a basic

scenario.

prop:recTocRec

Proof of Property 1.
– fα2ᾱ is valid. First note that applying fα2ᾱ to a reconciliation gives a function ᾱ such that h(ᾱ1(u)) ≤
h(α1(u)) for any node u ofG (by Property 6(1)). Additionally, Property 6(4) implies that Br(ᾱ1(u)) =
Br(α1(u)). Note that any ᾱj(u) of ᾱ is coming from an element of the sequence of α, say αi(u). Then
we have that ᾱj(u) = αi(u); moreover, if ᾱj(u) < |ᾱ(u)|, then Br(ᾱj+1(u)) = Br(αi+1(u)) (by
Property 6(3)-(4)) and h(ᾱj+1(u)) ≤ h(αi+1(u)) (Property 6(1)). Finally, if αi(u) is the last element
of α(u), so is ᾱj(u) for ᾱ(u). Now we consider separately each case of Definition 26 for αi(u):
– C event: if αi(u) is in case 1 then so is ᾱj(u) in Definition 27 (same constraints, not altered by

the removal of ∅ events).
– S event: αi(u) is the last element of α(u) and case 2 of Definition 26 transforms into case 2 of a

c-reconciliation due to Br(ᾱ1(uc)) = Br(α1(uc)) applied to children uc of u.

24

– D event: αi(u) is the last element of α(u) and the constraint on Br(·) of case 3 of Definition 26
transforms readily into that of the same case for a c-reconciliation due to Br(ᾱ1(u)) = Br(α1(u))
applied to u and its two children; moreover the constraint on the heights holds from h(ᾱj(u)) =
h(αi(u)) = h(α1(uc)) ≥ h(ᾱ1(uc)) for both the children uc of u.

– T event: case 4 is similar to case 3.
– SL event: the constraint on the Br(·) in case 5 for αi(u) transforms into that of case 5 for a

c-reconciliation due to Br(ᾱj+1(u)) = Br(αi+1(u)).
– TL event: The same reason than above explains that the constraint of case 6 on Br(·) for a c-

reconciliation holds from the constraint of case 6 for αi(u); moreover the fact that h(ᾱj+1(u)) ≤
h(αi+1(u)) (see beginning of this proof), ensures that the second part of case 6 for a c-reconciliation
also holds.

– ∅ event: these events are removed by fα2ᾱ, thus are not to be considered.
In conclusion, any element in a sequence for any node u of G falls into exactly one of the cases of
Definition 27, so that fα2ᾱ is shown to output a c-reconciliation.

– fᾱ2α is valid. First, note that calls to ArtificialPath at line 17 are always ensured to indicate heights
hmin and hmax corresponding to chunks in S′ covering the branch (vp, v) of S, where here Br(Aᾱ[k]) ∼=
v. Moreover we always have hmin < hmax for the two parameters given as input to the ArtificialPath
function: from the definition of a c-reconciliation it is clear that the equivalent of Property 6(1) and
(2) hold, thus that h(Aᾱ[k]) ≤ h(Aᾱ[k − 1]) holds, and in the particular case of S and SL events we
have h(Aᾱ[k]) ≤ h(Aᾱ[k − 1]) − 1. As a result, the call to ArtificialPath function always returns
a sequence of artificial nodes in a same branch, hence meeting constraint of case 7 (∅ event) in
Definition 26. Possibly, this sequence is empty (which happens when hmin = hmax).
Any other element αi(u) of α is also an element ᾱj(u) of ᾱ and should have the same type (E) in
α as in ᾱ. Indeed, as any ∅u,k is mapped on the same branch of S than u, the mapping constraints
satisfied by u (and its children) for ᾱj(u) are also satisfied for αi(u). Moreover the height constraints
associated to the event type (E) are also satisfied by αi(u):
– E ∈ {TL,SL}: αi+1(u) is either a ∅ event (and then ∅ events were added up to the adequate

height by lines 13 and 15 of the algorithm), or is a non ∅ event, that is ᾱj+1(u) (hence the
constraint on the height of Definition 27 ensures the result).

– E ∈ {D,T,S}: for each children uc of u, α1(uc) is either a ∅ event, in which case lines 5, 13 and
15 of the algorithm ensures that the constraint on the height holds, or is a non ∅ event, in which
case the constraint on the height holds from Definition 27.

Finally, note that constraints for C events are identical for reconciliations and c-reconciliations, so
any such event in ᾱ is preserved in α as the mapping of αi(u) is unchanged by the algorithm.

– ᾱ = fα2ᾱ(fᾱ2α(ᾱ)). Since a reconciliation ᾱ contains no ∅ event and fᾱ2α(.) only adds no events
while fα2ᾱ(.) removes all ∅ events we obviously have ᾱ = fα2ᾱ(fᾱ2α(ᾱ)).

– α = fᾱ2α(fα2ᾱ(α)). Starting from a reconciliation α, fα2ᾱ removes from the α(u) sequences all ele-
ments corresponding to ∅ events, leaving the other elements in the same order in ᾱ. Then Algorithm 1
applied to ᾱ just reintroduces the ∅ events at the same place and in the same number as they were
in α originally. This results from the fact that Algorithm 1 mimics Property 6(5) for placing the ∅
events between the other elements, common to α and ᾱ: each call to ArtificialPath at line 17 returns
a sequence ∅u,k of ∅ events preceding a non ∅ event (namely, Aᾱ[k]) in α(u) and is concatenated
after preceding elements in the sequence α(u) (processed for smaller k), followed by the event Aᾱ[k].
Eventually, when the inner loop has been processed, the full sequence α(u) has been produced for the
node u examined in the outer loop. Note that Aᾱ contains ᾱη(up) at its beginning so that we always
know in the inner loop the non ∅ event preceding Aᾱ[k] in the sense of Property 6(5), even for the
first element in Aᾱ(u) (this allows to write “k− 1” in lines 13-15). However this element is not added
in α(u) due to k starting from 2 in the inner loop (line 11).

25

	Introduction
	Preliminaries
	A general model of evolutionary scenario: the dated scenarios
	An intermediate model: sliced scenarios
	A tractable model of evolutionary scenario : reconciliations
	Equivalence of the MP dated scenario and MP sliced scenario problems
	Equivalence of the MP reconciliation and MP sliced scenario problems
	Equivalence of the MP dated scenario and MP reconciliation problems
	Conclusion
	Appendix

